Jim Blinn’s Corner

Return of the Jaggy

James F. Blinn, Caltech

In our last episode the evil high frequencies from the
Aliasing Empire were sneaking into our image and
transforming themselves into deadly Jaggies. Our
research labs had come up with a theoretical weapon to
defeat the Jaggies. Unfortunately, the purely theoretical
solution cannot be used in practice. This time I will
discuss why this is so, and give some ideas about how
close we can come.

To best understand this process you need some facil-
ity for thinking in the frequency domain as well as the
spatial domain. So, like last month’s column, this one
will largely be a picture show to help you build your
intuition.

Simple filters
Let’s remember the punch line of the theory from last
time:

82 02721716/89/0300-0082$01.00 1989 IEEE

Before sampling an image, you must first filter out
the high frequencies. To view (reconstruct) the sam-
pled image, you must interpolate between the sam-
ples (i.e., filter them).
Filtering is the same as taking a weighted average of the
intensity function. This weighting function is some-
times called an “‘impulse response’” or a “‘point-spread
function.” You center the PSF at a pixel, multiply by
the continuous-intensity function, and integrate the
result. This number becomes the filtered value to dis-
play at that pixel.

Let’s look at some functions commonly in use and
their effects. You can judge the effectiveness of a partic-
ular PSF by examining its Fourier transform: In Figure
1 a PSF is on the left and its Fourier transform is on the
right. Notice that each PSF is scaled so the total
integral under it equals 1. This is done so that filtering
a constant-intensity image gives back the same
intensity.

IEEE Computer Graphics & Applications

BOX FT(BOX)

12 4o - 12 T
1 e —b— et 1 - -
PR P IS R 4 s (\ ,,,,,, . 1
6 K3
4 - 4 / | |
> . i 2
0] ‘ f o N
2 Ll . 4. - 2 ot
s 7 6 -5 -4 3 2 4 0 i 2 3 4 S 6 71 8 4 35 -3 25 2 15 1 -5 0 5 1 15 2 25 3 35 4
TENT FT(TENT)
1.2 ey 12 e —- ——
1 - — - ——— 1 e -
R e e s B
] A — 6 _
4 - -\ S s S I A - e Rt S
2 2
0 0 e T~
2 Lo . a b SR VU U P .
4 7 6 5 4 3 2 a4 0 1 2 3 4 5 6 1 8 4 35 3 2% 2 15 4 -5 0 5 t 185 2 25 3 35 4
GAUSS FT(GAUSS)
1.2 = = o man wiR ST S 12— s s M I
]
[e ! 1
s Lt A . i S RO
6 f—t- —t—f— - 6 -ty e e e
[
4 I a4 / R SO S i
2 |- / 2 A S
0 Wy, \- . ; A ;
L L
.2 - JRU S ' g - : U . - I
£ .7 6 5 4 3 2 4 0 1 2 3 4 5 6 7 8 4 35 3 25 2 445 -1 -5 0 5 1 15 2 15 3 35 4
Wide OAUSS FT(Wide GAUSS)
12 - R e 12 T - -
1 B JUUSU 1 B e B - -
|
8 - - — i - g - —te— -
|
6t i . -

0 0
2l - a L L B
2 7 6 s 4 3 2 a9 0 1 2 3 4 85 & 1 18 4 35 3 25 2 45 4 -5 0 5 1 15 2 25 3 33 4
SINC FT(SINC)
127 - phuhbii o 12 SINO

° [

al

- \/ g .2
z-‘-7-6-5-4-3-2-|0|234567l 4 35 3 25 2 45 41 .5 0 S 1 15 2 23 3 35

Figure 1. Filters.

March 1989

sinc(x) Truncation box
12 (— 12 —
1]
I e R 3 -
L I“\ .
2 2
° AN /‘5_}[,\\ --\ —f\ - °
$ 7 6 5 4 3 2 49 0 1 2 3 4 S5 & 7 8 2 7 6 5 4 3 2 4 0 1 2 3 & S 6 1 3
Truncated sinc Lanczos Window
12 12
t 1
8 -1 o k] ~—~'\ I mamds B Sat
6 K]
. \ .
sl \ ; B
0 ° -
Ll B Al] o '
$ 7 6 5 4 3 2 1 0 1 2 3 4 3 6 7] 2 7 6 5 4 3 2 - (] 1 2 3 4 5 6 7 L
i} NICE fifter NICE filter stresched
L2 - 12
1 — — 1 r—
3 K} 4 —
K] S e aE — 6 -~ -
i
4 S — i £ 4 —f 4 -
2 2 -
. L . B R
: N/ /1
I P -2
* 7 6 35 4 3 2 4 0 1 2 3 4 S & 71 3 4 7 6 5 4 3 2 a4 0 1 2 3 &4 5 6.1 8
~-
stretch 4/3

Figure 2. Nice filter (spatial domain).

