Rasterization

Blending

* Frame buffer
— Simple color model: R, G, B; 8 bits each
— o-channel A, another 8 bits
» Alpha determines opacity, pixel-by-pixel
— o = 1: opaque
— a = 0: transparent
» Blend translucent objects during rendering

» Achieve other effects (e.g., shadows)

Image Compositing

« Compositing operation

— Source: s =[s, sy S, S,]

— Destination: d =[d, d; d, d,]

— b =[b, b, b, b,] source blending factors

— ¢ =[c, ¢4 ¢, C,] destination blending factors

—d =[bs, +cd, bys,+c,dy bys, +cpdy b,s, + C,d,]
» Overlay n images with equal weight

— Set a-value for each pixel in each image to 1/n

— Source blending factor is “o”

— Destination blending factor is “1”

Blending in OpenGL

» Enable blending
gl Enabl e(GL_BLEND) ;

» Set up source and destination factors
gl Bl endFunc(source_factor, dest_factor);

» Source and destination choices
— GL_ONE, GL_ZERO
— GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA
— GL_DST_ALPHA, GL_ONE_M NUS_DST_ALPHA

Blending Errors

» Operations are not commutative
« Operations are not idempotent

* Interaction with hidden-surface removal
— Polygon behind opaque one should be culled
— Translucent in front of others should be composited

— Solution:
« Two passes using alpha testing (glAlphaFunc): 15t pass
alpha=1 accepted, and 2™ pass alpha<1 accepted

« make z-buffer read-only for translucent polygons (alpha<1)
with gl Dept hMask(GL_FALSE) ;

Antialiasing Revisited

Single-polygon case first

Set a-value of each pixel to covered fraction
Use destination factor of “1 — o”

Use source factor of “o”

This will blend background with foreground

Overlaps can lead to blending errors

Antialiasing with Multiple Polygons

« Initially, background color Cy, a, =0
» Render first polygon; color C,fraction o,
- Cy=(1-ay)Cq+0,Cy
- Oy =0
» Render second polygon; assume fraction a.,
 If no overlap (a), then
- C4= (1 —-0y)Cy + 0,Cy
—ag=ayto,

Antialiasing with Overlap

* Now assume overlap (b)

» Average overlap is o,

e SO oy=04+0,—a,0,

» Make front/back decision for color as usual

Antialiasing in OpenGL

» Avoid explicit a-calculation in program
» Enable both smoothing and blending

gl Enabl e(G._PO NT_SMOOTH) ;

gl Enabl e(GL_LI NE_SMOOTH) ;

gl Enabl e(G._BLEND) ;

gl Bl endFunc(GL_SRC ALPHA, GL_ONE_M NUS_SRC ALPHA) ;

Temporal Aliasing

« Sampling rate is frame rate (30 Hz for video)
Example: spokes of wagon wheel in movie
Possible to supersample and average
Fast-moving objects are blurred

Happens automatically in video and movies
— Exposure time (shutter speed)

— Memory persistence (video camera)

— Effect is motion blur

Motion Blur

» Achieve by stochastic sampling in time
» Still-frame motion blur, but smooth animation

Motion Blur Example

Looks like squash
and stretch!!

T. Porter, Pixar, 1984
16 samples/pixel

Depth of Field

Filter for Depth-of-Field

» Simulate camera depth-of-field
— Keep plane z = z; in focus
— Keep near and far planes unchanged
* Move viewer by Ax
« Compute X i X' maxe Y'min» Y max fOr new frustum

Depth-of-Field Jitter

+ Compute

AN
/
Loin ™ Liin + " (zf =

+ Blend the two images in accumulation buffer

OpenGL Depth of Field Example

Can jitter in both x- and y-directions...

See depth of field example:

http://www.opengl.org/developers/code/examples/redbook/redbook.html

Close-up

Soft shadows too...

NAAA

Figure 1: Hard shadow images from 2 2 grid of sample points on light source.

Figure 2: Left: scene with square light source (foreground), triangular occluder (center), and rectangular receiver (background), with shadows
Approximate soft shadows resulting from 2 x 2 grid of sample points: the average of the four hard shadow images in
Figure 1. Right: Correct soft shadow image (generated with 16 x 16 sampling). This image is used as the texture on the receiver at left.

Simulating Soft Shadows with Graphics Hardware (1997)
Paul S. Heckbert & Michael Herf, CMU Technical Report

Depth Cueing and Fog

» Another application of blending

» Use distance-dependent (z) blending
— Linear dependence: depth cueing effect
— Exponential dependence: fog effect
— This is not a physically-based model

\\\ _ GL_EXP2, density=0.5
N/\ GL_EXP2, density=0.25

\ N\
% GL_LINEAR
\ /8L
,GL_EXP, density=0.25

y GL_EXP, density=0.5

Figure 6-4 Fog-Density Equations

Example: Fog

* Fog in RGBA mode:
—f . depth-dependent fog factor

G.float fcolor[4] ={...};

gl Enabl e(G._FOG) ;

gl Fogf (GL_FOG_MODE, GL_EXP);

gl Fogf (GL_FOG DENSI TY, 0.5);

gl Fogf v(G._FOG COLOR, fcolor);

10

Example: Depth Cue

float fogColor[] = {0.0f, 0.0f, 0.0f, 1.0f};

gl
o]
o]
o]
o]
gl
gl

. gl Enabl e(GL_FOG) ;

.gl Fogi (GL_FOG MODE, G._LI NEAR);
.glH nt (

. gl Fogf (GL_FOG START, 3.0f);

. gl Fogf (

. gl Fogfv (GL_FOG COLOR, fogColor);

.gl dearColor(0.0f, 0.0f, 0.0f, 1.0f);

GL_FOG HI NT, GL_NICEST); [/* per pixel

GL_FOG END, 5.0f);

Antialiasing — again!

(Jim Blinn article)

*/

11

12

