Ray Tracing

Ray Casting

Ray-Surface Intersections
Barycentric Coordinates
Reflection and Transmission
[Angel, Ch 13.2-13.3]

Ray Tracing Handouts

Local vs. Global Rendering Models

» Local rendering models (graphics pipeline)
— Object illuminations are independent
— No light scattering between objects
— No real shadows, reflection, transmission

» Global rendering models
— Ray tracing (highlights, reflection, transmission)
— Radiosity (surface interreflections)

Object Space vs. Image Space

» Graphics pipeline: for each object, render
— Efficient pipeline architecture, on-line
— Difficulty: object interactions

» Ray tracing: for each pixel, determine color
— Pixel-level parallelism, off-line
— Difficulty: efficiency, light scattering

» Radiosity: for each two surface patches,
determine diffuse interreflections
— Solving integral equations, off-line
— Difficulty: efficiency, reflection

Forward Ray Tracing

* Rays as paths of photons in world space

* Forward ray tracing: follow photon from light
sources to viewer

* Problem: many rays will
not contribute to image!

Backward Ray Tracing

« Ray-casting: one ray from center of projection
through each pixel in image plane

« lllumination
1. Phong (local as before)
2. Shadow rays
3. Specular reflection
4. Specular transmission

+ (3) and (4) are recursive

Shadow Rays

+ Determine if light “really” hits surface point

+ Cast shadow ray from surface point to light

+ If shadow ray hits opaque object,no contribution
« Improved diffuse reflection

Reflection Rays

Calculate specular component of illumination
Compute reflection ray (recall: backward!)
Call ray tracer recursively to determine color
Add contributions

Transmission ray
— Analogue for transparent or
translucent surface
— Use Snell’s laws for refraction
Later:
— Optimizations, stopping criteria

Ray Casting

« Simplest case of ray tracing
» Required as first step of recursive ray tracing
 Basic ray-casting algorithm
— For each pixel (x,y) fire a ray from COP through (X,y)
— For each ray & object calculate closest intersection

— For closest intersection point p
 Calculate surface normal
« For each light source, calculate and add contributions

 Critical operations
— Ray-surface intersections
— Illumination calculation

Recursive Ray Tracing

 Calculate specular component
— Reflect ray from eye on specular surface
— Transmit ray from eye through transparent surface

» Determine color of incoming ray by recursion
» Trace to fixed depth
 Cut off if contribution

below threshold

Angle of Reflection

» Recall: incoming angle = outgoing angle
r=2(-n)n-|I
For incoming/outgoing ray negate | !
Compute only for surfaces
with actual reflection
Use specular coefficient
Add specular and diffuse
components

Refraction

 Index of refraction is relative speed of light

* Snell’'s law
— m, = index of refraction for upper material
— m, = index of refraction for lower material

sin(6;) e
sin(6;) - i .
= —11— (cos(8;) - L cos(9))n
where cos(9;)) =1-n
and cos?(6;) =1 — 7,%(1 e

Www.povray.org

Raytracing Example

rayshade gallery

rayshade gallery

Raytracing Example

Www.povray.org

Raytracing Example

o

Saito, Saturn Ring

Raytracing Example

(C) 1994 - MicHAaeL TELSTA

Www.povray.org

Raytracing Example

WWW.povray.org

Raytracing Example

£

Intersections

- o

) réyéﬁade gallery

10

Ray-Surface Intersections

» General implicit surfaces
General parametric surfaces

Specialized analysis for special surfaces
— Spheres

— Planes

— Polygons

— Quadrics

Do not decompose objects into triangles!

CSG is also a good possibility

Rays and Parametric Surfaces

* Ray in parametric form
— Origin po =[Xy Yo 2o 1I7
— Direction d =[xy Y4 z4 O]
— Assume d normalized (x4 + y42 + 242 = 1)
— Rayp(t)=py+dt fort>0
» Surface in parametric form
— Point g = g(u, v), possible bounds on u, v
— Solve p +d t=g(u, v)
— Three equations in three unknowns (t, u, v)

11

Rays and Implicit Surfaces

* Ray in parametric form
— Origin po=[Xy Yo Zo 1]
— Direction d =[xy y4 z4 Ol
— Assume d normalized (x42 + y4° + 242 = 1)
— Rayp(t)=py+dt fort>0
 Implicit surface
— Given by f(gq) =0
— Consists of all points g such that f(gq) =0
— Substitute ray equation for q: f(p,+dt)=0
— Solve for t (univariate root finding)
— Closed form (if possible) or numerical approximation