The box filter

The box filter is the most common function and the
easiest to implement; just average the intensities over
the area from -.5 to +.5 of the pixel center. When text-
books discuss finding the amount of a pixel covered by
an edge, this is the filter they are using. Frank Crow
came up with a clever algorithm for implementing this
filter.' The problem is that the filter is a pretty crummy
approximation to what we really want. Its Fourier
transform shows that many high frequencies can slip
through relatively unscathed. The FT even hits zero
twice as far from the origin as we want (at +1 instead of
+.5). It also attenuates some nice friendly frequencies
in the range .3 to .5, producing the visual effect of
excessive blurring.

It may be bad (purely coincidentally, it’s just the Fou-
rier transform of what we want), but it's better than
doing nothing. High frequencies are reduced; low fre-

84

quencies are kept. I've gotten away with using it for
years.

The triangle or tent filter

The triangle or tent filter is the next easiest to imple-
ment. Paul Heckbert? and Ken Perlin® have described
clever ways to expand on Crow’s technique to imple-
ment both this and the following filter.

It does introduce a new pragmatic difficulty. Notice
that a copy of the PSF centered at one pixel will overlap
a copy centered at another. The copy applied to a pixel
at the edge of the screen sticks out beyond the screen
area. You have to be able to calculate intensities a smid-
gen outside the screen area to calculate the edge pixels
properly.

But how good a filter is it? Use your imagination a bit
and you can see that the tent is just the convolution of a
box with another box. So in the frequency domain the

IEEE Computer Graphics & Applications

. Fluincto)

1.2 o g e e e -

12 oo P TCTrumcaged sinc) i 2 P mezon Wiodew) .

, M 1 R
$ b —1-] S s S e

6 —d— 6 5 AN SN I PO
4 4 - - -

2 b 2 R — -

° YV AR 0

22 e

12 — T 12 -
1 [N et it SOEIE P SR e e
L M L
,) I RERE
o bodo o HA.\ “

2 2
. /I TN\ ;
P35 3 a5 2 a5 4 5 0 5 1 15 2 25 3 35 4 24735 3 as 2 a8 4
shrink 4/3
Figure 3. Nice filter (frequency domain).
FT is just the square of the FT of the box. (That’s why Ideal filter

the convolution business is interesting. It allows us to
find some non-obvious FT of a function by building it
from simpler functions.) The FT of the tent is better
about getting rid of high frequencies than the box, but
it still hits zero at too high a frequency and attenuates
the nice low frequencies.

Gaussian and similar shapes

If you convolve a tent with another box, you get a
smooth bump made of three parabolic segments. Con-
volve with another box and it gets still smoother. Keep
doing it and you approximate a Gaussian normal distri-
bution function. How good a filter is it? The FT of a
Gaussian is another Gaussian function. The wider the
Gaussian for the PSF, the narrower its FT. A pretty
wide function gets rid of high frequencies real well, but
it also gets rid of nice low ones.

March 1989

The theoretically ideal PSF for both filtering and
reconstruction is at the bottom of Figure 1. It has the
somewhat strange name ‘‘sinc’” and is defined as

sinc(z) = ___8111(7rz)
rz

So why don’t we just use this in the first place? Because
it's infinitely wide. And you can't just keep the middle
part and slam the rest down to zero either. The next
section shows why and what we can do about it.

Building a nice filter
For the following, refer to Figure 2 (spatial domain)
and Figure 3 (frequency domain).

Suppose we did just take the middle part out of the
sinc function as our PSF. This is the same as multiply-
ing the sinc with a box stretching, say, =3 pixels around
it. In the frequency domain this implies convolving the
ideal box frequency response with sinc(3f). The middle
plot in the left column of Figure 3 shows the result. It’s
all ripply (believe it or not).

To get rid of the ripples in the frequency response, we
can do some sort of area averaging (convolution) to the
FT. For example, suppose we convolved the ripply FT
with a box function that is the width of one cycle of the
ripple. This flattens out the ripples fairly nicely. Mean-
while, back in the spatial domain we have effectively
multiplied the original weighting function by sinc(x/3),
giving a nice usable PSF. This process is called “win-
dowing.” People have used a whole mess of functions
for this purpose—functions with names like Bartlett,
Hamming, and Hanning. The one we have used is
called a Lanczos window. They all represent trade-offs
between eliminating ripples and rounding off the
corners of the desired frequency response.

