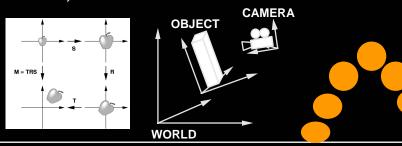
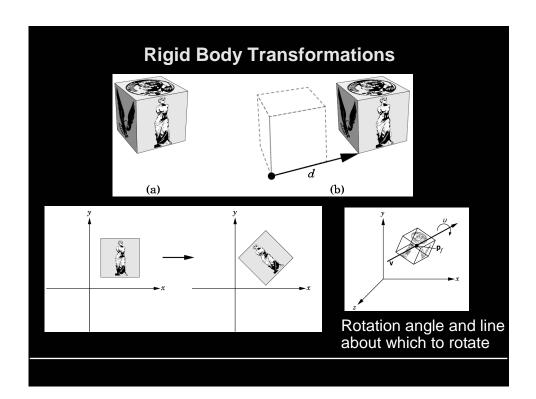
Transformations

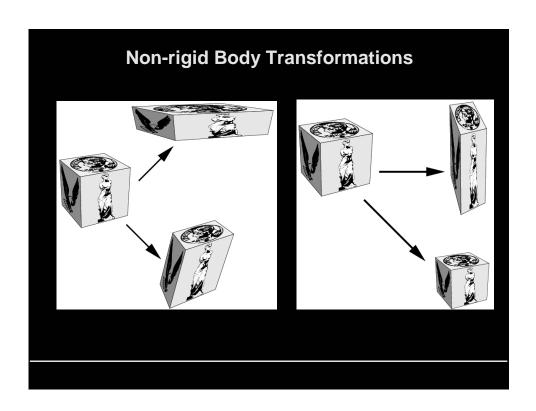
Vectors, bases, and matrices Translation, rotation, scaling Homogeneous coordinates 3D transformations 3D rotations Transforming normals

Uses of Transformations

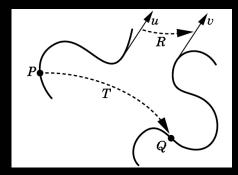
- Modeling transformations
 - build complex models by positioning simple components
 - transform from object coordinates to world coordinates
- Viewing transformations
 - placing the virtual camera in the world
 - i.e. specifying transformation from world coordinates to camera coordinates
- Animation
 - vary transformations over time to create motion







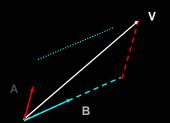
General Transformations



Q = T(P) for points V = R(u) for vectors

Background Math: Linear Combinations of Vectors

- Given two vectors, A and B, walk any distance you like in the A direction, then walk any distance you like in the B direction
- The set of all the places (vectors) you can get to this way is the set of *linear combinations* of A and B.
- A set of vectors is said to be *linearly independent* if none of them is a linear combination of the others.



 $V = v_1 A + v_2 B, (v_1, v_2) \in \Re$

Bases

- A basis is a linearly independent set of vectors whose combinations will get you anywhere within a space, i.e. span the space
- *n* vectors are required to span an *n*-dimensional space
- If the basis vectors are normalized and mutually orthogonal the basis is orthonormal
- There are lots of possible bases for a given vector space; there's nothing special about a particular basis—but our favorite is probably one of these.

Vectors Represented in a Basis

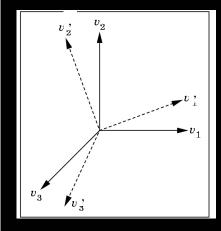
- Every vector has a unique representation in a given basis
 - the multiples of the basis vectors are the vector's components or coordinates
 - changing the basis changes the components, but not the vector

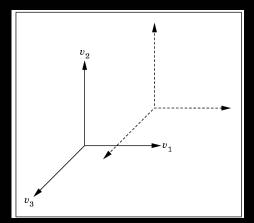
$$-V = V_1 E_1 + V_2 E_2 + ... V_n E_n$$

The vectors $\{E_1, E_2, ..., E_n\}$ are the *basis*

The scalars $(v_1, v_2, ..., v_n)$ are the *components* of V with respect to that basis

