15-462: Computer Graphics

Nancy Pollard Assistant Professor Robotics Institute and Computer Science Department

Announcement

- There are two graphics courses happening right now
 - Advanced Computer Graphics (15-864) is in WeH 4615A

Introduction

- Administrivia
- Who am I?
- What will we do in this course?
- What is Computer Graphics?

Administration

- Web page
 bttp://www.cs.cmu.edu/-psp/course/
- TA's:
 - James Hays, Andrew Herrman, and Sriram Vaidhyanathan

• Graphics lab – Wean 5336

- TA hours will be held in graphics lab
- You should have access later in the week
- Textbook:
 - Angel, Interactive Computer Graphics (3rd edition)
 - Open GL (The Red Book)

Administration

• Prerequisites

15-213: Introduction to Computer Systems
21-241: Matrix Algebra (matrix & vector algebra)
21-259: Calculus in Three Dimensions (i.e. planes, quadratic surfaces, basic 3-D geometry, partial derivatives) or equivalent

- Midterm and Final (13% and 22%)
- Four programming assignments (10-13% each)
- Three written assignments (20% total)

You will do fun things in this class!

Height field

Mobile

Ray tracer

Texture synthesis or NPR

Administration

- Late Policy: 3 late days that you can use for any assignment. More than three requires a really good excuse.
- Cheating: Please don't! The detailed definition is in the syllabus. We will pursue the case...

Other Graphics-related Courses

- 15-505: Animation Art and Technology, Hodgins, Duesing
- 15-493: Computer Game Programming, Kuffner
- 05-331: Building Virtual Worlds, Pausch
- 15-863: Simulation for Animation, James
- 15-???: Other specialized graduate courses in graphics
- 15-385: Computer Vision
- 24-384A: Computational Geometry, Shimada
- 60-41x: 3-D Animation, Duesing

Who am I?

PhD CS, MIT Robot Grasp Planning

On the faculty at Brown University from 1998-2003

Joined CMU in fall 2003

What is this course about?

Computer Graphics...

One agenda: Faking Reality

- Make synthetic images that are indistinguishable from the real thing
- Do it in a way that's both practical and scientifically sound. In real time, obviously.

And make it look easy...

Another Agenda: Create a new Reality

- Non-photorealistic Rendering
- Example: Illustrating smooth surfaces

A.Hertzmann, D. Zorin. SIGGRAPH 2000 Conference Proceedings.

Another Example

 Image Analogies A. Hertzmann, C. Jacobs, N. Oliver, B. Curless, D. Salesin. SIGGRAPH 2001 Conference Proceedings.

The three big topics:

- Modeling: how to represent objects; how to *build* those representations.
- Animation: representing/controlling the way things move.
- Rendering: how to create images

Modeling

- How to represent real environments
 - geometry: modeling surfaces, volumes
 - photometry: light, color, reflectance
- How to *build* these representations
 - declaratively: write it down
 - interactively: sculpt it
 - programmatically: let it grow
 - via 3D sensing: scan it in

Modeling by Growing

Modeling Seashells P. Prusinkiewicz, Deborah Fowler, Hans Meinhardt, SIGGRAPH 92.

Modeling by Scanning

Cyberware

Animation

- Model how things move
- How to represent motion
 - sequence of stills, parameter curves
- How to specify motion
 - by hand: tweak it till it looks rightkey-framing, constraints
 - rule-based behaviors: artificial life
 - physics: simulate Newton's laws
 - motion capture: data from the real world

Rule-based Behaviors

Reynolds, C. W., "Flocks, Herds, and Schools: A Distributed Behavioral Model," SIGGRAPH '87.

Physics for Natural Phenomena

Antz water simulation, related techniques were used in Shrek

Motion Capture

Titanic, House of Moves

Motion Capture

Titanic, House of Moves

Rendering

- What's an image?
 - distribution of light energy on 2D "film": E(x,y, λ ,t) (λ is wavelength.)
- How do we represent and store images
 - sampled array of "pixels": p[x,y]
- How to generate images from scenes
 - input: 3D description of scene, camera
 - solve light transport through environment
 - ray tracing
 - radiosity
 - project to camera's viewpoint

Image-based Rendering

Mike Harris Martin Løvvold Caligari, True Space

Hot Application Areas

- Special effects
- Feature animation
- PC graphics boards
- Video games, location-based entertainment
- Visualization (science, architecture)
- The web

Hot Research Topics

• Modeling

- getting models from the real world
- multi-resolution
- Animation
 - physically based simulation
 - motion capture
- Rendering:
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Starting out Simple

- The field didn't start out with all this difficult stuff.
- First there were wireframes. Then faceted and smooth shading. Advanced ideas such as radiosity and physically based animation came later.
- Only gradually did the idea of "physically based" take hold.
- The simpler models and methods are still very much in use, because they're well understood, they're amenable to hardware implementations, and fast.
- In this class, we concentrate on the simple stuff, but sprinkle in some advanced topics here and there.