Our filter keeps low frequencies and rejects high fre-
quencies better than any (achievable) filter we’ve seen
so far. This is largely because of the negative region or
“lobe” in the PSF. People who advocate this type of fil-
ter are called negative lobists. (Ask someone at your
next cocktail party whether they are a negative lobist
and see what happens.)

The FT of this filter has almost a trapezoid shape,
with the sloping sides stretching from frequency 1/3 to
2/3. Depending on how paranoid you are about alias-
ing (see below), you might want to contract it to bring
the bottom in to 1/2. This requires shrinking the FT by
4/3, which is the same as stretching the impulse
response by 4/3, making it cover 8 pixels. More
arithmetic.

Subsampling

[t’s a real pain to convolve continuous filters with a
continuous-intensity function. One of the easiest
dodges in the antialiasing game is subsampling. You
sample the picture at two or four times the pixel spac-
ing, and then average the subsamples together. Qur
Fourier transform technique lets us see how well this
works.

In the top three rows of Figure 4 we subsample the
picture two times (the calculated samples are a half
pixel apart) and take weighted averages. The three
weighting functions are just the box, tent, and nice
filters. Their FTs are shown on the right side of the fig-
ure. Note that they keep repeating, with a copy of the
basic FT at frequencies of 2, 4, 6, 8, etc. This means
that even with the best shape only about half the alias-
producing frequencies are eliminated. But we use a lot
less arithmetic than with continuous integration.

There is another trade-off here between the extra
arithmetic needed to use the nice function and the
straight add-and-divide-by-two for the box PSF.
Nevertheless, you are going to all the work of calculat-
ing subsamples, so you may as well make the best use

86

of them by using a nicely shaped weighting function.

Now look at the bottom row of Figure 4. Here [have
plotted the result for a subsampling rate of 4. The effect
of higher subsampling rates is to move the copies of the
basic FT farther apart. For subsampling at the rate of 4,
they are at 4, 8, 12,... cycles per pixel. In general, the
shape of the PSF determines the shape of the repeated
bumps in the FT. The subsample rate determines the
separation of the copies.

The effect of D/A converters

Just when we think we have it all figured out, some-
thing new comes in to foul things up. Remember what
happens when we go to display our carefully crafted
sequence of pixel values. In the theoretical ideal, we
convolve the discrete samples with an ideal low-pass fil-
ter to turn them back into a continuous signal. You can
think of the reconstruction filter as an interpolation
technique in this sense.

In the real world we put the samples in a frame
buffer and the hardware sends them to a D/A converter
to make the analog signal to send to the display. The
D/A converter holds a particular sample for 1 pixel
time and then the next one for 1 pixel time. Thus it is
effectively convolving the samples with a box function.
This again is the FT of what we would really like.

For an extreme example of why this causes problems,
look at Figures 5 and 6. We start with a picture of a sine
wave of frequency 7/16 cycles per pixel. This is below
the Nyquist rate, so just sampling produces no aliasing.
Everything should be fine. But when we reconstruct
with the D/A filter, something awful happens. This
beat pattern appears out of nowhere. Blurring it with
the Gaussian spot helps, but we still get some crud. Put-
ting this pattern on your display is very amusing: Use a
frequency of about .49 cycles per pixel to make it more
obvious.

Here we’ve done all this work to get rid of aliases,
and the hardware creates new artifacts out of what we
thought were nice friendly frequencies. One solution is
to filter out frequencies somewhat below the Nyquist
limit. This is another reason for contracting our nice
function by 4/3.

Another solution is to modify the display hardware.
What should happen (and what does happen with high-
quality frame buffers for the broadcast video market) is
that a filter contained in the frame buffer corrects for
the D/A function. The idea is to design a filter so that
the net frequency response of the D/A converter plus
filter is close to an ideal low-pass filter. This again
means negative lobes. Because computer displays tend
to have white 1-pixel-wide lines on black backgrounds,
using such a filter might require the production of
negative light at some places on the screen.

