
Introduction to Game
Programming

Steven Osman
sosman@cs.cmu.edu

Introduction to
Game Programming

Introductory stuff
Look at a game console: PS2
Some Techniques (Cheats?)

What is a Game?

Half-Life 2, Valve

Designing a Game

Computer Science
Art
Music
Business
Marketing

Designing a Game
Music
Art
Computer Science
Business
Marketing
History
Geography
Psychology
Sociology
Physics
Literature
Education
Writing
Civics/Politics
…Just to name a few

Designing a Game

Find out more from an industry veteran @

Professor Jesse Schell’s class:
Game Design

(Entertainment Technology Center)

The Game Engine

Graphics & Animation
Physics
Controller Interaction
AI Primitives
Sound
Networking
Scripting system

The Game Logic

Game rules
Non-Player Characters (NPC) AI
Interface, etc.

Often (but not necessarily) implemented in
scripting language

Magic Formula

Read
Player
Input

Update
World
State

Apply
Game
Rules

Draw
Frame

Game Programming is hard

• Players want complex graphics (why?)
• Game must run fast (30fps+)
• AI isn’t exactly trivial
• We want networking but no latency
• Physics is already hard. Now do it in real-

time

• … And do it all in time for Christmas

To most, this is the PS2

To technophiles, this is a PS2

To us, this is the PS2

Source: http://playstation2-linux.com/projects/p2lsd

Emotion Engine Core “EE Core”

Source: http://playstation2-linux.com/projects/p2lsd

Emotion Engine Core “EE Core”

Runs at about 300 megahertz
MIPS I & II, subset of MIPS III & IV
Math coprocessor
SIMD Instructions

16k instruction cache
8k data cache

16k scratch pad

SISD Instructions
Single Instruction, Single Data

Instructions Data

Results

Modified from: http://arstechnica.com/articles/paedia/cpu/ps2vspc.ars/5

MIMD
Multiple Instruction, Multiple Data

Source: http://arstechnica.com/articles/paedia/cpu/ps2vspc.ars/5

SIMD
Single Instruction, Multiple Data

Source: http://arstechnica.com/articles/paedia/cpu/ps2vspc.ars/5

Which is Better?

Sure, 4 independent instruction streams
(MIMD) would be nice, but it would require
more memory

But media applications do not require
instruction-level parallelism, so SIMD is
fine

Sneak Peek

The safe money says next generation from
Sony will be highly parallel (=MIMD)

There’s a good chance that this may include
parallel SIMD instructions

Now go ask your Architecture professor
what that’s even called! (I like MIM2D)

PS2 SIMD Support

PS2 has lots of SIMD support:
Parallel instructions on core CPU
• 2x64-bits, 4x32-bits, 8x16-bits or 16x8-bits

Homework 4 example
Vector Unit 0 through micro & macro mode
Vector Unit 1
• Both VU’s do 4x32-bit floating point

SISD Example:
Vector/Matrix Multiplication

=

w
z
y
x

v
u
t
s

ponm
lkji
hgfe
dcba

*

x = a*s + b*t + c*u + d*v
y = e*s + f*t + g*u + h*v
z = i*s + j*t + k*u + l*v
w = m*s + n*t + o*u + p*v

16 multiplications, 12 additions.
Additions can be eliminated with MADD.

SIMD Example:
Vector/Matrix Multiplication

=

w
z
y
x

v
u
t
s

ponm
lkji
hgfe
dcba

*

First, load columns into registers:

VF01 = {a, e, i, m}

VF02 = {b, f, j, n}

VF03 = {c, g, k, o}

VF04 = {d, h, l, p}

VF05 = {s, t, u, v}

SIMD Example:
Vector/Matrix Multiplication

VF01 = {a, e, i, m}

VF02 = {b, f, j, n}

VF03 = {c, g, k, o}

VF04 = {d, h, l, p}

VF05 = {s, t, u, v}

// acc = {a*s, e*s, i*s, m*s}
// acc += {b*t, f*t, j*t, n*t}
// acc += {c*u, g*u, k*u, o*u}
// VF06 = acc + {d*v, h*v, l*v, p*v}

MUL ACC, VF01, VF05[x]
MADD ACC, VF02, VF05[y]
MADD ACC, VF03, VF05[z]
MADD VF06, VF04, VF05[w]

Only 4 instructions! (compared to 16 or 28 instructions)

SIMD Example Continued

Matrix/Matrix multiplication is 4 dot products
Compare:
16 (=4 x 4) instructions
to
64 (=4 x 16) assuming MADD
or
112 (=4 x 28) instructions, without MADD!

