
1

Transformations
Vectors, bases, and matrices
Translation, rotation, scaling
Homogeneous coordinates
3D transformations
3D rotations
Transforming normals

Vectors, bases, and matrices
Translation, rotation, scaling
Homogeneous coordinates
3D transformations
3D rotations
Transforming normals

Uses of Transformations
• Modeling transformations

– build complex models by positioning simple components
– transform from object coordinates to world coordinates

• Viewing transformations
– placing the virtual camera in the world
– i.e. specifying transformation from world coordinates to camera

coordinates

• Animation
– vary transformations over time to create motion

WORLD

OBJECT
CAMERA

2

Rigid Body Transformations

Rotation angle and line
about which to rotate

Non-rigid Body Transformations

3

General Transformations

Q = T(P) for points
V = R(u) for vectors

Background Math: Linear Combinations of Vectors

• Given two vectors, A and B, walk any distance you like
in the A direction, then walk any distance you like in the
B direction

• The set of all the places (vectors) you can get to this
way is the set of linear combinations of A and B.

• A set of vectors is said to be linearly independent if none
of them is a linear combination of the others.

V = v1A + v2B, (v1,v2) � �
A

B

V

4

Bases

• A basis is a linearly independent set of vectors whose
combinations will get you anywhere within a space, i.e.
span the space

• n vectors are required to span an n-dimensional space

• If the basis vectors are normalized and mutually
orthogonal the basis is orthonormal

• There are lots of possible bases for a given vector space;
there’s nothing special about a particular basis—but our
favorite is probably one of these.

y
x

z

z
x

y

Vectors Represented in a Basis

• Every vector has a unique representation in a
given basis
–the multiples of the basis vectors are the vector’s

components or coordinates
–changing the basis changes the components, but not

the vector

–V = v1E1 + v2E2 + … vnEn

The vectors {E1, E2, …, En} are the basis
The scalars (v1, v2, …, vn) are the components of V

with respect to that basis

5

Rotation and Translation of a Basis

,

,

,

Linear and Affine Maps
• A function (or map, or transformation) F is linear if

for all vectors A and B, and all scalars k.
• Any linear map is completely specified by its effect on a set of basis

vectors:

• A function F is affine if it is linear plus a translation
– Thus the 1-D transformation y=mx+b is not linear, but affine
– Similarly for a translation and rotation of a coordinate system
– Affine transformations preserve lines

F(A+B) = F(A) + F(B)
 F(kA) = k F(A)

V = v1E1 + v2E2 +v3E3
F(V) = F(v1E1 + v2E2 +v3E3)

= F(v1E1) + F(v2E2) + F(v3E3)
= v1F(E1) + v2F(E2) +v3F(E3)

A

BA+B

6

Transforming a Vector
• The coordinates of the transformed basis vector (in

terms of the original basis vectors):

• The transformed general vector V becomes:

and its coordinates (still w.r.t. E) are

or just The matrix multiplication formula!

F(E1) = f11E1 + f21E2 +f31E3
F(E2) = f12E1 + f22E2 +f32E3
F(E3) = f13E1 + f23E2 +f33E3

F(V) = v1F(E1) + v2F(E2) +v3F(E3)
= (f11E1 + f21E2 +f31E3)v1 + (f12E1 + f22E2 +f32E3)v2 + (f13E1 + f23E2 +f33E3)v3
= (f11v1 + f12v2 + f13v3)E1 + (f21v1 + f22v2 + f23v3)E2 + (f31v1 + f32v2 + f33v3)E3

v1 = (f11v1 + f12v2 + f13v3)
v2 = (f21v1 + f22v2 + f23v3)
v3 = (f31v1 + f32v2 + f33v3)

vi = fij6j vj

Matrices to the Rescue

• An nxn matrix F represents a linear function in n
dimensions

– i-th column shows what the function does to the corresponding
basis vector

• Transformation = linear combination of columns of F
– first component of the input vector scales first column of the

matrix
– accumulate into output vector
– repeat for each column and component

• Usually compute it a different way:
– dot row i with input vector to get component i of output vector

^ `v1

v2

v3
^ ` =

f11 f12 f13

f21 f22 f23

f31 f32 f33

^ `v1
v2
v3

vi = fij6j vj

7

Basic 2D Transformations
Translate

Scale

Rotate

Parameters t, s, and T� are the “control knobs”

x’ x� tx

y’ y� ty

x’

y’