Rotation and Translation of a Basis





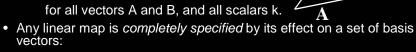
B

Linear and Affine Maps

• A function (or map, or transformation) F is linear if

$$\begin{aligned} F(A+B) &= F(A) + F(B) \\ F(kA) &= k F(A) \end{aligned}$$

for all vectors A and B, and all scalars k.



$$\begin{aligned} \textbf{V} &= v_1 \textbf{E}_1 + v_2 \textbf{E}_2 + v_3 \textbf{E}_3 \\ \textbf{F}(\textbf{V}) &= \textbf{F}(v_1 \textbf{E}_1 + v_2 \textbf{E}_2 + v_3 \textbf{E}_3) \\ &= \textbf{F}(v_1 \textbf{E}_1) + \textbf{F}(v_2 \textbf{E}_2) + \textbf{F}(v_3 \textbf{E}_3) \\ &= v_1 \textbf{F}(\textbf{E}_1) + v_2 \textbf{F}(\textbf{E}_2) + v_3 \textbf{F}(\textbf{E}_3) \end{aligned}$$

- A function F is *affine* if it is linear plus a translation
 - Thus the 1-D transformation *y=mx+b* is not linear, but affine
 - Similarly for a translation and rotation of a coordinate system
 - Affine transformations preserve lines

Transforming a Vector

• The coordinates of the transformed basis vector (in terms of the original basis vectors):

$$\begin{aligned} & \mathbf{F}(\mathsf{E}_1) = \mathsf{f}_{11} \mathbf{E}_1 + \mathsf{f}_{21} \mathbf{E}_2 + \mathsf{f}_{31} \mathbf{E}_3 \\ & \mathbf{F}(\mathsf{E}_2) = \mathsf{f}_{12} \mathbf{E}_1 + \mathsf{f}_{22} \mathbf{E}_2 + \mathsf{f}_{32} \mathbf{E}_3 \\ & \mathbf{F}(\mathsf{E}_3) = \mathsf{f}_{13} \mathbf{E}_1 + \mathsf{f}_{23} \mathbf{E}_2 + \mathsf{f}_{33} \mathbf{E}_3 \end{aligned}$$

• The transformed general vector V becomes:

$$\begin{split} \textbf{F}(\textbf{V}) &= v_1 \textbf{F}(\textbf{E}_1) + v_2 \textbf{F}(\textbf{E}_2) + v_3 \textbf{F}(\textbf{E}_3) \\ &= (f_{11}\textbf{E}_1 + f_{21}\textbf{E}_2 + f_{31}\textbf{E}_3)v_1 + (f_{12}\textbf{E}_1 + f_{22}\textbf{E}_2 + f_{32}\textbf{E}_3)v_2 + (f_{13}\textbf{E}_1 + f_{23}\textbf{E}_2 + f_{33}\textbf{E}_3)v_3 \\ &= (f_{11}\textbf{v}_1 + f_{12}\textbf{v}_2 + f_{13}\textbf{v}_3)\textbf{E}_1 + (f_{21}\textbf{v}_1 + f_{22}\textbf{v}_2 + f_{23}\textbf{v}_3)\textbf{E}_2 + (f_{31}\textbf{v}_1 + f_{32}\textbf{v}_2 + f_{33}\textbf{v}_3)\textbf{E}_3 \\ \text{and its } \textit{coordinates} \text{ (still w.r.t. E) are} \\ & \hat{\textbf{v}}_1 = (f_{11}\textbf{v}_1 + f_{12}\textbf{v}_2 + f_{13}\textbf{v}_3) \\ & \hat{\textbf{v}}_2 = (f_{21}\textbf{v}_1 + f_{22}\textbf{v}_2 + f_{23}\textbf{v}_3) \\ & \hat{\textbf{v}}_3 = (f_{31}\textbf{v}_1 + f_{32}\textbf{v}_2 + f_{33}\textbf{v}_3) \end{split}$$

or just $v_i = \sum_i f_{ij} v_i$ The matrix multiplication formula!

