Radiosity

Measures of Illumination
The Radiosity Equation
Form Factors
Radiosity Algorithms
[Angel, Ch 13.4-13.5]

Alternative Notes
• SIGGRAPH 1993 Education Slide Set – Radiosity Overview, by Stephen Spencer

www.siggraph.org/education/materials/HyperGraph/radiosity/overview_1.htm
Limitations of Ray Tracing

Local vs. Global Illumination

- Local illumination: Phong model (OpenGL)
 - Light to surface to viewer
 - No shadows, interreflections
 - Fast enough for interactive graphics
- Global illumination: Ray tracing
 - Multiple specular reflections and transmissions
 - Only one step of diffuse reflection
- Global illumination: Radiosity
 - All diffuse interreflections; shadows
 - Advanced: combine with specular reflection
Image vs. Object Space

- **Image space**: Ray tracing
 - Trace backwards from viewer
 - View-dependent calculation
 - Result: rasterized image (pixel by pixel)
- **Object space**: Radiosity
 - Assume only diffuse-diffuse interactions
 - View-independent calculation
 - Result: 3D model, color for each surface patch
 - Can render with OpenGL

Classical Radiosity Method

- Divide surfaces into patches (elements)
- Model light transfer between patches as system of linear equations
- Important assumptions:
 - Reflection and emission are diffuse
 - Recall: diffuse reflection is equal in all directions
 - So radiance is independent of direction
 - No participating media (no fog)
 - No transmission (only opaque surfaces)
 - Radiosity is constant across each element
 - Solve for R, G, B separately
Balance of Energy

- Lambertian surfaces (ideal diffuse reflector)
- Divided into n elements
- Variables
 - A_i: Area of element i (computable)
 - B_i: Radiosity of element i (unknown)
 - E_i: Radiant emitted flux density of element i (given)
 - ρ_i: Reflectance of element i (given)
 - F_{ji}: Form factor from j to i (computable)

$$A_i B_i = A_i E_i + \rho_i \sum_{j=1}^{n} F_{ji} A_j B_j$$

Form Factors

- Form factor F_{ij}: Fraction of light leaving element i arriving at element j
- Depends on
 - Shape of patches i and j
 - Relative orientation of both patches
 - Distance between patches
 - Occlusion by other patches
Form Factor Equation

- Polar angles θ and θ' between normals and ray between x and y
- Visibility function $v(x,y) = 0$ if ray from x to y is occluded, $v(x,y) = 1$ otherwise
- Distance r between x and y

$$A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x,y) \, dy \, dx$$

Reciprocity

- Symmetry of form factor

$$A_i F_{ij} = \int_{x \in P_i} \int_{y \in P_j} \frac{\cos \theta \cos \theta'}{\pi r^2} v(x,y) \, dy \, dx = A_j F_{ji}$$

- Divide earlier radiosity equation

$$A_i B_i = A_i E_i + \rho_i \sum_{j=1}^{n} F_{ji} A_j B_j$$

$$B_i = E_i + \rho_i \sum_{j} (F_{ji} A_j / A_i) B_j$$

$$= E_i + \rho_i \sum_{j} F_{ij} B_j$$
Radiosity as a Linear System

- Restate radiosity equation
- In matrix form

\[B_i - \rho_i \sum_j F_{ij} B_j = E_i \]

- Known: reflectances \(\rho_i \), form factors \(F_i \), emissions \(E_i \)
- Unknown: Radiosities \(B_i \)
- \(n \) linear equations in \(n \) unknowns

Radiosity “Pipeline”

- Scene Geometry
- Reflectance Properties
- Form factor calculation
- Solution of Radiosity Eq
- Radiosity Image
- Visualization
- Viewing Conditions
Visualization

- Radiosity solution is viewer independent
- Can exploit graphics hardware to obtain image
- Convert color on patch to vertex color
- Easy part of radiosity method

Computing Form Factors

- Visibility critical
- Two principal methods
 - Hemicube: exploit z-buffer hardware
 - Ray casting (can be slow)
 - Both exhibit aliasing effects
- For inter-visible elements
 - Many special cases can be solved analytically
 - Avoid full numeric approximation of double integral
Hemicube Algorithm

