
1

Texture and other Mappings

Texture Mapping
Bump Mapping
Displacement Mapping
Environment Mapping

Texture Mapping
Bump Mapping
Displacement Mapping
Environment Mapping

Angel Chapter 7

Last Time - Shading

• Flat shading: Inexpensive to compute

• Appropriate for objects with flat faces

• Less pleasant for smooth surfaces

2

Flat Shading and Perception

• Lateral inhibition: exaggerates perceived intensity

• Mach bands: perceived “stripes” along edges

3

Gouraud Shading

• Interpolative shading

• Compute vertex normal by averaging all adjacent face normals

• Requires knowledge

about which faces share

a vertex—adjacency info

4

Defining and Maintaining Normals

• Define unit normal before each vertex

• Length changes under some transformations

• Ask OpenGL to re-normalize (always works)

• Ask OpenGL to re-scale normal (works for uniform scaling, rotate,
translate)

glNormal3f(nx, ny, nz);
glVertex3f(x, y, z);

glEnable(GL_NORMALIZE);

glEnable(GL_RESCALE_NORMAL);

Phong Shading

• Interpolate normals rather than colors

• Significantly more expensive

• Mostly done off-line (not supported in OpenGL)

5

Phong Shading Results

Phong Lighting
Gouraud Shading

Phong Lighting,
Phong Shading

Michael Gold, Nvidia

Icosahedron Unsubdivided

6

One Subdivision

Two Subdivisions

• Each time, multiply number of faces by 4

7

Three Subdivisions

• Reasonable approximation to sphere

• Real objects have small surface features
• One option: use a huge number of polygons with

appropriate surface coloring and reflectance
characteristics

• Another option: use a mapping algorithm to modify the
shading algorithm

– Texture mapping

– Bump mapping

– Displacement mapping

– Environmental mapping

Textures

8

The Quest for Visual Realism

2D Texture Mapping
Texture images to make our surfaces more life-like

Scan textures from the world (clouds, wood grain) or paint them yourself
Store the texture in a 2D image
Map the image onto the surface by a function which maps (u,v)

coordinates of our parametric surface onto (x,y) image coordinates
When shading a surface point, we look up the appropriate pixel from the

2D image, and use that to affect the final color

Voila! Your favorite picture painted onto a donut.
This technique is called
parametric texture mapping

But how to map from texture
coordinates to object coordinates?
Easy for a parametric surface,
less obvious for other models.

9

Texture Mapping: General

� �
� �
� �wvuT

vuT

uT

,,

, � �ss yx ,� �www zyx ,,

Texture Space Object Space Screen Space

Specifying the Mapping Function

Some objects have natural parameterizations:
– Sphere: use spherical coordinates (I,T)=(2Su,Sv)

– Cylinder: use cylindrical coordinates (u,T)=(u,2Sv)

10

Specifying the Mapping Function

What about arbitrary polygonal objects?
Two step mapping:
• To a canonical shape first
• Then project normals from object

a) From texture value to object
b) Use normals to find texture
c) Line from center to point to

texture value

Or design the mapping by hand

11

Demo: “uvMapper”

• www.uvmapper.com

Texture Mapping in OpenGL

Glubyte my_texels[512][512];
glTexImage2D(GL_TEXTURE_2D, 0, 3, 512, 512, 0,

GL_RGB,GL_UNSIGNED_BYTE, my_texels);
/* level, components, w, h, border, format, type, tarray */

glEnable(GL_TEXTURE_2D);

/* assign texture coordinates */
glBegin(GL_QUAD);

glTexCoord2f(0.0, 0.0);
glVertex2f(x1,y1,z1);
glTexCoord2f(1.0, 0.0);
glVertex2f(x2,y2,z2);
glTexCoord2f(1.0,1.0);
glVertex2f(x3,y3,z3);
glTexCoord2f(0.0,1.0);
glVertex2f(x4,y4,z4);

glEnd();

12

Grungy details we’ve ignored

• Specify s or t out of range? Use GL_TEXTURE_WRAP in
glTexParameter because many textures are carefully designed to
repeat

• Aliasing? Mapping doesn’t send you to the center of a texel. Can
average nearest 2x2 texels using GL_LINEAR

• Mipmapping: use textures of varying resolutions. 64x64 becomes
32x32,16x16,8x8,4x4,2x2 and 1x1 arrays with
gluBuild2Dmipmaps

What is aliasing?

• Sampling error when mapping texture images to screen

13

What is aliasing?

• An on-screen pixel may not map neatly to a texel.

Example: Checkerboard

• Particularly severe problems in regular textures

14

The Beginnings of a Solution: Mipmapping

• Pre-calculate how the texture should look at various distances, then
use the appropriate texture at each distance. This is called
mipmapping.

• “Mip” Æ “multum in parvo” or “many things in a small place”

• Each mipmap (each image below) represents a level of resolution.

• Powers of 2 make things much easier.

The Beginnings of a Solution

• Problem: Clear divisions between different depth levels
• Mipmapping alone is unsatisfactory.