Matrices to the Rescue

- An nxn matrix F represents a linear function in n dimensions
 - i-th column shows what the function does to the corresponding basis vector
- Transformation = linear combination of columns of F
 - first component of the input vector scales first column of the matrix
 - accumulate into output vector
 - repeat for each column and component
- Usually compute it a different way:
 - dot row i with input vector to get component i of output vector

$$\left\{ \begin{array}{c} \hat{V}_{1} \\ \hat{V}_{2} \\ \hat{V}_{3} \end{array} \right\} \; = \; \left\{ \begin{array}{c} f_{11} \; f_{12} \; f_{13} \\ f_{21} \; f_{22} \; f_{23} \\ f_{31} \; f_{32} \; f_{33} \end{array} \right\} \; \left\{ \begin{array}{c} V_{1} \\ V_{2} \\ V_{3} \end{array} \right\} \qquad \qquad V_{i} \; = \; \sum_{j} \; f_{ij} \, V_{j}$$

Basic 2D Transformations

Translate

$$x' = x + t_{x}$$

$$y' = y + t_{y}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} t_{x} \\ t_{y} \end{bmatrix}$$

$$x' = x + t$$

Scale

$$\begin{array}{ccc}
x' = s_x x \\
y' = s_y y
\end{array} \qquad
\begin{bmatrix}
x' \\
y'
\end{bmatrix} =
\begin{bmatrix}
s_x & 0 \\
0 & s_y
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix}$$

$$\mathbf{x'} = \mathbf{S}\mathbf{x}$$

Rotate

$$x' = x \cos \theta - y \sin \theta$$

$$y' = x \sin \theta + y \cos \theta$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$x' = \mathbf{R}\mathbf{x}$$

Parameters t, s, and θ are the "control knobs"

Compound Transformations

- Build compound transformations by stringing basic ones together, e.g.
 - "translate p to the origin, rotate, then translate back"
 can also be described as a rotation about p
- Any sequence of linear transformations can be collapsed into a single matrix formed by multiplying the individual matrices together

$$\begin{aligned} v_i &= \sum_i \ f_{ij} \left(\sum_k \ g_{jk} v_k \right) \\ &= \sum_k \left(\sum_i \ f_{ij} g_{jk} \right) \! J_k \\ m_{ij} &= \sum_i \ f_{ij} g_{jk} \end{aligned}$$

• This is good: can apply a whole sequence of transformation at once

Translate to the origin, rotate, then translate back.

Homogeneous Coordinates

- •Translation is not linear--how to represent as a matrix?
- •Trick: add extra coordinate to each vector

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- •This extra coordinate is the *homogeneous* coordinate, or *w*
- •When extra coordinate is used, vector is said to be represented in *homogeneous coordinates*
- •Drop extra coordinate after transformation (project to w=1)
- •We call these matrices *Homogeneous* Transformations

W!? Where did that come from?

- Practical answer:
 - W is a clever algebraic trick.
 - Don't worry about it too much. The w value will be 1.0 for the time being.
 - -If w is not 1.0, divide all coordinates by w to make it so.
- Clever Academic Answer:
 - -(x,y,w) coordinates form a 3D *projective space*.
 - All nonzero scalar multiples of (x,y,1) form an equivalence class of points that project to the same 2D Cartesian point (x,y).
 - For 3-D graphics, the 4D projective space point (x,y,z,w) maps to the 3D point (x,y,z) in the same way.

Homogeneous 2D Transformations

The basic 2D transformations become

Translate:

Scale:

Rotate:

 $\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$\begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Any affine transformation can be expressed as a combination of these.

We can combine homogeneous transforms by multiplication.

Now *any* sequence of translate/scale/rotate operations can be collapsed into a single homogeneous matrix!

3D Transformations

- 3-D transformations are very similar to the 2-D case
- Homogeneous coordinate transforms require 4x4 matrices
- Scaling and translation matrices are simply:

$$\mathbf{S} = \begin{bmatrix} \mathbf{s}_0 & 0 & 0 & 0 \\ 0 & \mathbf{s}_1 & 0 & 0 \\ 0 & 0 & \mathbf{s}_2 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{T} = \begin{bmatrix} 1 & 0 & 0 & \mathbf{t}_0 \\ 0 & 1 & 0 & \mathbf{t}_1 \\ 0 & 0 & 1 & \mathbf{t}_2 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Rotation is a bit more complicated in 3-D
 - left- or right-handedness of coordinate system affects direction of rotation

9

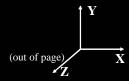
- different rotation axes

3-D Coordinate Systems

· Right-handed

vs.

