
Animation

Computer Animation

- Models have parameters
 - Polygon positions, normals, spline control points, joint angles, camera parameters, lights, color
 - n parameters define an n-dimensional state space
 - Values of n parameters = point in state space
- Animation defined by path through state space
 - To produce animation:
 - » 1. start at beginning of state space path
 - » 2. set the parameters of your model
 - » 3. render the image
 - » 4. move to next point along state space path, repeat 2
 - Path usually defined by a set of motion curves
 - » one for each parameter
- Every animation technique reduces to specifying the state space trajectory—the state space will change with the technique

Overview

- Animation techniques
 - -Traditional animation (frame-by-frame)
 - -Keyframing
 - -Procedural
 - -Behavioral
 - –Performance-based (motion capture)
 - –Physically based (dynamics)
- Modeling issues
 - -Rotations
 - Inverse kinematics

Traditional Cel Animation

- Film runs at 24 frames per second (fps)
 - That's 1440 pictures to draw per minute
 - 1800 fpm for video (30fps)
- Productions issues:
 - Need to stay organized for efficiency and cost reasons
 - Need to render the frames systematically (render farms)
- Artistic issues:
 - How to create the desired look and mood while conveying story?
 - Artistic vision has to be converted into a sequence of still frames
 - Not enough to get the stills right--must look right at full speed
 - » Hard to "see" the motion given the stills
 - » Hard to "see" the motion at the wrong frame rate

Gertie

Attack of the Note Sheep

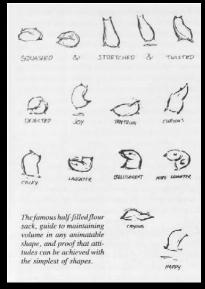
Traditional Animation: The Process

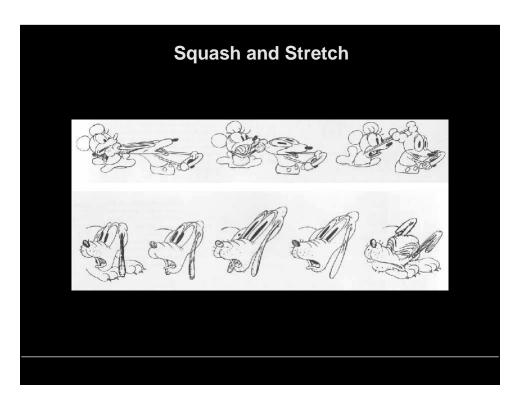
- Story board
 - -Sequence of drawings with descriptions
 - -Story-based description
- Key Frames
 - -Draw a few important frames as line drawings
 - » For example, beginning of stride, end of stride
- Inbetweens
 - -Draw the rest of the frames
- Painting
 - -Redraw onto acetate Cels, color them in

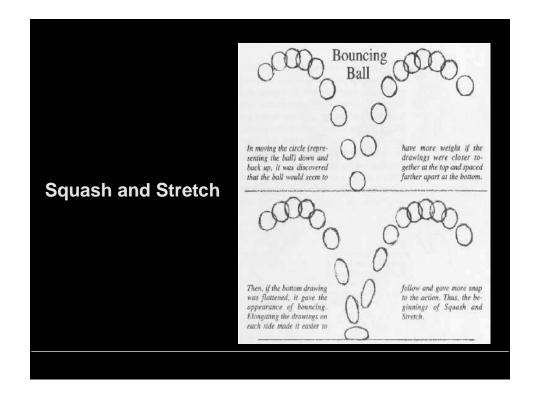
Layered Motion

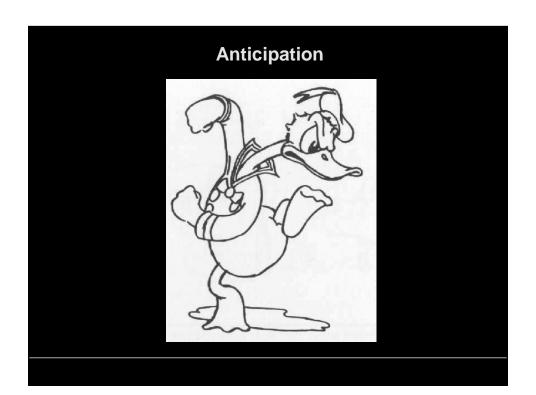
- It's often useful to have multiple layers of animation
 - How to make an object move in front of a background?
 - Use one layer for background, one for object
 - Can have multiple animators working simultaneously on different layers, avoid re-drawing and flickering
- Transparent acetate allows multiple layers
 - Draw each separately
 - Stack them together on a copy stand
 - Transfer onto film by taking a photograph of the stack

