

- Is your account working yet?
 Watch out for ^M and missing newlines
- Assignment 1 is due next Thursday at midnight
- Check the webpage and newsgroup for answers to questions about the assignment
- Questions on Assignment 1?

Transformations

Vectors, bases, and matrices Translation, rotation, scaling Postscript Examples Homogeneous coordinates 3D transformations 3D rotations Transforming normals Nonlinear deformations

Angel, Chapter 4

Basic 2D Transformations			
Translate			
$x' = x + t_x$ $y' = y + t_y$	$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$	$\mathbf{x'} = \mathbf{x} + \mathbf{t}$	
Scale			
$x' = s_x x$ $y' = s_y y$	$\begin{bmatrix} x^{\prime} \\ y^{\prime} \end{bmatrix} = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$	$\mathbf{x'} = \mathbf{S}\mathbf{x}$	
Rotate			
$x' = x \cos \theta - y \sin \theta$ $y' = x \sin \theta + y \cos \theta$	$\begin{bmatrix} \theta \\ s \\ \theta \end{bmatrix} \begin{bmatrix} x^{*} \\ y^{*} \end{bmatrix} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}$	$-\sin\theta \left[x \right]$ $\cos\theta \left[y \right]$	x'=Rx
Parameters t, s, and θ are the "control knobs"			

Homogeneous Coordinates • Translation is not linear--how to represent as a matrix? • Trick: add extra coordinate to each vector $\begin{bmatrix} x^{2} \\ y^{2} \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$ • This extra coordinate is the *homogeneous* coordinate, or *w* • When extra coordinate is the *homogeneous* coordinate, or *w* • When extra coordinate is used, vector is said to be represented in *homogeneous coordinates* • Drop extra coordinate after transformation (project to w=1) • We call these matrices *Homogeneous* Transformations

- -W is a clever algebraic trick.
- Don't worry about it too much. The w value will be 1.0 for the time being.
- If w is not 1.0, divide all coordinates by w to make it so.
- Clever Academic Answer:
 - -(x,y,w) coordinates form a 3D projective space.
 - All nonzero scalar multiples of (x,y,1) form an equivalence class of points that project to the same 2D Cartesian point (x,y).
 - For 3-D graphics, the 4D projective space point (x,y,z,w) maps to the 3D point (x,y,z) in the same way.

Beware: Row Vector Convention

• The transpose is also possible

$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{bmatrix}$$

- How does this change things?
 - -all transformation matrices must be transposed
 - ABCDx transposed is $x^T D^T C^T B^T A^T$
 - -pre- and post-multiply are reversed
- OpenGL uses transposed matrices!
 - You only notice this if you pass matrices as arguments to OpenGL subroutines, e.g. glLoadMatrix.
 - -Most routines take only scalars or vectors as arguments.

Rigid Body Transformations

•A transformation matrix of the form

 $\begin{bmatrix} \mathbf{x}_{x} \ \mathbf{x}_{y} \ \mathbf{t}_{x} \\ \mathbf{y}_{x} \ \mathbf{y}_{y} \ \mathbf{t}_{y} \\ 0 \ 0 \ 1 \end{bmatrix}$

where the upper 2x2 submatrix is a rotation matrix and column 3 is a translation vector, is a *rigid body transformation*.

•Any series of rotations and translations results in a rotation and translation of this form

Axis-angle rotation

The matrix R rotates by α about axis (unit) v:

 $\mathbf{R} = \mathbf{v}\mathbf{v}^{T} + \cos\alpha(\mathbf{I} - \mathbf{v}\mathbf{v}^{T}) + \sin\alpha\mathbf{v}^{*}$ $\mathbf{v}\mathbf{v}^{T} \qquad \text{Project onto } \mathbf{v}$ $\mathbf{I} - \mathbf{v}\mathbf{v}^{T} \qquad \text{Project onto } \mathbf{v}\text{'s normal plane}$ $\mathbf{v}^{*} \qquad \text{Dual matrix. Project onto normal plane, flip by 90°}$ $\cos\alpha, \sin\alpha \quad \text{Rotate by } \alpha \text{ in normal plane}$ $(\text{assumes } \mathbf{v} \text{ is unit.})$

Quaternions

- Complex numbers can represent 2-D rotations
- Quaternions, a generalization of complex numbers, can represent 3-D rotations
- Quaternions represent 3-D rotations with 4 numbers:
 - $-\,3$ give the rotation axis magnitude is sin $\alpha/2$
 - 1 gives cos $\alpha/2$
 - unit magnitude points on a 4-D unit sphere
- Advantages:
 - no trigonometry required
 - multiplying quaternions gives another rotation (quaternion)
 - rotation matrices can be calculated from them
 - direct rotation (with no matrix)
 - no favored direction or axis
- See Angel 4.11

Spatial Deformations

- Linear transformations
 - -take any point (x,y,z) to a new point (x',y',z')
 - Non-rigid transformations such as shear are "deformations"
- Linear transformations aren't the only types!
- A transformation is any rule for computing (x',y',z') as a function of (x,y,z).
- Nonlinear transformations would enrich our modeling capabilities.
- Start with a simple object and deform it into a more complex one.

Bendy Twisties

• Method:

- -define a few simple shapes
- define a few simple non-linear transformations (deformations e.g. bend/twist, taper)
- make complex objects by applying a sequence of deformations to the basic objects

• Problem:

- a sequence of non-linear transformations can not be collapsed to a single function
- every point must be transformed by every transformation

Example: Z-Taper			
 Method: 			
 align the simple object with the z-axis 			
 apply the non-linear t size as some function 	taper (scaling) function to alter its n of the z-position		
 Example: 			
-applying a linear taper to a cylinder generates a cone			
"Linear" taper:	General taper (<i>f</i> is any function you want):		
$x' = (k_z + k_z)x$	x'=f(z)x		
$\frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)^{2}$	y'=f(z)y		
$y = (\kappa_1 z + \kappa_2) y$	7'=7		
z'=z			

