Lighting and Shading

Properties of Light Light Sources
Phong Illumination Model Normal Vectors
[Angel, Ch. 6.1-6.4]

Announcements

- Written assignment \#1 due Thursday
- Handin at beginning of class
- Programming assignment \#2 out Thursday

The Rendering Equation

- (Angel, Ch 13)

Outline

- Lighting models (OpenGL oriented)
- Reflection models (Phong shading)
- Normals
- Color

Common Types of Light Sources

- Ambient light: no identifiable source or direction
- Point source: given only by point
- Distant light: given only by direction
- Spotlight: from source in direction
- Cut-off angle defines a cone of light
- Attenuation function (brighter in center)
- Light source described by a luminance
- Each color is described separately
$-I=\left[\begin{array}{lll}I_{r} & I_{g} & I_{b}\end{array}\right]^{\top} \quad$ (I for intensity)
- Sometimes calculate generically (applies to r, g, b)

Ambient Light

- Intensity is the same at all points
- This light does not have a direction (or .. it is the same in all directions)

$$
\mathbf{I}_{a}=\left[\begin{array}{c}
I_{a r} \\
I_{a g} \\
I_{a b}
\end{array}\right]
$$

Point Source

- Given by a point p_{0}
- Light emitted from that point equally in all directions

$$
\mathrm{I}\left(\mathrm{p}_{0}\right)=\left[\begin{array}{l}
I_{r}\left(\mathrm{p}_{0}\right) \\
I_{g}\left(\mathrm{p}_{0}\right) \\
I_{b}\left(\mathrm{p}_{0}\right)
\end{array}\right]
$$

- Intensity decreases with square of distance

$$
\mathrm{I}\left(\mathrm{p}, \mathrm{p}_{0}\right)=\frac{1}{\left|\mathrm{p}-\mathrm{p}_{0}\right|^{2}} \mathrm{I}\left(\mathrm{p}_{0}\right)
$$

One Limitation of Point Sources

- Shading and shadows inaccurate
- Example: penumbra (partial "soft" shadow)

Distant Light Source

- Given by a vector v
- Intensity does not vary with distance (all distances are the same .. infinite!)

Spotlight

- Most complex light source in OpenGL
- Light still emanates from point
- Cut-off by cone determined by angle θ

Spotlight Attenuation

- Spotlight is brightest along I_{s}
- Vector v with angle ϕ from p to point on surface
- Intensity determined by cos ϕ
- Corresponds to projection of v onto I_{s}
- Spotlight exponent e determines rate
$I=\cos ^{e}(\phi)=\left(\mathrm{v} \cdot 1_{s}\right)^{e}$

for $e=1$
for e>1 curve narrows

For any of these light sources, it is easy to compute illumination arriving at a point (e.g., a vertex)

Now we can think about how the incoming light is reflected by a surface

Surface Reflection

- When light hits an opaque surface some is absorbed, the rest is reflected (some can be transmitted too--but never mind for now)
- The reflected light is what we see
- Reflection is not simple and varies with material
- the surface's micro structure define the details of reflection
- variations produce anything from bright specular reflection (mirrors) to dull matte finish (chalk)

Phong Illumination Model

- Calculate color for arbitrary point on surface
- Basic inputs are material properties and I, n, v:

I = vector to light source
n = surface normal
$\mathrm{v}=$ vector to viewer
$r=$ reflection of I at p
(determined by I and n)

Basic Calculation

- Calculate each primary color separately
- Start with global ambient light
- Add reflections from each light source
- Clamp to [0, 1]
- Reflection decomposed into
- Ambient reflection
- Diffuse reflection
- Specular reflection
- Based on ambient, diffuse, and specular lighting and material properties

Ambient Reflection

- Intensity of ambient light uniform at every point
- Ambient reflection coefficient $\mathrm{k}_{\mathrm{a}}, 0 \leq \mathrm{k}_{\mathrm{a}} \leq 1$
- May be different for every surface and r,g,b
- Determines reflected fraction of ambient light
- $\mathrm{L}_{\mathrm{a}}=$ ambient component of light source
- Ambient intensity $\mathrm{I}_{\mathrm{a}}=\mathrm{k}_{\mathrm{a}} \mathrm{L}_{\mathrm{a}}$
- Note: L_{a} is not a physically meaningful quantity

Diffuse Reflection

- Diffuse reflector scatters light
- Assume equally all direction
- Called Lambertian surface
- Diffuse reflection coefficient k_{d}, $0 \leq \mathrm{k}_{\mathrm{d}} \leq 1$
- Angle of incoming light still critical

Lambert's Law

- Intensity depends on angle of incoming light
- Recall

I = unit vector to light
$\mathrm{n}=$ unit surface normal
$\theta=$ angle to normal