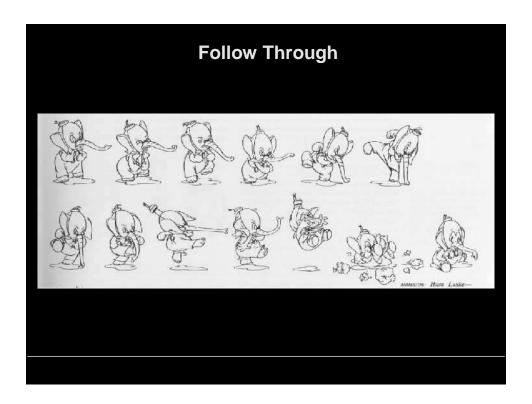
Story Boarding (from "A Bug's Life")

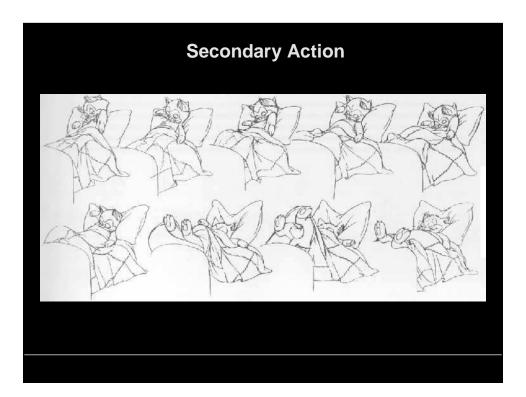





Principles of Traditional Animation [Lasseter, SIGGRAPH 1987]


- Stylistic conventions followed by Disney's animators and others (but this is not the only interesting style, of course)
- From experience built up over many years
 - Squash and stretch -- use distortions to convey flexibility
 - Timing -- speed conveys mass, personality
 - Anticipation -- prepare the audience for an action
 - Followthrough and overlapping action -- continuity with next action
 - Slow in and out -- speed of transitions conveys subtleties
 - Arcs -- motion is usually curved
 - Exaggeration -- emphasize emotional content
 - Secondary Action -- motion occurring as a consequence
 - Appeal -- audience must enjoy watching it


Principles of Traditional Animation



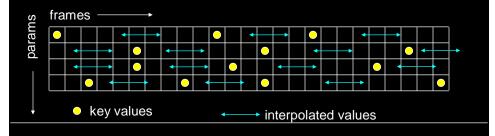
Computer Assisted Animation

- Computerized Cel painting
 - Digitize the line drawing, color it using seed fill
 - Eliminates cel painters (low rung on totem pole)
 - Widely used in production (little hand painting any more)
 - e.g. Lion King
- Cartoon Inbetweening
 - Automatically interpolate between two drawings to produce inbetweens (a la morphing)
 - Hard to get right
 - » inbetweens often don't look natural
 - » what are the parameters to interpolate? Not clear...
 - » not used very often

Hunger

3D Computer Animation

- Generate the images by rendering a 3-D model
- Vary the parameters to produce the animation
- Brute force
 - Manually set the parameters for each and every frame
 - For an *n* parameter model: 1440*n* values per minute
- Traditional keyframing
 - Lead animators draw the important frames
 - Underpaid drones draw the inbetweens
- Computer keyframing
 - Lead animators create the important frames with 3-D computer models
 - Unpaid computers draw the inbetweens
 - The dominant production method

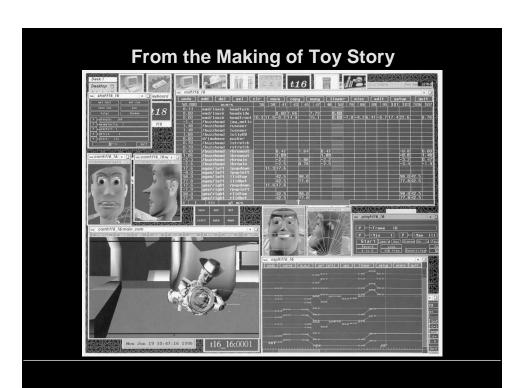

Pixar

Interpolation

- Hard to interpolate hand-drawn keyframes
 - Computers don't help much
- The situation is different in 3D computer animation:
 - Each keyframe is a defined by a bunch of parameters (state)
 - Sequence of keyframes = points in high-dimensional state space
- Computer inbetweening interpolates these points
- How? You guessed it: splines

Keyframing Basics

- Despite the name, there aren't really keyframes, per se.
- For each variable, specify its value at the "important" frames. Not all variables need agree about which frames are important.
- Hence, key values rather than key frames
- Create path for each parameter by interpolating key values