Summary
There is no such thing as full antialiasing. Anyone
who tries to tell you differently is trying to sell you

IEEE Computer Graphics & Applications

. L mSemepedba " L M FTOS Swpemmnpied Box)
s 1

“ s __
5 |- 1) __\ // \\ / B
.2 . —_ Y N

: N

. , V. B

2x Supersampled Trisngle

. 2x Supersampled NICE
O - -t -
4 |-
3 -
2 - e e o R e e
1
0 v
Y Y vy

Figure 4. Subsampling.

something. Any real-world solution to the problem
suffers from one or more of the following problems:

® An achievable filter is not a perfect low-pass filter.

® The steeper the sides of the FT, the wider the PSF
needs to be, and the more arithmetic you have to do.

® There is no such thing as negative light. Any decent
approximation to a low-pass filter for either sam-

March 1989

pling or reconstruction has negative lobes. This
might result in a negative pixel value. Clamping
them to zero is about all you can do, but it is not
ideal.

® Antialiasing requires filtering a continuous func-
tion. Subsampling is only a crude approximation to
this.

® You have to calculate outside the screen region if the

87

SI(I/3*PI*X)

\,

8§ 9 10 11 12 13 14 15 1§

10 11 12 13 14 15 16

12 12 ' D/A sample snd hold
T nnd

,/ 101 § VI V) .

aii N VU] -)
> L 50 W v

y aANE

o 1 2 3 4 S5 6 7 8 9 10 11 12 13 14 18 16

12 Qx_?:ofDIA 12 I CRT spot
1
' 5 [U N S SO SN ORI U WO SRS SHUU N N NN SN (O S DRNUUMUNE ROV SN NS N NS N U NN SUNN SN NN S
N & \ !
s I \ i | [A
EEnEERANHENEnES
O -\
PR | i . T/ S W A SUN NENNRS NN A P
O Snvam) N G Fi\
2 —\ v\Jf ’(l'." \rl \\.-' —7L 2 ,
\/ J 1T UTY JARN
[-T o S Bt S o e e e i]
.2
0 1 2 3 4 S 6 7 8 9 16 1 12 13 14 15 1 4 7 6 5 4 3 2 14 0 1 2 3 4 35 6 71 8
" Viewsd intensity
1
T T
k| 3 4 1+ 4+ —
] |) | “l ! | AL
6 4 ; Y \ ;]
“ MTIN \ (i /il)|
/ Ul 4\ TN
2 R 7 N B : \'/f
° \/ k \
.2

Figure 5. Bad reconstruction (spatial domain).

filter PSF is wider than +.5.

® Gamma correction can mess things up. I won'’t go
into this here.

® The reconstruction filter might mess you up anyway,
unless you add special hardware filters to your
frame buffer.

This is a big subject. I haven’t even mentioned Cook’s

88

stochastic sampling or Kajiya's approximation sam-
pling. Also, I haven't covered the 2D case (complete
images) or the 3D case (time).

If you want to build intuition about this, I would
recommend that you find or write a program that takes
Fourier transforms and play with it. Also take a look at
the Atlas of Optical Transforms, by Harburn, Taylor,
and Welberry.* This is a whole book of 2D images and

their FTs. [|

IEEE Computer Graphics & Applications

Mg FT(Sin(7/8 ¢ Pi * X)) FT(COMB)

4 35 .3 .25 2 1.5 -1

" 1 3 25 2 15 1 -5 0 S5 1 15 2 25 3 35 4

-38 -3 223 22 s

-5 0

Mg FT(Output of D/A) FT(CRT spot)

0 M

4 35 3 .25 2 .15

2 25 3 35 4 4 35 3 25 2 15 1 -5 O S 1 15 2 25 3 35 4

4 33 3 25 2 -8 -1 -5 0 S5 1 15 2 25 3 35 4

Figure 6. Bad reconstruction (frequency domain).

Acknowledgment 2. PS. Heckbert, “Filtering by Repeated Integration.”” Computer
Thanks to Jim Kajiya and Steve Gabriel for keeping Graphics (Proc. SIGGRAPH), Vol. 20, No. 4, Aug. 1986, pp.
. 315-321.
me from making too many stupid mistakes in this
column.

3. K. Perlin, notes for SIGGRAPH course State of the Art in

References Image Synthesis, July 1985, ACM, New York, 1985.

1. FC. Crow, “Summed-Area Tables for Texture Mapping,” Computer
Graphics (Proc. SIGGRAPH), Vol. 18, No. 3. july 1984, pp. 4. G. Harburn, C.A. Taylor, and T.R. Welberry, Atlas of Optical
207-212. Transforms, Cornell Univ. Press, Ithaca, NY., 1975.

March 1989 89