- $\cos \theta=1 \cdot n$
- $\mathrm{I}_{\mathrm{d}}=\mathrm{k}_{\mathrm{n}}(\mathrm{l} \cdot \mathrm{n}) \mathrm{L}_{\mathrm{d}}$

- With attenuation:

$$
\begin{aligned}
& I_{d}=\frac{k_{d}}{a+b q+c q^{2}}(1 \cdot \mathbf{n}) L_{d} \\
& \mathrm{q}=\text { distance to light source }, \\
& \mathrm{L}_{\mathrm{d}}=\text { diffuse component of light }
\end{aligned}
$$

Specular Reflection

- Specular reflection coefficient $\mathrm{k}_{\mathrm{s}}, 0 \leq \mathrm{k}_{\mathrm{s}} \leq 1$
- Shiny surfaces have high specular coefficient
- Used to model specular highlights
- Do not get mirror effect (need other techniques)

specular reflection

specular highlights

Shininess Coefficient

- L_{s} is specular component of light
- r is vector of perfect reflection of I about n
- v is vector to viewer
- ϕ is angle between v and r
- $\mathrm{I}_{\mathrm{s}}=\mathrm{k}_{\mathrm{s}} \mathrm{L}_{\mathrm{s}} \cos ^{\alpha} \phi$
- α is shininess coefficient
- Compute cos $\phi=r \cdot v$
- Requires $|r|=|v|=1$
- Multiply distance term

Higher α is narrower

Summary of Phong Model

- Light components for each color:
- Ambient (L_a), diffuse (L_d), specular (L_s)
- Material coefficients for each color:
- Ambient (k_a), diffuse (k_d), specular (k_s)
- Distance q for surface point from light source

$$
I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(1 \cdot \mathbf{n})+k_{s} L_{s}(\mathbf{r} \cdot \mathbf{v})^{\alpha}\right)+k_{a} L_{a}
$$

$$
\begin{array}{ll}
I=\text { vector from light } & r=I \text { reflected about } n \\
n=\text { surface normal } & v=\text { vector to viewer }
\end{array}
$$

Comparison of Phong model to the rendering equation

Raytracing Example

Martin Moeck, Siemens Lighting

Radiosity Example

Restaurant Interior. Guillermo Leal, Evolucion Visual

BRDF

- Bidirectional Reflection Distribution Function
- Measure for materials
- Isotropic vs. anisotropic
- Mathematically complex

Accurate normal vectors are important for modeling surface reflection

Normal Vectors

- Summarize Phong
$I=\frac{1}{a+b q+c q^{2}}\left(k_{d} L_{d}(\mathrm{l} \cdot \mathrm{n})+k_{s} L_{s}(\mathrm{r} \cdot \mathrm{v})^{\alpha}\right)+k_{a} L_{a}$
- Surface normal n is critical
- Calculate I • n
- Calculate r and then $r \cdot v$
- Must calculate and specify the normal vector
- Even in OpenGL!
- Two examples: plane and sphere

Normals of a Plane, Method I

- Method I: given by $a x+b y+c z+d=0$
- Let p_{0} be a known point on the plane
- Let p be an arbitrary point on the plane
- Recall: $u \cdot v=0$ iff u orthogonal v
- $n \cdot\left(p-p_{0}\right)=n \cdot p-n \cdot p_{0}=0$
- We know that $[a b c 0]{ }^{\top} \cdot p_{0}=-d \quad$ (because p_{0} satisfies the plane equation)
- Consequently n_{0} must be [a b c 0] ${ }^{\top}$
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of a Plane, Method II

- Method II: plane given by p_{0}, p_{1}, p_{2}
- Points must not be collinear
- Recall: $u \times v$ orthogonal to u and v
- $n_{0}=\left(p_{1}-p_{0}\right) \times\left(p_{2}-p_{0}\right)$
- Order of cross product determines orientation
- Normalize to $\mathrm{n}=\mathrm{n}_{0} /\left|\mathrm{n}_{0}\right|$

Normals of Sphere

- Implicit Equation $f(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$
- Vector form: $f(p)=p \cdot p-1=0$
- Normal given by gradient vector

$$
\mathrm{n}_{0}=\left[\begin{array}{l}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y} \\
\frac{\partial f}{\partial z}
\end{array}\right]=\left[\begin{array}{c}
2 x \\
2 y \\
2 z
\end{array}\right]=2 \mathrm{p}
$$

- Normalize $n_{0} /\left|n_{0}\right|=2 p / 2=p$

Angle of Reflection

- Perfect reflection: angle of incident equals angle of reflection
- Also: I, n , and r lie in the same plane
- Assume ||| = |n| = 1, guarantee $|r|=1$

$1 \cdot \mathbf{n}=\cos \theta=\mathbf{n} \cdot \mathbf{r}$
$r=\alpha l+\beta n$ Solution: $\alpha=-1$ and $\beta=2(1 \cdot n)$

```
r=2(1.n)n-1
```

Perhaps easier geometrically

Summary: Normal Vectors

- Critical for Phong model (diffuse and specular)
- Must calculate accurately (even in OpenGL)
- Pitfalls
- Not unit length
- How to set at surface boundary?