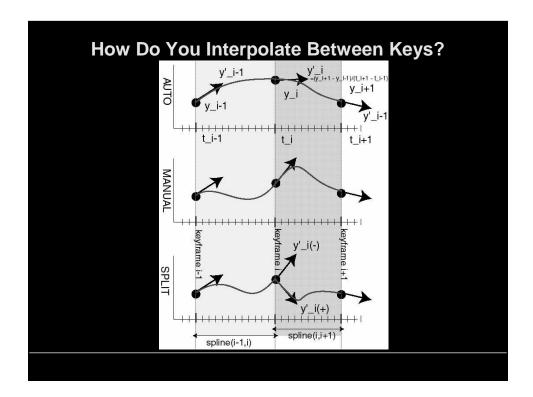


Keyframing: Issues

- What should the key values be?
- When should the key values occur?
- How can the key values be specified?
- How are the key values interpolated?
- What kinds of BAD THINGS can occur from interpolation?
 - Invalid configurations (pass through objects)
 - Unnatural motions (painful twists/bends)
 - Jerky motion

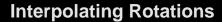
Keyframe Animation: Production Issues

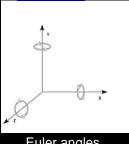
- How to learn the craft
 - -apprentice to an animator
 - -practice, practice, practice
 - -Read Cinefex, ...
- Pixar starts with animators, teaches them computers and starts with computer folks and teaches them some art

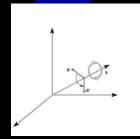


How Do You Interpolate Between Keys?

- Splines: non-uniform, C1 is pretty good
- Velocity control is needed at the keyframes
- Classic example a ball bouncing under gravity
 - zero vertical velocity at start
 - high downward velocity just before impact
 - lower upward velocity after
 - motion produced by fitting a smooth spline looks unnatural
- What kind of spline might we want to use?

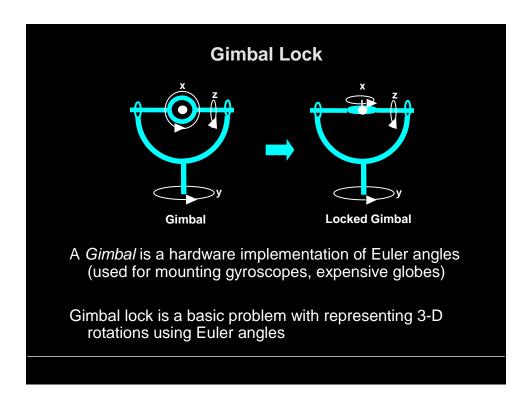



• What kind of continuity do we want?


Problems with Interpolation

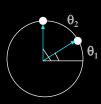
- Splines don't always do the right thing
- Classic problems
 - Important constraints may break between keyframes
 - » feet sink through the floor
 - » hands pass through walls
 - -3D rotations
 - » Euler angles don't always interpolate in a natural way
- Classic solutions:
 - -More keyframes!
 - -Quaternions help fix rotation problems

Euler angles


Axis-angle

Q: What kind of compound rotation do you get by successively turning about each of the 3 axes at a constant rate?

A: Not the one you want


Euler Angles

- Good for single-axis rotations
- Awkward for other rotations

Quaternion Rotation

• We can think of rotations as lying on an n-D unit sphere

1-angle (θ) rotation (unit circle)

2-angle $(\theta-\phi)$ rotation (unit sphere)

- Interpolating rotations means moving on n-D sphere
 - Can encode position on sphere by unit vector
 - SLERP: Spherical Linear Interpolation
 - » take shortest path between two points on unit sphere
 - How about 3-angle rotations?

Quaternion Rotation

- A quaternion is a 4-D unit vector q = [x y z w]
 - It lies on the unit hypersphere x²+y²+z²+w²=1
- For rotation about (unit) axis v by angle θ
 - vector part ($\sin \theta/2$) v

= [x y z]

- scalar part $\cos \theta/2$

= w

The rotation matrix corresponding to a quaternion is

 $1-2y^2-2z^2$ 2xy+2wz 2xz-2wy 2xy-2wz $1-2x^2-2z^2$ 2yz+2wx

2xz+2wy 2yz-2wx

 $1-2x^2-2y^2$

- Quaternion Interpolation
 - represent rotation as quaternion
 - SLERP: linearly interpolate quaternions q1 and q2 and normalize
 - convert to rotation matrix to apply the rotation
- Only a unit quaternion encodes a rotation normalize by dividing by $\sqrt{X^2+Y^2+Z^2+W^2}$

Where did this come from?

$$q = W + X\hat{i} + Y\hat{j} + Z\hat{k}$$
$$\hat{i}^2 = \hat{j}^2 = \hat{k}^2 = -1$$
$$\hat{i}\hat{j} = \hat{k} = -\hat{j}\hat{i}$$

- W, X, Y, and Z are real.
- Consider a normalized quaternion q and a nonnormalized quaternion v

$$v = a\hat{i} + b\hat{j} + c\hat{k}$$
$$q^{-1} = W - X\hat{i} - Y\hat{j} - Z\hat{k}$$

