
1

Ray Casting
Ray-Surface Intersections
Barycentric Coordinates
Reflection and Transmission
[Angel, Ch 13.2-13.3]
Ray Tracing Handouts

Ray Casting
Ray-Surface Intersections
Barycentric Coordinates
Reflection and Transmission
[Angel, Ch 13.2-13.3]
Ray Tracing Handouts

Ray TracingRay Tracing

Local vs. Global Rendering ModelsLocal vs. Global Rendering Models

• Local rendering models (graphics pipeline)
– Object illuminations are independent
– No light scattering between objects
– No real shadows, reflection, transmission

• Global rendering models
– Ray tracing (highlights, reflection, transmission)
– Radiosity (surface interreflections)

2

Object Space vs. Image SpaceObject Space vs. Image Space

• Graphics pipeline: for each object, render
– Efficient pipeline architecture, on-line
– Difficulty: object interactions

• Ray tracing: for each pixel, determine color
– Pixel-level parallelism, off-line
– Difficulty: efficiency, light scattering

• Radiosity: for each two surface patches,
determine diffuse interreflections
– Solving integral equations, off-line
– Difficulty: efficiency, reflection

Forward Ray TracingForward Ray Tracing

• Rays as paths of photons in world space
• Forward ray tracing: follow photon from light

sources to viewer
• Problem: many rays will

not contribute to image!

3

Backward Ray TracingBackward Ray Tracing

• Ray-casting: one ray from center of projection
through each pixel in image plane

• Illumination
1. Phong (local as before)
2. Shadow rays
3. Specular reflection
4. Specular transmission

• (3) and (4) are recursive

Shadow RaysShadow Rays

• Determine if light “really” hits surface point
• Cast shadow ray from surface point to light
• If shadow ray hits opaque object,no contribution
• Improved diffuse reflection

4

Reflection RaysReflection Rays

• Calculate specular component of illumination
• Compute reflection ray (recall: backward!)
• Call ray tracer recursively to determine color
• Add contributions
• Transmission ray

– Analogue for transparent or
translucent surface

– Use Snell’s laws for refraction

• Later:
– Optimizations, stopping criteria

Ray CastingRay Casting

• Simplest case of ray tracing
• Required as first step of recursive ray tracing
• Basic ray-casting algorithm

– For each pixel (x,y) fire a ray from COP through (x,y)
– For each ray & object calculate closest intersection
– For closest intersection point p

• Calculate surface normal
• For each light source, calculate and add contributions

• Critical operations
– Ray-surface intersections
– Illumination calculation

5

Recursive Ray TracingRecursive Ray Tracing

• Calculate specular component
– Reflect ray from eye on specular surface
– Transmit ray from eye through transparent surface

• Determine color of incoming ray by recursion
• Trace to fixed depth
• Cut off if contribution

below threshold

Angle of ReflectionAngle of Reflection

• Recall: incoming angle = outgoing angle
• r = 2(l d n) n – l

• For incoming/outgoing ray negate l !
• Compute only for surfaces

with actual reflection
• Use specular coefficient
• Add specular and diffuse

components

6

RefractionRefraction

• Index of refraction is relative speed of light
• Snell’s law

– Kl = index of refraction for upper material
– Kt = index of refraction for lower material

[U = T@

Raytracing ExampleRaytracing Example

www.povray.org

7

Raytracing ExampleRaytracing Example

rayshade gallery

Raytracing ExampleRaytracing Example

rayshade gallery

8

Raytracing ExampleRaytracing Example

www.povray.org

Raytracing ExampleRaytracing Example

Saito, Saturn Ring

9

Raytracing ExampleRaytracing Example

www.povray.org

Raytracing ExampleRaytracing Example

www.povray.org

10

Raytracing ExampleRaytracing Example

rayshade gallery

IntersectionsIntersections

11

Ray-Surface IntersectionsRay-Surface Intersections

• General implicit surfaces
• General parametric surfaces
• Specialized analysis for special surfaces

– Spheres
– Planes
– Polygons
– Quadrics

• Do not decompose objects into triangles!
• CSG is also a good possibility

Rays and Parametric SurfacesRays and Parametric Surfaces

• Ray in parametric form
– Origin p0 = [x0 y0 z0 1]T

– Direction d = [xd yd zd 0]t

– Assume d normalized (xd
2 + yd

2 + zd
2 = 1)

– Ray p(t) = p0 + d t for t > 0

• Surface in parametric form
– Point q = g(u, v), possible bounds on u, v
– Solve p + d t = g(u, v)
– Three equations in three unknowns (t, u, v)

12

Rays and Implicit SurfacesRays and Implicit Surfaces

• Ray in parametric form
– Origin p0 = [x0 y0 z0 1]T

– Direction d = [xd yd zd 0]t

– Assume d normalized (xd
2 + yd

2 + zd
2 = 1)