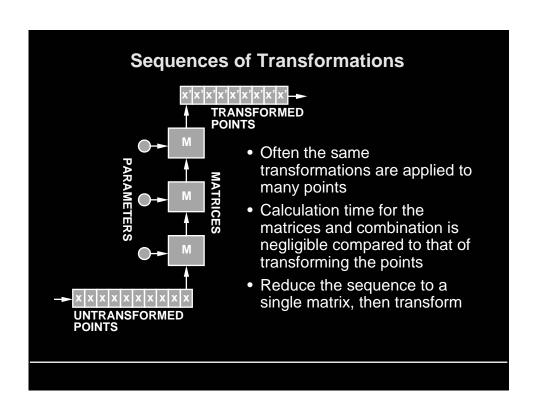
left-handed



• Z-axis determined from X and Y by cross product: Z=X×Y

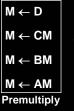
$$\mathbf{Z} = \mathbf{X} \times \mathbf{Y} = \begin{bmatrix} X_{2}Y_{3} - X_{3}Y_{2} \\ X_{3}Y_{1} - X_{1}Y_{3} \\ X_{1}Y_{2} - X_{2}Y_{1} \end{bmatrix}$$

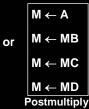
• Cross product follows right-hand rule in a right-handed coordinate system, and left-hand rule in left-handed system.



Collapsing a Chain of Matrices.

- Consider the composite function ABCD, i.e. p' = ABCDp
- Matrix multiplication isn't commutative the order is important
- But matrix multiplication is associative, so can calculate from right to left or left to right: ABCD = (((AB) C) D) = (A (B (CD))).
- Iteratively replace either the leading or the trailing pair by its product





both give the same result.

- Postmultiply: left-to-right (reverse of function application.)
- Premultiply: right-to-left (same as function application.)

Implementing Transformation Sequences

- Calculate the matrices and cumulatively multiply them into a global Current Transformation Matrix
- Postmultiplication is more convenient in hierarchies -- multiplication is computed in the opposite order of function application
- The calculation of the transformation matrix, M,
 - initialize M to the identity
 - in reverse order compute a basic transformation matrix, T
 - post-multiply T into the global matrix M, M \leftarrow MT
- Example to rotate by θ around [x,y]:

- Remember the last T calculated is the first applied to the points
 - calculate the matrices in reverse order

Column Vector Convention

- The convention in the previous slides
 - -transformation is by matrix times vector, Mv
 - -textbook uses this convention, 90% of the world too

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} m_{11} & m_{12} & m_{13} \\ m_{21} & m_{22} & m_{23} \\ m_{31} & m_{32} & m_{33} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

 The composite function A(B(C(D(x)))) is the matrixvector product ABCDx

Beware: Row Vector Convention

• The transpose is also possible

$$\begin{bmatrix} x' & y' & 1 \end{bmatrix} = \begin{bmatrix} x & y & 1 \end{bmatrix} \begin{bmatrix} m_{11} & m_{21} & m_{31} \\ m_{12} & m_{22} & m_{32} \\ m_{13} & m_{23} & m_{33} \end{bmatrix}$$

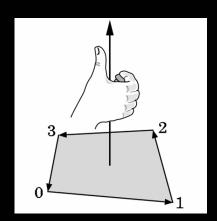
- How does this change things?
 - -all transformation matrices must be transposed
 - ABCDx transposed is x^TD^TC^TB^TA^T
 - pre- and post-multiply are reversed
- · OpenGL uses transposed matrices!
 - You only notice this if you pass matrices as arguments to OpenGL subroutines, e.g. glLoadMatrix.
 - Most routines take only scalars or vectors as arguments.

