Spatial Data Structures

Hierarchical Bounding Volumes

Regular Grids

Octrees

BSP Trees

Constructive Solid Geometry (CSG)
[Angel 9.10]

Outline

* Ray tracing review — what rays matter?
* Ray tracing speedup

— faster intersection tests: simple enclosing geometry
* bounding volumes

— fewer intersection tests: avoid testing many objects
« hierarchical bounding volumes
* regular grid
* octree

* BSP tree

* CSG and ray tracing




Spatial Data Structures

» Data structures to store geometric information

« Sample applications
— Height field representation
— Collision detection (hierarchical bounding volumes)
— Surgical simulations (finite element method)
— Rendering
» Spatial data structures for ray tracing
— Object-centric data structures (bounding volumes)
— Space subdivision (grids, octrees, BSP trees)
— Speed-up of 10x, 100x, or more

Bounding Volumes

« Suppose you are ray tracing teapots...

— need to intersect ray with a collection of Bezier
patches...

— ...or a large number of triangles




Bounding Volumes

« Wrap complex objects in simple ones

» Does ray intersect bounding box?
— No: does not intersect enclosed objects
— Yes: calculate intersection with enclosed objects

« Common types
— Boxes, axis-aligned
— Boxes, oriented
— Spheres
— Finite intersections or unions of above

Selection of Bounding Volumes

» Effectiveness depends on:

— Probability that ray hits bounding volume, but not
enclosed objects (tight fit is better)

— Expense to calculate intersections with bounding
volume and enclosed objects

» Use heuristics / your best judgment




Hierarchical Bounding Volumes

« With simple bounding volumes, ray casting still
requires O(n) intersection tests...

Hierarchical Bounding Volumes

» With simple bounding volumes, ray casting still
has requires O(n) intersection tests

 Idea: use tree data structure
— Larger bounding volumes contain smaller ones etc.
— Sometimes naturally available (e.g. human figure)
— Sometimes difficult to compute

» Often reduces complexity to O(log(n))




Ray Intersection Algorithm

Recursively descend tree
If ray misses bounding volume, no intersection

If ray intersects bounding volume, recurse with
enclosed volumes and objects

Maintain near and far bounds to prune further

Overall effectiveness depends on model and
constructed hierarchy

Focus on Objects

* Bounding volumes are object centric
— place simple bounding volume around each object
— group these simple bounding volumes into a hierarchy




Focus on Objects

» Bounding volumes are object centric
— place simple bounding volume around each object
— group these simple bounding volumes into a hierarchy

* Problems:
— finding a good grouping can be difficult
— if objects are moving, a group that is compact now may not be
compact later ..

— (logical groupings such as an object or animated character,
however, are easy to group and maintain)

Focus on Objects - Focus on the Space

* Bounding volumes are object centric
— place simple bounding volume around each object
— group these simple bounding volumes into a hierarchy

* Problems:
— finding a good grouping is difficult
— if objects are moving, a group that is compact now may not be
compact later..

 If there are many distinct objects, dividing up space and
registering objects in that space may be a better option




Spatial Subdivision

* Regular grids
* QOctrees
» BSP trees

Grids

» 3D array of cells (voxels) that tile space

» Each cell points to all intersecting surfaces

* Intersection
algorithm
steps from cell
to cell




Caching Intersection points

Objects can span multiple cells
For A need to test intersection only once

For B need to cache intersection and check
next cell for closer one

If not, C could be misse
(yellow ray)

Assessment of Grids

» Poor choice when world is non-homogeneous
 Size of grid

— Too small: too many surfaces per cell

— Too large: too many empty cells to traverse

— Can use alg like Bresenham'’s for efficient traversal
* Non-uniform spatial subdivision more flexible

— Can adjust to objects that are present




Quadtrees

 Goal: a hierarchical subdivision of an entire
(bounded) 2D space

Quadtrees

» Generalization of binary trees to 2D
— Node (cell) is a square
— Recursively split into 4 equal sub-squares
— Stop subdivision based on number of objects

* Ray intersection has to traverse quadtree
* More difficult to step to next cell




Octrees

Generalization of quadtree to 3D

Each cell may be split into 8 equal sub-cells
Internal nodes store pointers to children
Leaf nodes store list of surfaces

Adapts well to inhomogeneous scenes

Assessment for Ray Tracing

o Grids

— Easy to implement

— Require a lot of memory

— Poor results for inhomogeneous scenes
* Octrees

— Better on most scenes (more adaptive)
» Spatial subdivision expensive for dynamic

scenes (animations)
 Hierarchical bounding volumes

— Natural for hierarchical objects

— Better for dynamic scenes

10



BSP Trees

 Binary space partitioning
» Goal: divide space in a more efficient way, with
results depending on the particular scene

BSP Trees

Split space with any line (2D) or plane (3D)
Applications

— Painters algorithm for hidden surface removal
— Ray casting

Inherent spatial ordering given viewpoint

— Left subtree: in front, right subtree: behind
Problem: finding good space partitions

— Proper ordering for any viewpoint
— Balance tree

11



Building a BSP Tree

» Use hidden surface removal as intuition
e Using line 1 or line 2 as root is easy

aBSP tree

using 2 as root the subdivision

of spaceitimplies
' Viewpoint

Splitting of surfaces

» Using line 3 as root requires splitting

Line2a

wne 2b

7 Viewpoint

12



Painter’s Algorithm with BSP Trees

 Building the tree
— May need to split some polygons
— Slow, but done only once
» Traverse back-to-front or front-to-back
— Order is viewer-direction dependent
— What is front and what is back of each line changes
— Determine order on the fly

» 2D example of traversal

Details of Painter’s Algorithm

» Each face hasform Ax+ By + Cz + D

Plug in coordinates and determine
— Positive: front side

— Zero: on plane

— Negative: back side

Back-to-front: inorder traversal, farther child first
Front-to-back: inorder traversal, near child first
Clip against visible portion of space (portals)

13



Clipping With Spatial Data Structures

» Accelerate clipping
— Goal: accept or rejects whole sets of objects
— Can use a spatial data structure

» Scene should be mostly fixed
— Terrain fly-through
— Gaming

Hierarchical bounding volumes

Data Structure Demo

* BSP Tree construction
http://symbolcraft.com/graphics/bsp/

14



Constructive Solid Geometry (CSG)

» Generate complex shapes with simple building
blocks (boxes, spheres, cylinders, cones, ...)

» Particularly applicable for machined objects
 Efficient with ray tracing

Example: A CSG Train

Brian Wyvill et al., U. of Calgary

15



Boolean Operations

e |ntersection and union

» Subtraction
— Example: drilling a hole

Subtract [j

CSG Trees

» Set operations yield tree-based representation

» Use these trees for ray/objects intersections
e Think about how!

16



Implicit Functions for Booleans

» Solid as implicit function, F(x,y,z)
— F(x,y, z) <0 interior
— F(x,y, z) = 0 surface

— F(x, y, 2) > 0 exterior
For CSG, use F(x, Yy, z) € {-1, 0, 1}

Fans (P) = max (Fa(p), Fg(P))
Faus (P) = min (FA(p), Fe(p))
Fa_g (p) = max (Fo(p). - Fg(p))

Summary

» Hierarchical Bounding Volumes
Regular Grids
Octrees
BSP Trees
Constructive Solid Geometry (CSG)

17



Announcements

» Ray tracing project — there have been some
changes to the grammar and starter code
— check newsgroup periodically
— get new assignment handout

» Ray tracing project — there will be a help

session later in the week
— watch the newsgroup for an announcement

18



