Transformations

- Vectors, bases, and matrices
- Translation, rotation, scaling
- Homogeneous coordinates
- 3D transformations
- 3D rotations
- Transforming normals

Uses of Transformations

- **Modeling transformations**
 - build complex models by positioning simple components
 - transform from object coordinates to world coordinates
- **Viewing transformations**
 - placing the virtual camera in the world
 - i.e. specifying transformation from world coordinates to camera coordinates
- **Animation**
 - vary transformations over time to create motion
Rigid Body Transformations

Rotation angle and line about which to rotate

Non-rigid Body Transformations
General Transformations

\[Q = T(P) \] for points
\[V = R(u) \] for vectors

Background Math: Linear Combinations of Vectors

• Given two vectors, A and B, walk any distance you like in the A direction, then walk any distance you like in the B direction
• The set of all the places (vectors) you can get to this way is the set of linear combinations of A and B.
• A set of vectors is said to be linearly independent if none of them is a linear combination of the others.

\[V = v_1A + v_2B, \ (v_1, v_2) \in \mathbb{R} \]
Bases

• A basis is a linearly independent set of vectors whose combinations will get you anywhere within a space, i.e. span the space

• n vectors are required to span an n-dimensional space

• If the basis vectors are normalized and mutually orthogonal the basis is orthonormal

• There are lots of possible bases for a given vector space; there’s nothing special about a particular basis—but our favorite is probably one of these.

Vectors Represented in a Basis

• Every vector has a unique representation in a given basis
 – the multiples of the basis vectors are the vector’s components or coordinates
 – changing the basis changes the components, but not the vector
 – $V = v_1E_1 + v_2E_2 + \ldots + v_nE_n$

The vectors $\{E_1, E_2, \ldots, E_n\}$ are the basis
The scalars (v_1, v_2, \ldots, v_n) are the components of V with respect to that basis
Rotation and Translation of a Basis

A function (or map, or transformation) F is **linear** if

\[F(A+B) = F(A) + F(B) \]

\[F(kA) = kF(A) \]

for all vectors A and B, and all scalars k.

Any linear map is **completely specified** by its effect on a set of basis vectors:

\[
V = v_1E_1 + v_2E_2 + v_3E_3 \\
F(V) = F(v_1E_1 + v_2E_2 + v_3E_3) \\
= F(v_1E_1) + F(v_2E_2) + F(v_3E_3) \\
= v_1F(E_1) + v_2F(E_2) + v_3F(E_3)
\]

A function F is **affine** if it is linear plus a translation

- Thus the 1-D transformation $y = mx + b$ is not linear, but affine
- Similarly for a translation and rotation of a coordinate system
- Affine transformations preserve lines
Transforming a Vector

- The coordinates of the transformed basis vector (in terms of the original basis vectors):

\[F(E_1) = f_{11}E_1 + f_{21}E_2 + f_{31}E_3 \]
\[F(E_2) = f_{12}E_1 + f_{22}E_2 + f_{32}E_3 \]
\[F(E_3) = f_{13}E_1 + f_{23}E_2 + f_{33}E_3 \]

- The transformed general vector \(V \) becomes:

\[F(V) = \sum v_i F(E_i) = (f_{11}v_1 + f_{12}v_2 + f_{13}v_3)E_1 + (f_{21}v_1 + f_{22}v_2 + f_{23}v_3)E_2 + (f_{31}v_1 + f_{32}v_2 + f_{33}v_3)E_3 \]

and its coordinates (still w.r.t. \(E \)) are

\[v_1 = (f_{11}v_1 + f_{12}v_2 + f_{13}v_3) \]
\[v_2 = (f_{21}v_1 + f_{22}v_2 + f_{23}v_3) \]
\[v_3 = (f_{31}v_1 + f_{32}v_2 + f_{33}v_3) \]

or just \(v = \sum f_{ij}v_j \) The matrix multiplication formula!

