
Lecture 16: Data Structures – Review Questions

• How do we do intersection testing between a ray and a bounding box? Note that
we do not need to find the point of intersection, but we only need to determine
whether or not the ray intersects the bounding box.

• How do we do intersection testing between a ray and a bounding sphere? Again,
we only need to know whether the ray intersects the sphere. We do not need to
find the specific intersection point.

• Describe a technique for constructing a bounding box hierarchy. What data
structure will you use to store this hierarchy?

• Explain in detail how to use this bounding box hierarchy to identify the
intersection between a ray and the closest object in the environment. Your
algorithm should, of course, be more efficient (in the general case) than the brute
force process of checking the ray for intersection with all objects.

• How would you update the bounding box hierarchy if there are moving objects in
the environment? Is there a way to do this efficiently, i.e., without rebuilding the
entire tree?

• One alternative to a bounding box hierarchy is to use a BSP tree with axis-aligned
splitting planes. Describe how to construct such a tree. Describe how to perform
ray-object intersection using this data structure. Your ray-object intersection
algorithm should check regions from front to back order, so that the search for an
intersection may be halted when an intersection point is found.

• In the BSP scenario, what problem is introduced when the splitting planes
intersect some of the objects? Assume that you do not want to use the plane to
split the objects (e.g., splitting a sphere into two parts may not be desirable for ray
tracing). How can you solve or work around this problem?

• Give a data structure for storing vertices, edges, and faces that makes it easy to
perform queries such as ‘ find all faces adjacent to a vertex’ and ‘ find all edges
attached to a face.’ The winged-edge data structure is one common choice.