Vector Units (VU0 & VU1)

Source: http://playstation2-linux.com/projects/p2lsd

Vector Units (VU0 & VU1)

VU0 – 4k data, 4k code
• Can be used in “Micro” or “Macro” mode
VU1 – 16k data, 16k code
• Micro mode only
• Connected directly to the GS
• Can do clipping & a few more instructions

Vector Unit = Vertex Shader?

Absolutely not.

The vector units do much, much more than
a vertex shader!

At the most trivial level, a vertex shader (not
sure about the absolute latest) cannot
create geometry.

What are they for?

One approach
VU0: Animation, Physics, AI, Skinning, etc…
VU1: Transformation, clipping & lighting

Another approach
VU0: Transformation, lighting
VU1: Transformation, lighting
* I don’t think anyone ever uses it this way

Graphics Synthesizer (GS)

Source: http://playstation2-linux.com/projects/p2lsd

Graphics Synthesizer

The “graphics chip” of the PS2
Not a very smart chip!
… but a very fast one.

Supports:
• Alpha blending
• Z Testing
• Bi- and tri-linear filtering

Graphics Synthesizer (GS)

Per-second statistics:
2.4 gigapixel fill rate
150 million points
50 million sprites
75 million untextured triangles
37.5 million textured triangles

I/O Processor (IOP)

Source: http://playstation2-linux.com/projects/p2lsd

I/O Processor (IOP)

Built from a PlayStation!
Gives backward compatibility
IOP used to access the Sound Processing

Unit (SPU2), controllers, CD & Hard Drive,
USB and FireWire port

IOP has 2MB memory
SPU has 2MB memory

Image Processing Unit (IPU)

Source: http://playstation2-linux.com/projects/p2lsd

Image Processing Unit (IPU)

MPEG 2 decoding support
At a high level, hand over encoded data,

retrieve results when they’re ready

The Job of a PS2 Programmer

Keep the system busy!
Have all processors running
• Double buffer everything
• Reduce waiting on others

Stream textures for next model
while processing current model

• Reduce data dependency stalls
• Pair instructions where possible

The Job of a PS2 Programmer

Avoid stalling on memory access
• Use the scratch pad
Avoid cache misses as much as possible
• Use the scratch pad
• Code & Data locality
• Avoid C++ overdose
• Prefetch data into cache

Source: http://www.research.scea.com/

Source: http://www.research.scea.com/

Frame Rate Drop

Source: http://www.research.scea.com/

Let’s draw a triangle

Ultimate goal is to prepare a “GIF Packet”:

GIF tag
Description of data to follow

Register data (already transformed & lit)
XYZ Coordinates
RGB Colors
UV or ST Texture coordinates

Sample GIF Packet (Parsed)

Let’s draw a triangle

Step 1 (EE): Do animation to update object,
camera & light matrices

Step 2 (EE): Cull objects that cannot be
seen

Step 3 (EE): Send camera, lights and
untransformed objects to VU, texture to
GS

So far, just like OpenGL, right?

Let’s draw a triangle

Step 4 (VU1): Transform vertices, do “trivial
clipping”

Step 5 (VU1): Non-trivial clipping – chop up
triangles. More triangles or triangle fan.

Step 6 (VU1): Compute lighting
Step 7 (VU1): Assemble GIF packet
Step 8 (VU1): Kick data to GS

Case Study 1: Shadows

Stencil Buffer

Stencil Buffer is sort of like the Z-Buffer:
Additional bit plane(s) that can determine

whether a pixel is drawn or not.