Matrices to the Rescue

- An \(n \times n \) matrix \(F \) represents a linear function in \(n \) dimensions
 - \(i \)-th column shows what the function does to the corresponding basis vector
- Transformation = linear combination of columns of \(F \)
 - first component of the input vector scales first column of the matrix
 - accumulate into output vector
 - repeat for each column and component
- Usually compute it a different way:
 - dot row \(i \) with input vector to get component \(i \) of output vector

\[\begin{align*}
\{ v_1 \} &= \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \{ v_1 \} \\
\{ v_2 \} &= \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \{ v_2 \} \\
\{ v_3 \} &= \begin{bmatrix} f_{11} & f_{12} & f_{13} \\ f_{21} & f_{22} & f_{23} \\ f_{31} & f_{32} & f_{33} \end{bmatrix} \{ v_3 \}
\end{align*} \]

\[v_i = \sum f_{ij}v_j \]
Basic 2D Transformations

Translate

\[x' = x + t_x \]
\[y' = y + t_y \]

Scale

\[x' = s_x x \]
\[y' = s_y y \]

Rotate

\[x' = x \cos \theta - y \sin \theta \]
\[y' = x \sin \theta + y \cos \theta \]

Parameters \(t, s, \) and \(\theta \) are the “control knobs”

Compound Transformations

- **Build compound transformations** by stringing basic ones together, e.g.
 - “translate \(p \) to the origin, rotate, then translate back”

 can also be described as a rotation about \(p \)

- Any sequence of linear transformations can be collapsed into a single matrix formed by multiplying the individual matrices together

\[
\begin{align*}
 v_i &= \sum_j f_{ij} \left(\sum_k g_{jk} v_k \right) \\
 m_{ij} &= \sum_k f_{ij} g_{jk}
\end{align*}
\]

- This is good: can apply a whole sequence of transformation at once

Translate to the origin, rotate, then translate back.
Homogeneous Coordinates

• Translation is not linear—how to represent as a matrix?
• Trick: add extra coordinate to each vector

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & t_x \\
 0 & 1 & t_y \\
 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

• This extra coordinate is the *homogeneous* coordinate, or \(w \)
• When extra coordinate is used, vector is said to be represented in *homogeneous coordinates*
• Drop extra coordinate after transformation (project to \(w=1 \))
• We call these matrices *Homogeneous Transformations*

W!? Where did that come from?

• Practical answer:
 – W is a clever algebraic trick.
 – Don’t worry about it too much. The \(w \) value will be 1.0 for the time being.
 – If \(w \) is not 1.0, divide all coordinates by \(w \) to make it so.

• Clever Academic Answer:
 – \((x,y,w)\) coordinates form a 3D *projective space*.
 – All nonzero scalar multiples of \((x,y,1)\) form an equivalence class of points that project to the same 2D Cartesian point \((x,y)\).
 – For 3-D graphics, the 4D projective space point \((x,y,z,w)\) maps to the 3D point \((x,y,z)\) in the same way.
Homogeneous 2D Transformations

The basic 2D transformations become

\[
\begin{align*}
\text{Translate:} & & \text{Scale:} & & \text{Rotate:} \\
\begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} & & \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} & & \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}
\end{align*}
\]

Any affine transformation can be expressed as a combination of these.
We can combine homogeneous transforms by multiplication.
Now any sequence of translate/scale/rotate operations can be collapsed into a single homogeneous matrix!

3D Transformations

- 3-D transformations are very similar to the 2-D case
- Homogeneous coordinate transforms require 4x4 matrices
- Scaling and translation matrices are simply:
 \[
 S = \begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}
 \quad T = \begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}
 \]
- Rotation is a bit more complicated in 3-D
 - left- or right-handedness of coordinate system affects direction of rotation
 - different rotation axes
3-D Coordinate Systems

- Right-handed vs. left-handed

- Z-axis determined from X and Y by cross product: \(Z = X \times Y \)

\[
Z = X \times Y = \begin{bmatrix}
X_2Y_3 - X_3Y_2 \\
X_3Y_1 - X_1Y_3 \\
X_1Y_2 - X_2Y_1
\end{bmatrix}
\]

- Cross product follows right-hand rule in a right-handed coordinate system, and left-hand rule in left-handed system.

Sequences of Transformations

- Often the same transformations are applied to many points

- Calculation time for the matrices and combination is negligible compared to that of transforming the points

- Reduce the sequence to a single matrix, then transform
Collapsing a Chain of Matrices.

- Consider the composite function ABCD, i.e. \(p' = ABCDp \)
- Matrix multiplication isn’t commutative - the order is important
- But matrix multiplication is associative, so can calculate from right to left or left to right: \(ABCD = (((AB) C) D) = (A (B (CD))). \)
- Iteratively replace either the leading or the trailing pair by its product

<table>
<thead>
<tr>
<th>Premultiply</th>
<th>Postmultiply</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ← D</td>
<td>M ← A</td>
</tr>
<tr>
<td>M ← CM</td>
<td>M ← MB</td>
</tr>
<tr>
<td>M ← BM</td>
<td>M ← MC</td>
</tr>
<tr>
<td>M ← AM</td>
<td>M ← MD</td>
</tr>
</tbody>
</table>

both give the same result.