ª�
¬�«�

º�
¼�»�

x

y

ª�
¬�«�
º�
¼�»��

tx

ty

ª�
¬�«�

º�
¼�»� x’ x� t

x’ sxx

y’ syy
x’

y’

ª�
¬�«�

º�
¼�»�

sx 0

0 sy

ª�
¬�«�

º�
¼�»�

x

y

ª�
¬�«�
º�
¼�»� x’ Sx

x’ x cosT � y sinT

y’ x sinT � y cosT
x’

y’

ª�
¬�«�
º�
¼�»�

cosT � sinT
sinT cosT

ª�
¬�«�

º�
¼�»�

x

y

ª�
¬�«�
º�
¼�»� x’ Rx

• Build compound transformations by stringing basic ones together, e.g.

– “translate p to the origin, rotate, then translate back”
can also be described as a rotation about p

• Any sequence of linear transformations can be collapsed into a single
matrix formed by multiplying the individual matrices together

• This is good: can apply a whole sequence of transformation at once

Compound Transformations

Translate to the origin, rotate, then translate back.

0 1 2 3

vi = fij6j � �gjk6k vk

= 6k � �fijgjk6j vk

mij = fijgjk6j

8

Homogeneous Coordinates
•Translation is not linear--how to represent as a matrix?
•Trick: add extra coordinate to each vector

•This extra coordinate is the homogeneous coordinate, or w
•When extra coordinate is used, vector is said to be
represented in homogeneous coordinates
•Drop extra coordinate after transformation (project to w=1)
•We call these matrices Homogeneous Transformations

x’

y’

1

ª�

¬�
«�
«�

º�

¼�
»�
»�

1 0 tx

0 1 ty

0 0 1

ª�

¬�
«�
«�

º�

¼�
»�
»�

x

y

1

ª�

¬�
«�
«�
º�

¼�
»�
»�

W!? Where did that come from?
• Practical answer:

–W is a clever algebraic trick.
–Don’t worry about it too much. The w value will be 1.0

for the time being.
–If w is not 1.0, divide all coordinates by w to make it

so.

• Clever Academic Answer:
–(x,y,w) coordinates form a 3D projective space.
–All nonzero scalar multiples of (x,y,1) form an

equivalence class of points that project to the same
2D Cartesian point (x,y).

–For 3-D graphics, the 4D projective space point
(x,y,z,w) maps to the 3D point (x,y,z) in the same way.

9

Homogeneous 2D Transformations

The basic 2D transformations become
Translate: Scale: Rotate:

Any affine transformation can be expressed as a
combination of these.
We can combine homogeneous transforms by
multiplication.
Now any sequence of translate/scale/rotate operations
can be collapsed into a single homogeneous matrix!

1 0 tx

0 1 ty

0 0 1

ª�

¬�
«�
«�

º�

¼�
»�
»�

sx 0 0

0 sy 0

0 0 1

ª�

¬�
«�
«�

º�

¼�
»�
»�

cosT �sinT 0
sinT cosT 0

0 0 1

ª�
¬�
«�
«�

º�
¼�
»�
»�

3D Transformations

• 3-D transformations are very similar to the 2-D case
• Homogeneous coordinate transforms require 4x4

matrices
• Scaling and translation matrices are simply:

• Rotation is a bit more complicated in 3-D
– left- or right-handedness of coordinate system affects direction of

rotation
– different rotation axes

S =

s0 0 0 0
0 s1 0 0
0 0 s2 0
0 0 0 1

T =

1 0 0 t0

0 1 0 t1

0 0 1 t2

0 0 0 1

10

• Right-handed vs. left-handed

• Z-axis determined from X and Y by cross product: Z=X×Y

• Cross product follows right-hand rule in a right-handed coordinate
system, and left-hand rule in left-handed system.

3-D Coordinate Systems

(out of page) X

Y

Z
X

Y

Z
(into page)

»»
»
¼

º

««
«
¬

ª

�
�
�

 u
1221

3113

2332

YXYX

YXYX

YXYX

YXZ

Sequences of Transformations

M

M

M

x x x x x x x x x x

x’ x’ x’ x’ x’ x’ x’ x’ x’

P
A

R
A

M
E

T
E

R
S

M
A

T
R

IC
E

S

UNTRANSFORMED
POINTS

TRANSFORMED
POINTS

• Often the same
transformations are applied to
many points

• Calculation time for the
matrices and combination is
negligible compared to that of
transforming the points

• Reduce the sequence to a
single matrix, then transform

11

Collapsing a Chain of Matrices.