OpenGL Stencil Buffer Support
glutInitDisplayString("stencil>=1 rgb depth double");
glutCreateWindow("stencil buffer example");

…
glClearStencil(0); // clear to zero
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT |

GL_STENCIL_BUFFER_BIT);
…
glEnable(GL_STENCIL_TEST);

glDisable(GL_STENCIL_TEST);

Tests: never, always, =, !=, <, >, <=, >= some value

Source: http://developer.nvidia.com

OpenGL Stencil Buffer Support
To use the stencil buffer:
glStencilFunc(GL_EQUAL, // comparison function

0x1, // reference value
0xff); // comparison mask

To update the stencil buffer:
glStencilOp(GL_KEEP, // stencil fail

GL_DECR, // stencil pass, depth fail
GL_INCR); // stencil pass, depth pass

glStencilMask(0xff); // Which bits to update

Source: http://developer.nvidia.com

Case Study 2:
Normal Mapping

What if we could read in normals from a
texture?

Source: http://playstation2-linux.com/download/p2lsd/ps2_normalmapping.pdf

Normal Mapping

Source: http://playstation2-linux.com/download/p2lsd/ps2_normalmapping.pdf

Normal Mapping

These normals don’t need to be simple
interpolations of the vertices – we can add
the appearance of detail

With a “pixel shader,” it’s fairly easy – at
each pixel, read in the normal from the
map

Can it be done without one?

Normal Mapping

High-level Overview:

Instead of a texture being color values, let it
be normal values.

Instead of vertex colors being colors of
edges, let them be light direction from that
edge.

Normal Mapping

Now when we render the scene we get:
v.r*t.r, v.g*t.g, v.b*t.b

(v=vertex color, t=texture color)
But since v=l, and t=n…

We just need to add the r, g, b for n dot l !
Just multiply the resulting colors by the light

intensity, I

Bump Mapping

Take a height-field
Compute its gradient
This gives you “deltas” to add to your current

normals

Bump Mapping

Top images from: http://www.3dxperience.com/html/resources.html

The future?

Case Study 3:
Simple Motion Detection

Image A={ra
1, ga

1, ba
1, ra

2, ga
2, ba

2, …}
Image B={rb

1, gb
1, bb

1, rb
2, gb

2, bb
2, …}

PixelChangeBitmask={C1, C2, …}
Where Ci=changed(ra

i, rb
i) ||

changed(ga
i, gb

i) ||
changed(ba

i, bb
i)

Simple Motion Detection

Trivial_Changed(a, b) {
bigger=max(a,b);
smaller=min(a,b);

return a-b > delta;
// or

return a-b > delta && a * fraction >= b;
}

	Introduction to GameProgramming
	Introduction to Game Programming
	What is a Game?
	Designing a Game
	Designing a Game
	Designing a Game
	The Game Engine
	The Game Logic
	Magic Formula
	Game Programming is hard
	To most, this is the PS2
	To technophiles, this is a PS2
	To us, this is the PS2
	Emotion Engine Core “EE Core”
	Emotion Engine Core “EE Core”
	SISD InstructionsSingle Instruction, Single Data
	MIMDMultiple Instruction, Multiple Data
	SIMD Single Instruction, Multiple Data
	Which is Better?
	Sneak Peek
	PS2 SIMD Support
	SISD Example:Vector/Matrix Multiplication
	SIMD Example:Vector/Matrix Multiplication
	SIMD Example:Vector/Matrix Multiplication
	SIMD Example Continued
	Vector Units (VU0 & VU1)
	Vector Units (VU0 & VU1)
	Vector Unit = Vertex Shader?
	What are they for?
	Graphics Synthesizer (GS)
	Graphics Synthesizer
	Graphics Synthesizer (GS)
	I/O Processor (IOP)
	I/O Processor (IOP)
	Image Processing Unit (IPU)
	Image Processing Unit (IPU)
	The Job of a PS2 Programmer
	The Job of a PS2 Programmer
	Frame Rate Drop
	Let’s draw a triangle
	Sample GIF Packet (Parsed)
	Let’s draw a triangle
	Let’s draw a triangle
	Case Study 1: Shadows
	Stencil Buffer
	OpenGL Stencil Buffer Support
	OpenGL Stencil Buffer Support
	Case Study 2:Normal Mapping
	Normal Mapping
	Normal Mapping
	Normal Mapping
	Normal Mapping
	Bump Mapping
	Bump Mapping
	The future?
	Case Study 3:Simple Motion Detection
	Simple Motion Detection