Color .. Why RGB?

Physics of Light and Color

- It's all electromagnetic (EM) radiation
- Different colors correspond to different wavelengths λ
- Intensity of each wavelength specified by amplitude
- Frequency $v=2 \pi / \lambda$
- long wavelength is low frequency
- short wavelength is high frequency

Color: What's There vs. What We See

- Human eyes respond to "visible light"
- tiny piece of spectrum between infra-red and ultraviolet
- Color defined by emission spectrum of light source
- amplitude vs wavelength (or frequency) plot

The Eye

- The image is formed on the retina
- Retina contains two types of cells: rods and cones
- Cones measure color (red, green, blue)
- Rods responsible for monochrome night-vision

The Fovea

Cones are most densely packed within a region of the retina called the fovea

- Three types of cones: S,M,L -Corresponds to 3 visual pigments
- Roughly speaking:

S responds to blue
M responds to green
L responds to red

- Note that these are not uniform
- more sensitive to green than red
- Colorblindness
deficiency of one cone/pigment type

Color Filters

- Rods and cones can be thought of as filters
- Cones detect red, green or blue parts of spectrum
- Rods detect average intensity across spectrum
- To get the output of a filter
- Multiply its response curve by the spectrum, integrate over all wavelengths
- A physical spectrum is a complex function of wavelength
- But what we see can be described by just 3 numbers-the color filter outputs
- How can we encode a whole function with just 3 numbers?
- A: we can't! We can't distinguish certain colors--metamers

Wavelength

Color Models

- Okay, so our visual system is quite limited
- But maybe this is good news. . .
- We can avoid computing and reproducing the full color spectrum since people only have 3 color channels
-TV would be much more complex if we perceived the full spectrum
- transmission would require much higher bandwidths
- display would require much more complex methods
-real-time color 3D graphics is feasible
-any scheme for describing color requires only three values
-lots of different color spaces--related by 3x3 matrix transformations

Color Spaces

- There are many ways to describe color -Spectrum
- allows any radiation (visible or invisible) to be described
- usually unnecessary and impractical
-RGB
- convenient for display (CRT uses red, green, and blue phosphors)
- not very intuitive
-HSV
- an intuitive color space
- H is hue - what color is it? S is saturation or purity - how nongray is it? V is value - how bright is it?
- H is cyclic therefore it is a non-linear transformation of RGB -CIE XYZ
- a linear transform of RGB used by color scientists

Additive vs. Subtractive Color

- Working with light: additive primaries
- Red, green and blue components are added by the superposition property of electromagnetism
- Conceptually: start with black, primaries add light
- Working with pigments: subtractive primaries
- Typical inks (CMYK): cyan, magenta, yellow, black
- Conceptually: start with white, pigments filter out light
- The pigments remove parts of the spectrum

dye color	absorbs	reflects
cyan	red	blue and green
magenta	green	blue and red
yellow	blue	red and green
black	all	none

- Inks interact in nonlinear ways--makes converting from monitor color to printer color a challenging problem
- Black ink (K) used to ensure a high quality black can be printed

The Meaning of "Color"

- What's an image?
- Irradiance: each pixel measures the incident light at a point on the film
- Proportional to integral of scene radiance hitting that point
- What's Color?
- Refers to radiance or irradiance measured at 3 wavelengths
- Scene color: radiance coming off of surface (for illumination)
- Image color: irradiance (for rendering)
- These quantities have different units and should not be confused

Units of Light and Color

Quantity	Dimension	Units
solid angle	solid angle	[steradian]
a two-dimensional angle (proportional to area on a sphere)		
power	energy/time	[watt]=[joule/sec]
photons per second; radiance integrated over incoming directions, over a finite area.		
irradiance (intensity)	power/area	[watt/m²]
Brightness of light hitting the surface (or image) at this point (incident light)		
radiance (intensity)	power/(area*solic	[watt/(m²*steradian)
Brightness of light reflected at this point along this direction (reflected light)		
reflectance	unitless	
what fraction of the light is reflected by a material? typically between 0 and 1 .		

Announcements

- Written assignment \#1 due Thursday
- Handin at beginning of class
- Programming assignment \#2 out Thursday