• Consider the composite function ABCD, i.e. p’ = ABCDp
• Matrix multiplication isn’t commutative - the order is important
• But matrix multiplication is associative, so can calculate from right

to left or left to right: ABCD = (((AB) C) D) = (A (B (CD))).
• Iteratively replace either the leading or the trailing pair by its

product

• Postmultiply: left-to-right
(reverse of function
application.)

• Premultiply: right-to-left
(same as function
application.)

• Postmultiply: left-to-right
(reverse of function
application.)

• Premultiply: right-to-left
(same as function
application.)

M m D

M m CM

M m BM

M m AM

M m A

M m MB

M m MC

M m MD

or both give the
same result.

Premultiply Postmultiply

Implementing Transformation Sequences
• Calculate the matrices and cumulatively multiply them into a global

Current Transformation Matrix
• Postmultiplication is more convenient in hierarchies -- multiplication

is computed in the opposite order of function application
• The calculation of the transformation matrix, M,

– initialize M to the identity
– in reverse order compute a basic transformation matrix, T
– post-multiply T into the global matrix M, M m MT

• Example - to rotate by T around [x,y]:

• Remember the last T calculated is the first applied to the points
– calculate the matrices in reverse order

glMatrixMode(GL_MODELVIEW)/* transform objects in scene */
glLoadIdentity() /* initialize M to identity mat.*/
glTranslatef(x, y, 0) /* LAST: undo translation */
glRotatef(theta,0,0,1) /* rotate about z axis */
glTranslatef(-x, -y, 0) /* FIRST: move [x,y] to origin. */

12

Column Vector Convention

• The convention in the previous slides
–transformation is by matrix times vector, Mv
–textbook uses this convention, 90% of the world too

• The composite function A(B(C(D(x)))) is the matrix-
vector product ABCDx

x’
y’
1

ª�
¬�
«�
«�

º�
¼�
»�
»�

m11 m12 m13

m21 m22 m23

m31 m32 m33

ª�

¬�
«�
«�

º�

¼�
»�
»�

x
y
1

ª�
¬�
«�
«�
º�
¼�
»�
»�

Beware: Row Vector Convention
• The transpose is also possible

• How does this change things?
–all transformation matrices must be transposed
– ABCDx transposed is xTDTCTBTAT

–pre- and post-multiply are reversed
• OpenGL uses transposed matrices!

–You only notice this if you pass matrices as arguments to
OpenGL subroutines, e.g. glLoadMatrix.

–Most routines take only scalars or vectors as arguments.

x’ y’ 1> @ x y 1> @ m11 m21 m31

m12 m22 m32

m13 m23 m33

ª�

¬�
«�
«�

º�

¼�
»�
»�

13

What is a Normal?

Indication of outward facing direction
for lighting and shading

Order of definition of
vertices in OpenGL

Right hand rule

Note: GL conventions…
glFrontFace(GL_CCW)
glFrontFace(GL_CW)

Transforming Normals

• It’s tempting to think of normal vectors as being like
porcupine quills, so they would transform like points

• Alas, it’s not so, consider the 2D affine transformation
below.

• We need a different rule to transform normals.

14

Normals Do Not Transform Like Points

• If M is a 4x4 transformation matrix, then
–To transform points, use p’=Mp, where p=[x y z 1]T

–So to transform normals, n’=Mn, where n=[a b c 1]T
right?

–Wrong! This formula doesn’t work for general M.

Normals Transform Like Planes

> @ > @

plane transform to

point transform to

 spacedtransforme in plane on point for equation

 spaceoriginal in plane on point for equation

TTT

T

T

T

T

TTT

da,b,c

zyxdcba

dczbyax

nMMnn

Mpp

pn

MpMn

pMMn

Ipn

np

pnpnpn

11

1

1

)(

))((

)(

0

:magic some do answer, thefind To

? transform should how ed, transformis If

offset. theis normal, plane theis)(

1 , where,0

 writtenbecan 0 planeA

��

�

�

 c
 c

cc

 �
 ���

15

Transforming Normals - Cases

• For general transformations M that include perspective,
use full formula (M inverse transpose), use the right d
–d matters, because parallel planes do not transform to

parallel planes in this case
• For affine transformations, d is irrelevant, can use d=0.
• For rotations only, M inverse transpose = M, can

transform normals and points with same formula.

