

Properties of Light Light Sources Phong Illumination Model Normal Vectors [Angel, Ch. 6.1-6.4]

Announcements

- Written assignment #1 due Thursday
 Handin at beginning of class
- Programming assignment #2 out Thursday

The Rendering Equation

• (Angel, Ch 13)

Outline

- Lighting models (OpenGL oriented)
- Reflection models (Phong shading)
- Normals
- Color

Common Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
 - Cut-off angle defines a cone of light
 - Attenuation function (brighter in center)
- Light source described by a luminance
 - Each color is described separately
 - $-I = [I_r \ I_q \ I_b]^T$ (I for intensity)
 - Sometimes calculate generically (applies to r, g, b)

Ambient Light

- Intensity is the same at all points
- This light does not have a direction (or .. it is the same in all directions)

$$\mathbf{I}_a = \begin{bmatrix} I_{ar} \\ I_{ag} \\ I_{ab} \end{bmatrix}$$

Point Source

- Given by a point p₀
- Light emitted from that point equally in all directions

• Intensity decreases with square of distance

$$I(p, p_0) = \frac{1}{|p - p_0|^2} I(p_0)$$

Distant Light Source

- Given by a vector v
- Intensity does not vary with distance (all distances are the same .. infinite!)

Now we can think about how the incoming light is reflected by a surface

Surface Reflection

- When light hits an opaque surface some is absorbed, the rest is reflected (some can be transmitted too--but never mind for now)
- The reflected light is what we see
- Reflection is not simple and varies with material
 - the surface's micro structure define the details of reflection
 - variations produce anything from bright specular reflection (mirrors) to dull matte finish (chalk)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Basic inputs are material properties and I, n, v:

Basic Calculation

- Calculate each primary color separately
- Start with global ambient light
- Add reflections from each light source
- Clamp to [0, 1]
- Reflection decomposed into
 - Ambient reflection
 - Diffuse reflection
 - Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

- Intensity of ambient light uniform at every point
- Ambient reflection coefficient $k_a,\, 0 \leq k_a \leq 1$
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- L_a = ambient component of light source
- Ambient intensity $I_a = k_a L_a$
- Note: L_a is not a physically meaningful quantity

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient $k_d,\, 0 \leq k_d \leq 1$
- Angle of incoming light still critical

Shininess Coefficient

- L_s is specular component of light
- r is vector of perfect reflection of I about n
- v is vector to viewer
- φ is angle between v and r
- $I_s = k_s L_s \cos^{\alpha} \phi$
- α is shininess coefficient
- Compute $\cos \phi = \mathbf{r} \cdot \mathbf{v}$
- Requires |r| = |v| = 1
- Multiply distance term

Higher α is narrower

BRDF

- Bidirectional Reflection Distribution Function
- Measure for materials
- Isotropic vs. anisotropic
- Mathematically complex

Normal Vectors

• Summarize Phong

$$I = \frac{1}{a + bq + cq^2} (k_d L_d (\mathbf{l} \cdot \mathbf{n}) + k_s L_s (\mathbf{r} \cdot \mathbf{v})^{\alpha}) + k_a L_a$$

- Surface normal n is critical
 Calculate I · n
 - Calculate r and then $r \cdot v$
- Must calculate and specify the normal vector – Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by ax + by + cz + d = 0
- Let p₀ be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: u v = 0 iff u orthogonal v
- $n \cdot (p p_0) = n \cdot p n \cdot p_0 = 0$
- We know that [a b c 0] ^T. p₀ = -d (because p₀ satisfies the plane equation)
- Consequently n₀ must be [a b c 0]^T
- Normalize to $n = n_0/|n_0|$

Normals of a Plane, Method II

- Method II: plane given by p₀, p₁, p₂
- Points must not be collinear
- Recall: $u \times v$ orthogonal to u and v
- $n_0 = (p_1 p_0) \times (p_2 p_0)$
- Order of cross product determines orientation
- Normalize to $n = n_0/|n_0|$

Normals of Sphere

- Implicit Equation f(x, y, z) = x² + y² + z² 1 = 0
 Vector form: f(p) = p · p 1 = 0
- Normal given by gradient vector

• Normalize $n_0/|n_0| = 2p/2 = p$

Summary: Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately (even in OpenGL)
- Pitfalls
 - Not unit length
 - How to set at surface boundary?

Color Models

- Okay, so our visual system is quite limited
- But maybe this is good news. . .
- We can avoid computing and reproducing the full color spectrum since people only have 3 color channels
 - TV would be much more complex if we perceived the full spectrum
 - transmission would require much higher bandwidths
 - display would require much more complex methods
 - -real-time color 3D graphics is feasible
 - any scheme for describing color requires only three values
 - lots of different color spaces--related by 3x3 matrix transformations

Color Spaces

• There are many ways to describe color

-Spectrum

- allows any radiation (visible or invisible) to be described
- usually unnecessary and impractical

-RGB

- convenient for display (CRT uses red, green, and blue phosphors)
- not very intuitive

-HSV

- an intuitive color space
- H is hue what color is it? S is saturation or purity how non-gray is it? V is value how bright is it?
 H is cyclic therefore it is a non-linear transformation of RGB

-CIE XYZ

• a linear transform of RGB used by color scientists

Additive vs. Subtractive Color

- · Working with light: additive primaries
 - Red, green and blue components are added by the superposition property of electromagnetism
 - Conceptually: start with black, primaries add light
- Working with pigments: subtractive primaries
 - Typical inks (CMYK): cyan, magenta, yellow, black
 - Conceptually: start with white, pigments filter out light
 - The pigments remove parts of the spectrum

dye color	absorbs	reflects	
cyan	red	blue and green	
magenta	green	blue and red	
yellow	blue	red and green	
black	all	none	

- Inks interact in nonlinear ways--makes converting from monitor color to printer color a challenging problem
- Black ink (K) used to ensure a high quality black can be printed

The Meaning of "Color"

- What's an image?
 - Irradiance: each pixel measures the incident light at a point on the film
 - Proportional to integral of scene radiance hitting that point
- What's Color?
 - Refers to radiance or irradiance measured at 3 wavelengths
 - Scene color: radiance coming off of surface (for illumination)
 - Image color: irradiance (for rendering)
 - These quantities have different units and should not be confused

Units of Light and Color				
Quantity	Dimension	Units	<u>.</u>	
solid angle a two-dimensional angle (propor	solid angle tional to area on a sphere)	[steradian]	area 1 unit square ~ 1 steradian	
power	energy/time	[watt]=[joule/sec]	adius	
irradiance (intensity) Brightness of light hitting the sur	tegrated over incoming directions, ov power/area face (or image) at this point (incident	er a finite area. [watt/m ²] light)		
radiance (intensity) Brightness of light reflected at th	power/(area*solid angle) is point along this direction (reflected	[watt/(m ² *steradian)] light)		
reflectance what fraction of the light is reflect	unitless ted by a material? typically between	[1] 0 and 1.		

Announcements

- Written assignment #1 due Thursday
 Handin at beginning of class
- Programming assignment #2 out Thursday