What is a Normal? Indication of outward facing direction for lighting and shading

Order of definition of vertices in OpenGL

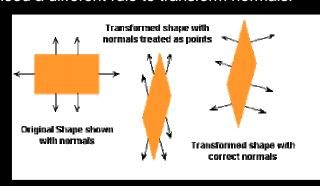
Right hand rule

Note: GL conventions...
glFrontFace(GL_CCW)
glFrontFace(GL_CW)



Transforming Normals

- It's tempting to think of normal vectors as being like porcupine quills, so they would transform like points
- Alas, it's not so, consider the 2D affine transformation below.
- We need a different rule to transform normals.



Normals Do Not Transform Like Points

- If M is a 4x4 transformation matrix, then
 - -To transform points, use p'=Mp, where $p=[x \ y \ z \ 1]^T$
 - So to transform normals, n'=Mn, where $n=[a\ b\ c\ 1]^T$ right?
 - -Wrong! This formula doesn't work for general M.

Normals Transform Like Planes

A plane ax + by + cz + d = 0 can be written

 $\mathbf{n} \cdot \mathbf{p} = \mathbf{n}^T \mathbf{p} = 0$, where $\mathbf{n} = \begin{bmatrix} a & b & c & d \end{bmatrix}^T$, $\mathbf{p} = \begin{bmatrix} x & y & z & 1 \end{bmatrix}^T$ (a,b,c) is the plane normal, d is the offset.

If \mathbf{p} is transformed, how should \mathbf{n} transform?

To find the answer, do some magic :

 $0 = \mathbf{n}^T \mathbf{I} \mathbf{p}$ equation for point on plane in original space

$$= \mathbf{n}^T (\mathbf{M}^{-1} \mathbf{M}) \mathbf{p}$$

$$= (\mathbf{n}^T \mathbf{M}^{-1})(\mathbf{M}\mathbf{p})$$

 $= \mathbf{n}'^T \mathbf{p}'$ equation for point on plane in transformed space

 $\mathbf{p}' = \mathbf{M}\mathbf{p}$ to transform point

$$\mathbf{n}' = (\mathbf{n}^T \mathbf{M}^{-1})^T = \mathbf{M}^{-1} \mathbf{n}$$
 to transform plane

Transforming Normals - Cases

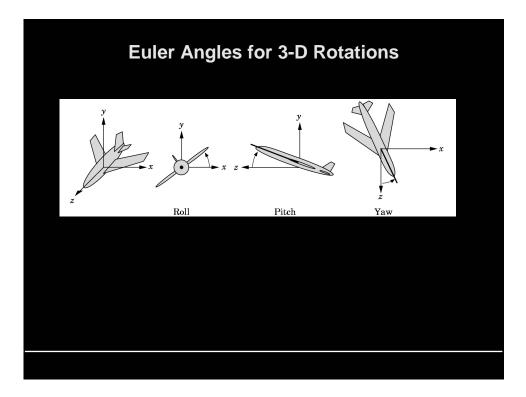
- For general transformations M that include perspective, use full formula (M inverse transpose), use the right d
 - –d matters, because parallel planes do not transform to parallel planes in this case
- For affine transformations, d is irrelevant, can use d=0.
- For rotations only, M inverse transpose = M, can transform normals and points with same formula.

Euler Angles for 3-D Rotations

- Euler angles 3 rotations about each coordinate axis, however
 - rotations are order-dependent, and there are no conventions about the order to use
 - angle interpolation for animation generates bizarre motions
- Widely used anyway, because they're "simple"
- Coordinate axis rotations (right-handed coordinates):

$$\mathbf{R}_{\mathbf{x}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta - \sin\theta & 0 \\ 0 & \sin\theta & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{R}_{\mathbf{y}} = \begin{bmatrix} \cos\theta & 0 & \sin\theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin\theta & 0 & \cos\theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{R_z} = \begin{bmatrix} \mathbf{cos}\theta & -\mathbf{sin}\theta & 0 & 0 \\ \mathbf{sin}\theta & \mathbf{cos}\theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



Axis-angle rotation

The matrix R rotates by $\boldsymbol{\alpha}$ about axis (unit) v:

 $\mathbf{R} = \mathbf{v}\mathbf{v}^T + \cos\alpha(\mathbf{I} - \mathbf{v}\mathbf{v}^T) + \sin\alpha\mathbf{v}^*$

 $\mathbf{v}\mathbf{v}^T$ Project onto \mathbf{v}

 $\mathbf{I} - \mathbf{v}\mathbf{v}^T$ Project onto \mathbf{v} 's normal plane

v* Dual matrix. Project onto normal plane, flip by 90°

 $\cos \alpha$, $\sin \alpha$ Rotate by α in normal plane (assumes **v** is unit.)

The *Dual* Matrix

•If v=[x,y,z] is a vector, the skew-symmetric matrix

$$\mathbf{v}^* = \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$

is the dual matrix of v

- •Cross-product as a matrix multiply: v*a = v x a
 - •helps define rotation about an arbitrary axis
 - •angular velocity and rotation matrix time derivatives
- Geometric interpretation of v*a
 - •project a onto the plane normal to v
 - •rotate a by 90° about v
 - •resulting vector is perpendicular to v and a

Quaternions

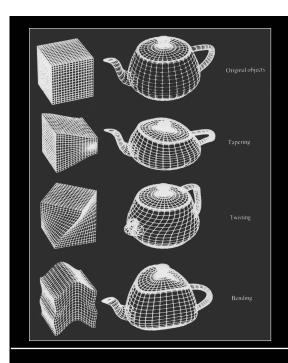
- Complex numbers can represent 2-D rotations
- Quaternions, a generalization of complex numbers, can represent 3-D rotations
- Quaternions represent 3-D rotations with 4 numbers:
 - -3 give the rotation axis magnitude is $\sin \alpha/2$
 - -1 gives $\cos \alpha/2$
 - unit magnitude points on a 4-D unit sphere
- Advantages:
 - no trigonometry required
 - multiplying quaternions gives another rotation (quaternion)
 - rotation matrices can be calculated from them
 - direct rotation (with no matrix)
 - no favored direction or axis

Spatial Deformations

- Linear transformations
 - -take any point (x,y,z) to a new point (x',y',z')
 - –Non-rigid transformations such as shear are "deformations"
- Linear transformations aren't the only types!
- A transformation is any rule for computing (x',y',z') as a function of (x,y,z).
- Nonlinear transformations would enrich our modeling capabilities.
- Start with a simple object and deform it into a more complex one.

Bendy Twisties

- Method:
 - -define a few simple shapes
 - -define a few simple non-linear transformations (deformations e.g. bend/twist, taper)
 - make complex objects by applying a sequence of deformations to the basic objects
- Problem:
 - a sequence of non-linear transformations can not be collapsed to a single function
 - –every point must be transformed by every transformation



Bendy Twisties

Example: Z-Taper

- Method:
 - -align the simple object with the z-axis
 - apply the non-linear taper (scaling) function to alter its size as some function of the z-position
- Example:
 - -applying a linear taper to a cylinder generates a cone

"Linear" taper:

General taper (f is any function you want):

$$x' = (k_1 z + k_2)x$$

$$y' = (k_1 z + k_2)y$$

$$z' = z$$

$$x' = f(z)x$$

$$y' = f(z)y$$

$$z' = z$$

Example: Z-twist

- Method:
 - -align simple object with the z-axis
 - -rotate the object about the z-axis as a function of z
- Define angle, θ , to be an arbitrary function f(z)
- Rotate the points at z by $\theta = f(z)$

"Linear" version: f(z) = kz $\theta = f(z)$ $x' = x\cos(\theta) - y\sin(\theta)$ $y' = x\sin(\theta) + y\cos(\theta)$ z' = z

Extensions

- Incorporating deformations into a modeling system
 - How to handle UI issues?
- "Free-form deformations" for arbitrary warping of space
 - Use a 3-D lattice of control points to define Bezier cubics:
 - (x',y',z') are piecewise cubic functions of (x,y,z)
 - Widely used in commercial animation systems
- Physically based deformations
 - Based on material properties
 - Reminiscent of finite element analysis