15

Another Component: Filtering

• Take the average of multiple texels to obtain the final
RGB value

• Typically used along with mipmapping
• Bilinear filtering

– Average the four surrounding texels

– Cheap, and eliminates some aliasing, but does not help with visible
LOD divisions

Another Component: Filtering

• Trilinear filtering
– Interpolate between two LODs

– Final RGB value is between the result of a bilinear filter at one
LOD and a second bilinear filter at the next LOD

– Eliminates “seams” between LODs

– At least twice as expensive as bilinear filtering

16

Another Component: Filtering

• Anisotropic filtering
– Basic filtering methods assume that a pixel on-screen maps to

a square (isotropic) region of the texture

– For surfaces tilted away from the viewer, this is not the case!

Figure 5. Anisotropic footprints are very common.

Image courtesy of nVidia

Another Component: Filtering

• Anisotropic filtering
– A pixel may map to a rectangular or trapezoidal section of

texels—shape filters accordingly and use either bilinear or
trilinear filtering

– Complicated, but produces very nice results

17

Bilinear Filtering

ID Software

Trilinear Filtering

ID Software

18

Anisotropic Filtering

ID Software

Side-by-Side Comparison

nVidia

19

Texture Generation

Photographs
Drawings
Procedural methods (2D or 3D)

Associate each x,y,z value directly with
an s,t,r value in the texture block
(sculpting in marble and granite)

Procedural Methods

Reaction-Diffusion
Greg Turk, Siggraph ‘91

20

Solid Textures

• Have a 3-D array of texture values (e.g., a
block of marble)

– Use a function [xyz] -> [RGB] to map colors to
points in space

• Such a 3D map is called a solid texture map
• In practice the map is often defined

procedurally
– No need to store an entire 3D array of colors
– Just define a function to generate a color for

each 3D point

• The most interesting solid textures are
random ones

– a great marble algorithm has now become
cliché

• Evaluate the texture coordinates in object
coordinates - otherwise moving the object
changes its texture!

From: An Image Synthesizer
by Ken Perlin, SIGGRAPH ’85

Uses for Texture Mapping

Use texture to affect a variety of parameters
• surface color - color (radiance) of each point on surface

(Catmull 1974)

• surface reflectance - reflectance coefficients kd, ks, or nshiny

• normal vector - bump mapping (Blinn 1978)

• geometry - displacement mapping

• transparency - transparency mapping (clouds) (Gardener 1985)

• light source radiance - environment mapping (Blinn 1978)

21

Radiance vs. Reflectance Mapping

+ =

Texture specifies (isotropic) radiance for each point on surface

Sphere w/ Uniform Diffuse coefficient Radiance Map Sphere w/ Radiance Map

+ =

Texture specifies diffuse color (kd coefficients) for each point on surface
- three coefficients, one each for R, G, and B radiance channels

Sphere w/ Uniform Diffuse coefficient Reflectance (kd) Map Sphere w/ Reflectance Map

Bump Mapping: A Dirty Trick
• Which spots bulge out, and which are indented?

• Answer: None! This is a flat image.

• The human visual system is hard-coded to expect light from above

• In CG, we can perturb the normal vector without having to make
any actual change to the shape.

22

Bump Mapping
• Basic texture mapping paints on to a smooth surface
• How do you make a surface look rough?

– Option 1: model the surface with many small polygons

– Option 2: perturb the normal vectors before the shading calculation

+ =

Sphere w/Diffuse Texture Map Bump Map Sphere w/Diffuse Texture + Bump Map

Real Bump Fake Bump Flat Plane

Bump Mapping
• Basic texture mapping paints on to a smooth surface

• How do you make a surface look rough?
– Option 1: model the surface with many small polygons

– Option 2: perturb the normal vectors before the shading calculation
» the surface doesn’t actually change, but shading makes it look that way
» bump map fakes small displacements above or below the true surface

» can use texture-mapping for this
– texture image gives amount to perturb surface normal

What kind of anomaly will this produce?

Greg Turk

23

Bump Mapping

• We can perturb the normal vector without having to
make any actual change to the shape.

• This illusion can be seen through—how?

Original model (5M) Simplified (500) Simple model with bump map

Another Bump Mapping Example

+ =

Cylinder w/Diffuse Texture Map

Bump Map

24

Displacement Mapping

• Use texture map to displace each point on the surface
– Texture value gives amount to move in direction normal to surface

• How is this different from bump mapping?

Environment Mapping

Specular reflections that mirror the environment

25

Environment Mapping

Specular reflections that mirror the environment

Cube is a natural
intermediate object
for a room

Environment Mapping: Cube Maps

26

More Tricks: Light Mapping
• Quake uses light maps in addition to (radiance) texture maps. Texture

maps are used to add detail to surfaces, and light maps are used to
store pre-computed illumination. The two are multiplied together at
run-time, and cached for efficiency.

Radiance Texture Map Only Radiance Texture + Light Map

Light Map