Euler Angles for 3-D Rotations

• Euler angles - 3 rotations about each coordinate axis,
however

– rotations are order-dependent, and there are no conventions about
the order to use

– angle interpolation for animation generates bizarre motions

• Widely used anyway, because they're “simple”
• Coordinate axis rotations (right-handed coordinates):

Rx =

1 0 0 0
0 cos

�
–sin

�
0

0 sin
�

cos
�

0

0 0 0 1

Ry =

cos
�

0 sin
�

0
0 1 0 0

–sin
�

0 cos
�

0

0 0 0 1

Rz =

cos
�

–sin
�

0 0
sin

�
cos

�
0 0

0 0 1 0

0 0 0 1

16

Euler Angles for 3-D Rotations

Axis-angle rotation

unit.) is (assumes

plane normalin by Rotatesin,cos

09by flip plane, normal ontoProject matrix. Dual

plane normal s’ ontoProject

 ontoProject

sin)(cos

*

*

v

v

vvvI

vvv

vvvIvvR

DDD

DD

q
�

���

T

T

TT

The matrix R rotates by D about axis (unit) v:

17

The Dual Matrix

v*
0 � z y

z 0 �x

�y x 0

ª�

¬�
«�«�«�

º�

¼�
»�»�»�

•If v=[x,y,z] is a vector, the skew-symmetric matrix

is the dual matrix of v
•Cross-product as a matrix multiply: v*a = v x a

•helps define rotation about an arbitrary axis

•angular velocity and rotation matrix time derivatives

•Geometric interpretation of v*a
•project a onto the plane normal to v

•rotate a by 90° about v

•resulting vector is perpendicular to v and a

Quaternions

• Complex numbers can represent 2-D rotations
• Quaternions, a generalization of complex numbers, can

represent 3-D rotations
• Quaternions represent 3-D rotations with 4 numbers:

– 3 give the rotation axis - magnitude is sin D/2

– 1 gives cos D/2

– unit magnitude - points on a 4-D unit sphere

• Advantages:
– no trigonometry required

– multiplying quaternions gives another rotation (quaternion)

– rotation matrices can be calculated from them

– direct rotation (with no matrix)

– no favored direction or axis

18

Spatial Deformations

• Linear transformations
–take any point (x,y,z) to a new point (x’,y’,z’)
–Non-rigid transformations such as shear are

“deformations”

• Linear transformations aren’t the only types!
• A transformation is any rule for computing (x’,y’,z’) as a

function of (x,y,z).

• Nonlinear transformations would enrich our modeling
capabilities.

• Start with a simple object and deform it into a more
complex one.

Bendy Twisties
• Method:

–define a few simple shapes
–define a few simple non-linear transformations

(deformations e.g. bend/twist, taper)
–make complex objects by applying a sequence of

deformations to the basic objects

• Problem:
–a sequence of non-linear transformations can not be

collapsed to a single function
–every point must be transformed by every

transformation

19

Bendy Twisties

Example: Z-Taper
• Method:

–align the simple object with the z-axis
–apply the non-linear taper (scaling) function to alter its

size as some function of the z-position

• Example:
–applying a linear taper to a cylinder generates a cone

x’ k1z � k2� �x
y’ k1z � k2� �y
z’ z

x’ f (z)x

y’ f (z)y

z’ z

“Linear” taper: General taper (f is any
function you want):

20

Example: Z-twist

• Method:
–align simple object with the z-axis
–rotate the object about the z-axis as a function of z

• Define angle, T, to be an arbitrary function f (z)
• Rotate the points at z by T = f (z)

“Linear” version:

T f (z)

x’ x cos(T) � y sin(T)

y’ x sin(T) � y cos(T)

z’ z

f (z) kz

Extensions

• Incorporating deformations into a modeling system
– How to handle UI issues?

• “Free-form deformations” for arbitrary warping of space
– Use a 3-D lattice of control points to define Bezier cubics:

(x’,y’,z’) are piecewise cubic functions of (x,y,z)

– Widely used in commercial animation systems

• Physically based deformations
– Based on material properties

– Reminiscent of finite element analysis