- **Postmultiply:** left-to-right (reverse of function application.)
- **Premultiply:** right-to-left (same as function application.)

Implementing Transformation Sequences

- Calculate the matrices and cumulatively multiply them into a global Current Transformation Matrix
- Postmultiplication is more convenient in hierarchies -- multiplication is computed in the opposite order of function application
- The calculation of the transformation matrix, M,
 - initialize M to the identity
 - in reverse order compute a basic transformation matrix, T
 - post-multiply T into the global matrix M, \(M ← MT \)
- Example - to rotate by \(\theta \) around \([x, y]\):

```c
glMatrixMode(GL_MODELVIEW) /* transform objects in scene */
gLoadIdentity() /* initialize M to identity mat */
glTranslatef(x, y, 0) /* LAST: undo translation */
glRotatef(theta, 0, 0, 1) /* rotate about z axis */
glTranslatef(-x, -y, 0) /* FIRST: move [x,y] to origin */
```

- Remember the last T calculated is the first applied to the points
 - calculate the matrices in reverse order
Column Vector Convention

- The convention in the previous slides
 - transformation is by matrix times vector, \(Mv \)
 - textbook uses this convention, 90% of the world too

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- The composite function \(A(B(C(D(x)))) \) is the matrix-vector product \(ABCDx \)

Beware: Row Vector Convention

- The transpose is also possible

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix} =
\begin{bmatrix}
 m_{11} & m_{12} & m_{13} \\
 m_{21} & m_{22} & m_{23} \\
 m_{31} & m_{32} & m_{33}
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- How does this change things?
 - all transformation matrices must be transposed
 - \(ABCDx \) transposed is \(x'^T C^T B^T A^T \)
 - pre- and post-multiply are reversed
- OpenGL uses transposed matrices!
 - You only notice this if you pass matrices as arguments to OpenGL subroutines, e.g. \(\text{glLoadMatrix} \).
 - Most routines take only scalars or vectors as arguments.
What is a Normal?
Indication of outward facing direction for lighting and shading

Order of definition of vertices in OpenGL

Right hand rule

Note: GL conventions...
glFrontFace(GL_CCW)
glFrontFace(GL_CW)

Transforming Normals

- It’s tempting to think of normal vectors as being like porcupine quills, so they would transform like points
- Alas, it’s not so, consider the 2D affine transformation below.
- We need a different rule to transform normals.
Normals Do Not Transform Like Points

- If M is a 4x4 transformation matrix, then
 - To transform points, use $p' = Mp$, where $p = [x \ y \ z \ 1]^T$
 - So to transform normals, $n' = Mn$, where $n = [a \ b \ c \ 1]^T$
 - Right? Wrong! This formula doesn’t work for general M.

Normals Transform Like Planes

A plane $ax + by + cz + d = 0$ can be written

$$n \cdot p = n^T p = 0, \quad \text{where} \quad n = [a \ b \ c \ d]^T, \quad p = [x \ y \ z \ 1]^T$$

(a, b, c) is the plane normal, d is the offset.

If p is transformed, how should n transform?

To find the answer, do some magic:

$$0 = n^T Ip \quad \text{equation for point on plane in original space}$$

$$= n^T (M^{-1}M)p$$

$$= (n^T M^{-1})(Mp)$$

$$= n'^T p' \quad \text{equation for point on plane in transformed space}$$

$p' = Mp$ to transform point

$n' = (n'M^{-1})' = M^{-T}n$ to transform plane
Transforming Normals - Cases

- For general transformations M that include perspective, use full formula (M inverse transpose), use the right d
 $-d$ matters, because parallel planes do not transform to parallel planes in this case
- For affine transformations, d is irrelevant, can use $d=0$.
- For rotations only, M inverse transpose $= M$, can transform normals and points with same formula.