– Ray p(t) = p0 + d t for t > 0

• Implicit surface
– Given by f(q) = 0
– Consists of all points q such that f(q) = 0
– Substitute ray equation for q: f(p0 + d t) = 0
– Solve for t (univariate root finding)
– Closed form (if possible) or numerical approximation

Ray-Sphere Intersection IRay-Sphere Intersection I

• Common and easy case
• Define sphere by

– Center c = [xc yc zc 1]T

– Radius r
– Surface f(q) = (x – xc)2 + (y – yc)2+ (z – zc)2 – r2 = 0

• Plug in ray equations for x, y, z:

13

Ray-Sphere Intersection IIRay-Sphere Intersection II

• Simplify to

• Solve to obtain t0 and t1

where

Check if t0, t1> 0 (ray)
Return min(t0, t1)

Ray-Sphere Intersection IIIRay-Sphere Intersection III

• For lighting, calculate unit normal

• Negate if ray originates inside the sphere!

14

Simple OptimizationsSimple Optimizations

• Factor common subexpressions
• Compute only what is necessary

– Calculate b2 – 4c, abort if negative
– Compute normal only for closest intersection
– Other similar optimizations [Handout]

Ray-Polygon Intersection IRay-Polygon Intersection I

• Assume planar polygon
1. Intersect ray with plane containing polygon
2. Check if intersection point is inside polygon

• Plane
– Implicit form: ax + by + cz + d = 0
– Unit normal: n = [a b c 0]T with a2 + b2 + c2 = 1

• Substitute:

• Solve:

15

Ray-Polygon Intersection IIRay-Polygon Intersection II

• Substitute t to obtain intersection point in plane
• Test if point inside polygon [see Handout]

Ray-Quadric IntersectionRay-Quadric Intersection

• Quadric f(p) = f(x, y, z) = 0, where f is
polynomial of order 2

• Sphere, ellipsoid, paraboloid, hyperboloid,
cone, cylinder

• Closed form solution as for sphere
• Important case for modelling in ray tracing
• Combine with CSG

[see Handout]

16

Barycentric CoordinatesBarycentric Coordinates

Interpolated Shading for Ray TracingInterpolated Shading for Ray Tracing

• Assume we know normals at vertices
• How do we compute normal of interior point?
• Need linear interpolation between 3 points
• Barycentric coordinates
• Yields same answer as scan conversion

17

Barycentric Coordinates in 1DBarycentric Coordinates in 1D

• Linear interpolation
– p(t) = (1 – t)p1 + t p2, 0 w t w 1

– p(t) = D p1 + E p2 where D + E = 1
– p is between p1 and p2 iff 0 w D, E w 1

• Geometric intuition
– Weigh each vertex by ratio of distances from ends

• D, E are called barycentric coordinates

DE

p1 p p2

Barycentric Coordinates in 2DBarycentric Coordinates in 2D

• Given 3 points instead of 2

• Define 3 barycentric coordinates, D, E, J
• p = D p1 + E p2 + J p3
• p inside triangle iff 0 w D, E, J w 1, D + E + J = 1

• How do we calculate D, E, J given p?

p1

p2p3

p

18

Barycentric Coordinates for TriangleBarycentric Coordinates for Triangle

• Coordinates are ratios of triangle areas

1C

0C

2C

D
EJ C

� �
� �
� �
� �
� �
� � EDJ

E

D

��

1
210

10

210

20

210

21

CCC
CCC

CCC
CCC

CCC
CCC

Area

Area

Area

Area

Area

Area

Computing Triangle AreaComputing Triangle Area

• In 3 dimensions
– Use cross product
– Parallelogram formula
– Area(ABC) = (1/2)|(B – A) e (C – A)|

– Optimization: project, use 2D formula

• In 2 dimensions
– Area(x-y-proj(ABC)) =

(1/2)((bx – ax)(cy – ay) – (cx – ax) (by – ay))

A B

C

19

Ray Tracing Preliminary AssessmentRay Tracing Preliminary Assessment

• Global illumination method
• Image-based
• Pros:

– Relatively accurate shadows, reflections, refractions

• Cons:
– Slow (per pixel parallelism, not pipeline parallelism)
– Aliasing
– Inter-object diffuse reflections

Ray Tracing AccelerationRay Tracing Acceleration

• Faster intersections
– Faster ray-object intersections

• Object bounding volume
• Efficient intersectors

– Fewer ray-object intersections
• Hierarchical bounding volumes (boxes, spheres)
• Spatial data structures
• Directional techniques

• Fewer rays
– Adaptive tree-depth control
– Stochastic sampling

• Generalized rays (beams, cones)

20