Where did this come from? (2)

• Write out $v' = qvq^{-1}$ and expand it like a matrix equation for the i, j, and k terms.

$$\begin{pmatrix} a' \\ b' \\ c' \end{pmatrix} = \begin{pmatrix} 1 - 2(Y^2 + Z^2) & 2(XY - ZW) & 2(XZ + YW) \\ 2(XY + ZW) & 1 - 2(X^2 + Z^2) & 2(YZ - XW) \\ 2(XZ - YW) & 2(YZ + XW) & 1 - 2(X^2 + Y^2) \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

Where did this come from??? (3)

- This is the same rotation matrix we saw earlier
- It's orthogonal and has determinant 1, so it must be a pure rotation.
- It leaves the vector (X,Y,Z)^T invariant, so it must be around that axis.
- To find the angle, consider a rotation purely about X and use the half-angle formulas from trig.
- Note that it's double-valued: two quaternions give the same rotation.
- The final result: a rotation about (X,Y,Z)^T by an angle q can be represented as the quaternion:

$$q = \cos\frac{\theta}{2} + (X\hat{i} + Y\hat{j} + Z\hat{k})\sin\frac{\theta}{2}$$

Quaternion Interpolation

- · Interpolating quaternions produces better results than Euler angles
- A quaternion is a point on the 4-D unit sphere
 - interpolating rotations requires a unit quaternion at each step another point on the 4-D sphere
 - move with constant angular velocity along the great circle between the two points
 - Spherical Linear intERPolation (SLERPing)
- Any rotation is given by 2 quaternions, so pick the shortest SLERP
- To interpolate more than two points:
 - Use higher-order quaternion interpolation, e.g., cubic
 - Solve a non-linear variational constrained optimization (numerically)
- Further information, see papers by Ken Shoemake
 - » SIGGRAPH '85 Proc. (Computer Graphics, V. 19, No. 3, P.245)
 - » Quaternions tutorial, http://www.cs.wisc.edu/graphics/Courses/cs-838-2002/Papers/quatut.pdf

"SLERP: Spherical Linear Interpolation"

• Algebraic form:

Slerp(
$$q_0, q_1; t$$
) = $(q_1 q_0^{-1})^t q_0$

- » Useful form for analysis.
- » NOTE: $q^t = [\cos(t\theta), \mathbf{v} \sin(t\theta)]$ for $q = [\cos(\theta), \mathbf{v} \sin(\theta)]$
- Implementation form:

Slerp
$$(q_0, q_1; t) = q_0 \frac{\sin \Omega(1-t)}{\sin \Omega} + q_1 \frac{\sin \Omega t}{\sin \Omega}$$
 where
$$\cos \Omega = q_0 \cdot q_1$$

• Problem: Slerp may not be smooth enough

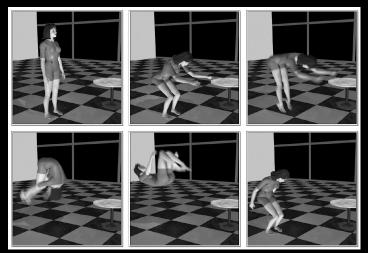
Kinematics & Inverse Kinematics

- We need help in positioning joints
- Kinematics
 - -gives motions in terms of joint angles, velocities, and positions
 - used by most keyframing and procedural animation systems
- *Inverse* kinematics
 - -determine joint angles from positions
 - -e.g. "calculate the shoulder, elbow, and wrist rotation parameters in order to put the hand here"
 - -better for interaction
 - sometimes underdetermined (i.e. many combinations of joint angles to achieve a given end result)
 - -used a lot in robotics

Procedural Animation

- Define the motion using formulas
 - -Hand-crafted
 - -Physically based
- The animator must be a programmer
- Keyframing starts to become procedural as expressions are added
- At some level of complexity it becomes easier/more efficient than keyframing.

Procedural Animation



Battle of Helm's Deep, LOTR

Dynamics

- Generate motion by specifying mass and force, apply physical laws (e.g., Newton's laws)
- Simulates physical phenomena
 - -gravity
 - -momentum (inertia)
 - -collisions
 - -friction
 - -fluid flow (drag, turbulence, ...)
 - -deformation
 - -fracture

Active Simulations

Wayne Wooten and Jessica Hodgins

Performance-based Animation (Motion Capture)

- Record the animation from live action
 - simplest method rotoscope (trace) over video of real motions
- Real time input devices
 - electronic puppeteering
- Motion capture
 - track motion of reference pointsbody or face or hands
 - magnetic
 - optical
 - exoskeletons
 - convert to joint angles (not always straightforward)
 - use these angles to drive an articulated 3-D model
 - These motion paths can be warped

Koko