Euler Angles for 3-D Rotations

- Euler angles - 3 rotations about each coordinate axis, however
 - rotations are order-dependent, and there are no conventions about the order to use
 - angle interpolation for animation generates bizarre motions
- Widely used anyway, because they're “simple”
- Coordinate axis rotations (right-handed coordinates):

 $$R_x = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta & 0 \\ 0 & \sin \theta & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $$R_y = \begin{bmatrix} \cos \theta & 0 & \sin \theta & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta & 0 & \cos \theta & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 $$R_z = \begin{bmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Euler Angles for 3-D Rotations

The matrix R rotates by α about axis (unit) v:

$$R = vv^T + \cos \alpha (I - vv^T) + \sin \alpha v^*$$

- vv^T Project onto v
- $I - vv^T$ Project onto v’s normal plane
- v^* Dual matrix. Project onto normal plane, flip by 90°
- $\cos \alpha, \sin \alpha$ Rotate by α in normal plane
 (assumes v is unit.)
The Dual Matrix

• If \(\mathbf{v} = [x, y, z] \) is a vector, the skew-symmetric matrix

\[
\mathbf{v}^* = \begin{bmatrix}
0 & -z & y \\
z & 0 & -x \\
-y & x & 0
\end{bmatrix}
\]

is the dual matrix of \(\mathbf{v} \)

• Cross-product as a matrix multiply: \(\mathbf{v}^* \mathbf{a} = \mathbf{v} \times \mathbf{a} \)
 • helps define rotation about an arbitrary axis
 • angular velocity and rotation matrix time derivatives

• Geometric interpretation of \(\mathbf{v}^* \mathbf{a} \)
 • project \(\mathbf{a} \) onto the plane normal to \(\mathbf{v} \)
 • rotate \(\mathbf{a} \) by 90° about \(\mathbf{v} \)
 • resulting vector is perpendicular to \(\mathbf{v} \) and \(\mathbf{a} \)

Quaternions

• Complex numbers can represent 2-D rotations
• Quaternions, a generalization of complex numbers, can represent 3-D rotations
• Quaternions represent 3-D rotations with 4 numbers:
 – 3 give the rotation axis - magnitude is \(\sin \alpha/2 \)
 – 1 gives \(\cos \alpha/2 \)
 – unit magnitude - points on a 4-D unit sphere

• Advantages:
 – no trigonometry required
 – multiplying quaternions gives another rotation (quaternion)
 – rotation matrices can be calculated from them
 – direct rotation (with no matrix)
 – no favored direction or axis
Spatial Deformations

• Linear transformations
 – take any point \((x,y,z)\) to a new point \((x',y',z')\)
 – Non-rigid transformations such as shear are “deformations”

• Linear transformations aren’t the only types!
 • A transformation is any rule for computing \((x',y',z')\) as a function of \((x,y,z)\).

• Nonlinear transformations would enrich our modeling capabilities.
 • Start with a simple object and deform it into a more complex one.

Bendy Twisties

• Method:
 – define a few simple shapes
 – define a few simple non-linear transformations (deformations e.g. bend/twist, taper)
 – make complex objects by applying a sequence of deformations to the basic objects

• Problem:
 – a sequence of non-linear transformations can not be collapsed to a single function
 – every point must be transformed by every transformation
Example: Z-Taper

- **Method:**
 - Align the simple object with the z-axis
 - Apply the non-linear taper (scaling) function to alter its size as some function of the z-position

- **Example:**
 - Applying a linear taper to a cylinder generates a cone

 “Linear” taper:
 \[
 x' = (k_1 z + k_2) x \\
 y' = (k_1 z + k_2) y \\
 z' = z
 \]

 General taper (f is any function you want):
 \[
 x' = f(z) x \\
 y' = f(z) y \\
 z' = z
 \]
Example: Z-twist

- Method:
 - align simple object with the z-axis
 - rotate the object about the z-axis as a function of z
- Define angle, θ, to be an arbitrary function $f(z)$
- Rotate the points at z by $\theta = f(z)$

“Linear” version: $f(z) = kz$

$$
\theta = f(z), \\
x' = x\cos(\theta) - y\sin(\theta), \\
y' = x\sin(\theta) + y\cos(\theta), \\
z' = z
$$

Extensions

- Incorporating deformations into a modeling system
 - How to handle UI issues?
- “Free-form deformations” for arbitrary warping of space
 - Use a 3-D lattice of control points to define Bezier cubics:
 - (x',y',z') are piecewise cubic functions of (x,y,z)
 - Widely used in commercial animation systems
- Physically based deformations
 - Based on material properties
 - Reminiscent of finite element analysis