Ray-Sphere Intersection |

« Common and easy case

« Define sphere by

— Centerc =[x, Y, z. 1]

— Radiusr

— Surface f(q) = (X = x)2 + (Y= Y)%+ (z—2)2-r2=0
* Plug in ray equations for x, vy, z:

Tz =20+ x4t (xo F 29t — 2c)2
U=l gt = (yo tugi uo)e
a=ltahiadl e Cokeal 2o)f = nh

12

Ray-Sphere Intersection Il

« Simplify to
at2FbiFe=0
where

a=x§+y(2i-|—z§= 1 since d =1
b = 2(z(x0 — zc) -F ygluo — yo) + 24(20 — 2c))
¢ = (20— 2c)? + (Yo — ye)? + (20 — 2¢)% — 12

» Solve to obtain ty and t,

. o Check if ty, t;> 0 (ray)
o Return min(t,, t,)

t =
0,1 >

Ray-Sphere Intersection Il

* For lighting, calculate unit normal

n == [(@i ~ 2) (4 — o) (s = 70) O]

* Negate if ray originates inside the sphere!

13

Simple Optimizations

» Factor common subexpressions

« Compute only what is necessary
— Calculate b? — 4c, abort if negative
— Compute normal only for closest intersection
— Other similar optimizations [Handout]

Ray-Polygon Intersection |

* Assume planar polygon
1. Intersect ray with plane containing polygon
2. Check if intersection point is inside polygon

 Plane
— Implicit form: ax + by +cz+d =0
— Unitnormal:n=[a b ¢ O]Twitha?+b%?+c?=1
» Substitute:
eEo 2 (o rua) EcCor 2, 00 Fd =10
» Solve: e —(azg + byg + czg + d)
azq+ bys +cz4

14

Ray-Polygon Intersection Il

» Substitute t to obtain intersection point in plane
» Test if point inside polygon [see Handout]

Ray-Quadric Intersection

Quadric f(p) = f(x, y, z) = 0, where f is
polynomial of order 2

Sphere, ellipsoid, paraboloid, hyperboloid,
cone, cylinder

Closed form solution as for sphere
Important case for modelling in ray tracing
Combine with CSG

[see Handout]

15

Barycentric Coordinates

Interpolated Shading for Ray Tracing

» Assume we know normals at vertices
How do we compute normal of interior point?

Need linear interpolation between 3 points
Barycentric coordinates

Yields same answer as scan conversion

16

Barycentric Coordinates in 1D
 Linear interpolation
—pM)=(Q-tp, +tp,, 0<t<1

—p(H) =op, + P pywhere a+f
— p is between p; and p, iff 0 <

=1
o, pB<1

« Geometric intuition
— Weigh each vertex by ratio of distances from ends

* «, pp are called barycentric coordinates

Barycentric Coordinates in 2D

» Given 3 points instead of 2

Define 3 barycentric coordinates, o, B, y

P=ap;+Ppp,+yPs
p inside triangle iff 0 < o, B,y <1, a+P+y=1

How do we calculate «, 3, y given p?

17

Barycentric Coordinates for Triangle

» Coordinates are ratios of triangle areas

_ Area(CC,C,)
Area(C,C,C,)
Area(C,CC,)

" Area(C,C,C,)

_ Area(C,C,C)

- g —
neacCc,) AP

Computing Triangle Area

« In 3 dimensions < -
— Use cross product
— Parallelogram formula B
— Area(ABC) = (1/2)|(B — A) x (C - A)|
— Optimization: project, use 2D formula

* In 2 dimensions

— Area(x-y-proj(ABC)) =
(1/2)((bx - ax)(Cy - ay) - (Cx - ax) (by - ay

18

Ray Tracing Preliminary Assessment

Global illumination method
Image-based

Pros:

— Relatively accurate shadows, reflections, refractions
Cons:

— Slow (per pixel parallelism, not pipeline parallelism)
— Aliasing

— Inter-object diffuse reflections

Ray Tracing Acceleration

» Faster intersections

— Faster ray-object intersections
« Object bounding volume
« Efficient intersectors

— Fewer ray-object intersections
« Hierarchical bounding volumes (boxes, spheres)
 Spatial data structures
« Directional techniques

* Fewer rays
— Adaptive tree-depth control
— Stochastic sampling
* Generalized rays (beams, cones)

19

20

