
1

Graphics Hardware and OpenGL

What does graphics hardware have to do fast?

Ubi Soft, Prince of Persia: The Sands of Time

Different views of an object in the world

Camera Views

2

Lines from each point on the image are drawn through
the center of the camera lens (the center of projection (COP)).

Camera Views

Many camera parameters…

For a physical camera:
• position (3)
• orientation (3)
• lens (field of view)

Camera Views

3

Camera Projections

• Orthographic projection
• long telephoto lens.

• Flat but preserving distances and shapes. All
the projectors are now parallel.

Camera Projections

• Perspective projection
• Example: pin hole camera
• Objects farther away are smaller in size

4

Camera Transformations

• Camera positioning just results in more
transformations on the objects:
–Transformations that position the object

relative to the camera

up

COP
eye

Clipping

Not everything is visible on the screen

5

Rasterizer

• Transforms pixel values in world coordinates to
pixel values in screen coordinates

• Ambient: same at every point on the surface
• Diffuse: scattered light independent of angle (rough)

• Specular: dependent on angle (shiny)

Shading: Material Properties

6

Light Sources

• Point light sources are common:

Special Tricks

• Gouraud Shading:
Compute an appropriate color for each vertex,

then smooth-shade between the different
vertex colors.

• Shadows on ground plane:
Render from the position of the light source and

create a shadow map

7

How does the graphics hardware make these
operations fast?

So...

OpenGL

• C programming language

• OpenGL libraries
for defining a 3D scene
convert scene description to pixels
use state variables (current color, current transform...)
platform independent

• GLUT libraries
handle windows, menus, keyboard input

8

OpenGL – “Hello World” example

int main (int argc, char *argv[]) {

glutInit(&argc, argv);
glutInitDisplayMode(GLUT_RGB);
glutInitWindowSize(640, 480);
glutCreateWindow(“Hello World”);

glutDisplayFunc(display);

glutMainLoop();
return(0);

}

OpenGL – “Hello World” example

void display() {
glOrtho(-1, 1, -1, 1, -1, 1);

glClearColor(0.5, 0.5, 0.5, 1);
glClear(GL_COLOR_BUFFER_BIT);

glColor3f(1, 0, 0);
glBegin(GL_TRIANGLES);
glVertex2f(-0.5, -0.5);
glVertex2f(0.5, -0.5);
glVertex2f(0 , 0.5);
glEnd();
glFlush();

}

9

OpenGL – “Hello World” example

• You also need headers:
#include <stdlib.h>

#include <GL/gl.h>

#include <GL/glu.h>

#include <GL/glut.h>

• ..and a Makefile that links in the proper
libraries
See the starter code!

OpenGL functionality --- Primitives

10

• Why triangles, quads, and strips?

Primitives

Code for all of today’s examples available from
http://www.xmission.com/~nate/tutors.html

Specifying Primitives

shapes.exe

11

•glColor3f(r,g,b);

All subsequent primitives will be this color.
Colors are not attached to objects.
glColor3f(r,g,b) changes the system state.

Everyone who learns GL gets bitten by this!

Red, green & blue color model.
Components are from 0-1.

Primitives: Material Properties

Many other material properties available:
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(MASK); /* 32x32 pattern of bits */

…

glDisable (GL_POLYGON_STIPPLE);

Primitives: Material Properties

12

Light Sources

lightposition.exe

transformation.exe

Transforms

13

Camera Transformations

• Alternative to glOrtho

void gluLookAt
(eyex,eyey,eyez,
centerx,centery,centerz,

upx,upy,upz)

up

COP
eye

Graphics Hardware

What alternatives are there to the
triangles-through-the-pipeline approach?

14

http://www.cs.unc.edu/~pxfl/

Pixel Planes:

programmable processor per pixel

fast rasterization of single triangle

“hey pixels, figure out if you are in this triangle”

what happens when triangles get very small?

Pixel Planes and Pixel Flow (UNC)

Pixel-Flow:

processors each take a subset of the geometry
and render a full-size image

images are then combined using depth
information

Pixel Planes and Pixel Flow (UNC)

15

http://research.microsoft.com/MSRSIGGRAPH/96/Talisman/

Observation: an image is usually much like the one
that preceded it in an animation.

Goal: a $200-300 board

image-based rendering
cache images of rendered geometry
re-use with affine image warping (sophisticated sprites)
re-render only when necessary to reduce bandwidth and

computational cost

Talisman (Microsoft)

• Geometry compression (far beyond triangle strips)
• Progressive transmission (fill in detail)
• Alternative modeling schemes (not polygon soup)

Parametric surfaces, implicit surfaces, subdivision
surfaces

Generalized texture mapping: displacement mapping,
light mapping

Programmable shaders

• Beyond just geometry:
dynamics, collision detection, AI, …

Current & Future Issues

16

Admin

• Assignment goes out Tuesday
• You should have Wean Hall 5336 access

• My office hours are Tuesday 1-2pm
(or send email to set up an appointment)

• The OpenGL book (linked off the web page)
is quite good --- make use of it as a resource!

