15-462: Computer Graphics

Nancy Pollard
Assistant Professor
Robotics Institute and
Computer Science Department

Announcement

- There are two graphics courses happening right now
 - Advanced Computer Graphics (15-864) is in WeH 4615A
Introduction

- Administrivia
- Who am I?
- What will we do in this course?
- What is Computer Graphics?

Administration

- Web page

- TA’s:
 - James Hays, Andrew Herrman, and Sriram Vaidyanathan

- Graphics lab – Wean 5336
 - TA hours will be held in graphics lab
 - You should have access later in the week

- Textbook:
 - Angel, Interactive Computer Graphics (3rd edition)
 - Open GL (The Red Book)
Administration

- Prerequisites
 15-213: Introduction to Computer Systems
 21-241: Matrix Algebra (matrix & vector algebra)
 21-259: Calculus in Three Dimensions (i.e. planes, quadratic surfaces, basic 3-D geometry, partial derivatives) or equivalent

- Midterm and Final (13% and 22%)

- Four programming assignments (10-13% each)

- Three written assignments (20% total)

You will do fun things in this class!

Past course projects

- Mobiles
- Roller coaster
- Ray tracing
You will do fun things in this class!

Height field
Mobile
Ray tracer
Texture synthesis or NPR

Administration

• Late Policy: 3 late days that you can use for any assignment. More than three requires a really good excuse.

• Cheating: Please don’t! The detailed definition is in the syllabus. We will pursue the case…
Other Graphics-related Courses

- 15-505: Animation Art and Technology, Hodgins, Duesing
- 15-493: Computer Game Programming, Kuffner
- 05-331: Building Virtual Worlds, Pausch
- 15-863: Simulation for Animation, James
- 15-???: Other specialized graduate courses in graphics
- 15-385: Computer Vision
- 24-384A: Computational Geometry, Shimada
- 60-41x: 3-D Animation, Duesing

Who am I?

PhD CS, MIT
Robot Grasp Planning

On the faculty at Brown University from 1998-2003

Joined CMU in fall 2003
Animation

Perception of Animation

80% Gravity
Perception of Animation

60% Gravity

Perception of Animation

15% Gravity
And humanoid robots

What is this course about?

Computer Graphics...
One agenda: Faking Reality

• Make synthetic images that are indistinguishable from the real thing
• Do it in a way that’s both practical and scientifically sound. In real time, obviously.

And make it look easy…

Another Agenda: Create a new Reality

• Non-photorealistic Rendering
• Example: Illustrating smooth surfaces
 A. Hertzmann, D. Zorin.
Another Example

Things that this course isn’t about

Or Graphic design,
Software packages (as opposed to software API’s like GL),
User interfaces,
or much about graphics hardware
The three big topics:

- Modeling: how to represent objects; how to build those representations.
- Animation: representing/controlling the way things move.
- Rendering: how to create images

Modeling

- How to represent real environments
 - geometry: modeling surfaces, volumes
 - photometry: light, color, reflectance
- How to build these representations
 - declaratively: write it down
 - interactively: sculpt it
 - programmatically: let it grow
 - via 3D sensing: scan it in
Modeling by Sculpting

Freeform from Sensable Technologies

Modeling by Growing

Modeling by Growing

Modeling Seashells
P. Prusinkiewicz, Deborah Fowler, Hans Meinhardt, SIGGRAPH 92.

Modeling by Scanning

Cyberware
Animation

- Model how things *move*
- How to represent motion
 - sequence of stills, parameter curves
- How to specify motion
 - by hand: tweak it till it looks right
 - key-framing, constraints
 - rule-based behaviors: artificial life
 - physics: simulate Newton’s laws
 - motion capture: data from the real world

Hand Animation

Making of Toy Story
Rule-based Behaviors

Physics for Natural Phenomena

Antz water simulation, related techniques were used in Shrek

Physics for Natural Phenomena

Physics for Characters

Motion Capture

Microsoft’s Motion Capture Group
Motion Capture

Titanic, House of Moves

Motion Analysis
Motion Capture

Titanic, House of Moves

Rendering

• What’s an image?
 – distribution of light energy on 2D “film”: \(E(x, y, \lambda, t) \) (\(\lambda \) is wavelength.)
• How do we represent and store images
 – sampled array of “pixels”: \(p[x, y] \)
• How to generate images from scenes
 – input: 3D description of scene, camera
 – solve light transport through environment
 • ray tracing
 • radiosity
 – project to camera’s viewpoint
Raytracing

May-June 2001 First Place Winner Internet Ray Tracing Competition
warm_up by Norbert Kern

Radiosity

Lightscape, Autodesk
Image-based Rendering

Mike Harris Martin Løvvold
Caligari, True Space

Hot Application Areas

- Special effects
- Feature animation
- PC graphics boards
- Video games, location-based entertainment
- Visualization (science, architecture)
- The web
Hot Research Topics

- Modeling
 - getting models from the real world
 - multi-resolution
- Animation
 - physically based simulation
 - motion capture
- Rendering:
 - more realistic: image-based modeling
 - less realistic: impressionist, pen & ink

Starting out Simple

- The field didn't start out with all this difficult stuff.
- First there were wireframes. Then faceted and smooth shading. Advanced ideas such as radiosity and physically based animation came later.
- Only gradually did the idea of "physically based" take hold.
- The simpler models and methods are still very much in use, because they're well understood, they're amenable to hardware implementations, and fast.
- In this class, we concentrate on the simple stuff, but sprinkle in some advanced topics here and there.