- Render model onto a hemicube as seen from the center of a patch
- Store patch identifiers j instead of color
- Use z-buffer to resolve visibility
- Efficiently implementable in hardware
- Examples of antialiasing [Chandran et al.]
No Intensity Interpolation

Wireframe
Radiosity Equation Revisited

- Direct form
 \[B_i = E_i + \rho_i \sum_j F_{ij} B_j \]

- As matrix equation
 \[
 \begin{bmatrix}
 1 - \rho_1 F_{11} & -\rho_1 F_{12} & \cdots & \rho_1 F_{1n} \\
 -\rho_2 F_{21} & 1 - \rho_2 F_{22} & \cdots & \rho_2 F_{2n} \\
 \vdots & \vdots & \ddots & \vdots \\
 -\rho_n F_{n1} & \rho_n F_{n2} & \cdots & 1 - \rho_n F_{nn}
 \end{bmatrix}
 \begin{bmatrix}
 B_1 \\
 B_2 \\
 \vdots \\
 B_n
 \end{bmatrix}
 =
 \begin{bmatrix}
 E_1 \\
 E_2 \\
 \vdots \\
 E_n
 \end{bmatrix}
 \]

- Unknown: radiosity \(B_i \)
- Known: emission \(E_i \), form factor \(F_{ij} \), reflect. \(\rho_i \)

Classical Radiosity Algorithms

- Matrix Radiosity
 - Diagonally dominant matrix
 - Use Gauss-Seidel iterative solution
 - Time and space complexity is \(O(n^2) \) for \(n \) elements
 - Memory cost excessive
- Progressive Refinement Radiosity
 - Solve equations incrementally with form factors
 - Time complexity is \(O(n \cdot s) \) for \(s \) iterations
 - Used more commonly (space complexity \(O(n) \))
Matrix Radiosity

- Compute all form factors F_{ij}
- Make initial approximation to radiosity
 - Emitting elements $B_i = E_i$
 - Other elements $B_i = 0$
- Apply equation to get next approximation
 \[B_i^l = E_i + \rho_i \sum_j F_{ij} B_j \]
- Iterate with new approximation
- Intuitively
 - Gather incoming light for each element i
 - Base new estimate on previous estimate

Radiosity Summary

- Assumptions
 - Opaque Lambertian surfaces (ideal diffuse)
 - Radiosity constant across each element
- Radiosity computation structure
 - Break scene into patches
 - Compute form factors between patches
 - Lighting independent
 - Solve linear radiosity equation
 - Viewer independent
 - Render using standard hardware
Lecture Summary

- The Radiosity Equation
- Form Factors
- Radiosity Algorithms
Solid Angle

- **2D angle subtended by object O from point x:**
 - Length of projection onto unit circle at x
 - Measured in radians (0 to 2\pi)
- **3D solid angle subtended by O from point x:**
 - Area of of projection onto unit sphere at x
 - Measured in steradians (0 to 4\pi)

Radiant Power and Radiosity

- **Radiant power P**
 - Rate at which light energy is transmitted
 - Dimension: power = energy / time
- **Flux density Φ**
 - Radiant power per unit area of the surface
 - Dimension: power / area
- **Irradiance E:** incident flux density of surface
- **Radiosity B:** exitant flux density of surface
 - Dimension: power / area
- **Flux density at a point Φ(x) = dP/dA** (or dP/dx)
Power at Point in a Direction

- Radiant intensity I
 - Power radiated per unit solid angle by point source
 - Dimension: power / solid angle
- Radiant intensity in direction ω
 - $I(\omega) = \frac{dP}{d\omega}$
- Radiance $L(x, \omega)$
 - Flux density at point x in direction ω
 - Dimension: power / (area × solid angle)

Radiance

- Measured across surface in direction ω
- For angle θ between ω and normal n
 \[
 L(x, \omega) = \frac{d^2P}{d\omega dx'} = \frac{d^2P}{d\omega \cos \theta dx}
 \]
Radiosity and Radiance

- Radiosity $B(x) = \frac{dP}{dx}$
- Radiance $L(x, \omega) = \frac{d^2P}{d\omega \cos \theta} \, dx$
- Let Ω be set of all directions above x

\[B(x) = \int_{\Omega} L(x, \omega) \cos \theta \, d\omega \]