Transformations

Vectors, bases, and matrices
Translation, rotation, scaling
Homogeneous coordinates
3D transformations

3D rotations

Transforming normals

Uses of Transformations

» Modeling transformations
— build complex models by positioning simple components
— transform from object coordinates to world coordinates

» Viewing transformations
— placing the virtual camera in the world

— i.e. specifying transformation from world coordinates to camera
coordinates

* Animation
— vary transformations over time to create motion
CAMERA

OBJECT a

WORLD

Rigid Body Transformations

Rotation angle and line
about which to rotate

Non-rigid Body Transformations

General Transformations

Q = T(P) for points
V = R(u) for vectors

Background Math: Linear Combinations of Vectors

» Given two vectors, A and B, walk any distance you like
in the A direction, then walk any distance you like in the
B direction

» The set of all the places (vectors) you can get to this
way is the set of linear combinations of A and B.

» A set of vectors is said to be linearly independent if none
of them is a linear combination of the others.

V :V]_A + VzB, (Vl,Vz) e R

Bases

A basis is a linearly independent set of vectors whose
combinations will get you anywhere within a space, i.e.
span the space

n vectors are required to span an n-dimensional space

If the basis vectors are normalized and mutually
orthogonal the basis is orthonormal

There are lots of possible bases for a given vector space;
there’s nothing special about a particular basis—but our
favorite is probably one of these. y

y4

Vectors Represented in a Basis

» Every vector has a unique representation in a
given basis

—the multiples of the basis vectors are the vector’s
components or coordinates

—changing the basis changes the components, but not
the vector

-V=v,E, +Vv,E, + ...V E,
The vectors {E,, E,, ..., E,} are the basis

The scalars (vq, v, ..., v,,) are the components of V
with respect to that basis

Rotation and Translation of a Basis

Linear and Affine Maps

» A function (or map, or transformation) F is linear if
F(A+B) =F(A) + F(B) A
F(kA) = kF(A)
for all vectors A and B, and all scalars k.
* Any linear map is completely specified by its effect on a set of basis
vectors:
V= VlEl +V2E2 +V3E3
F(V) =F(v1E1 +VoE; +V3E3)
= F(viE1) + F(V2E;) + F(V3E3)
= v1F(E1) + VoF (E2) +VsF(Ea)

» A function F is affine if it is linear plus a translation
— Thus the 1-D transformation y=mx+b is not linear, but affine
— Similarly for a translation and rotation of a coordinate system
— Affine transformations preserve lines

Transforming a Vector

» The coordinates of the transformed basis vector (in
terms of the original basis vectors):

F(E1) =fEq + 1 E; +31E5
F(Ez) =f1oE1 +fE; +3E5
F(Es) =f13E; +f3E5 +33E3

» The transformed general vector V becomes:

F(V) = vaF(E1) + VoF(E;) +vsF(Es)
= (fiEq1 + 1 Ep +31Eg)va + (fioEq + foEo +H3E3)vy + (fisEq + 3B +Ha3Es)vs
= (fravy + fiovo + f13Vg)Eq + (forvy + foovo + fo3Va)Ep + (faavy + faovy + fagvs)Eg

and its coordinates (still w.r.t. E) are

V1 = (frava + frovo +f13vs)
Vo = (f21va + foaVo +f23v3)
V3 = (faava + fapVo +fa3vs)

or just vi=3fy The matrix multiplication formula!

Matrices to the Rescue

* An nxn matrix F represents a linear function in n
dimensions

—i-th column shows what the function does to the corresponding
basis vector

* Transformation = linear combination of columns of F

— first component of the input vector scales first column of the
matrix

—accumulate into output vector
— repeat for each column and component

» Usually compute it a different way:
— dot row i with input vector to get component i of output vector

\71 fiu oo fi V _
AR {fmfﬂfzz } {vi} V=% Y
V3 far f2 fas Vs

Basic 2D Transformations
Translate

X=X+, [T IxT Tt]

y=y+, Il)
Scale

X'=§,X Fx1=f% 0 I'x1
v=sy lyI7[o s]y]
Rotate
X'=xcosf—-ysing [x1 [coso —snollx]

y'=xsind+ycosd Ly Lsno coso |y X =Rx

Parameters t, s, and @ are the “control knobs”

Compound Transformations

Build compound transformations by stringing basic ones together, e.g.

— “translate p to the origin, rotate, then translate back”
can also be described as a rotation about p

Any sequence of linear transformations can be collapsed into a single
matrix formed by multiplying the individual matrices together

Vi = 3 (Zl(gjka)
= 2k (Z fi Gk)/k
mj = 35 figk
This is good: can apply a whole sequence of transformation at once

Translate to the origin, rotate, then translate back.

Homogeneous Coordinates

*Translation is not linear--how to represent as a matrix?
*Trick: add extra coordinate to each vector

[xl [1 0] tx—||—x—|

HNIRTH
1] [0 0 1)1

*This extra coordinate is the homogeneous coordinate, or w

*When extra coordinate is used, vector is said to be
represented in homogeneous coordinates

*Drop extra coordinate after transformation (project to w=1)
*We call these matrices Homogeneous Transformations

W!? Where did that come from?
* Practical answer:
—W is a clever algebraic trick.

—Don’t worry about it too much. The w value will be 1.0
for the time being.

—If wis not 1.0, divide all coordinates by w to make it
So.

» Clever Academic Answer:
—(x,y,w) coordinates form a 3D projective space.

—All nonzero scalar multiples of (x,y,1) form an
equivalence class of points that project to the same
2D Cartesian point (X,y).

—For 3-D graphics, the 4D projective space point
(x,y,z,w) maps to the 3D point (x,y,z) in the same way.

Homogeneous 2D Transformations

The basic 2D transformations become
Translate: Scale: Rotate:

[10t] [s, 0 O [cos® —sing 01

lo 1t lo s, ol lsno coso ol

0 0 1] [0 0 1] o 0 1

Any affine transformation can be expressed as a
combination of these.

We can combine homogeneous transforms by
multiplication.

Now any sequence of translate/scale/rotate operations
can be collapsed into a single homogeneous matrix!

3D Transformations

3-D transformations are very similar to the 2-D case

Homogeneous coordinate transforms require 4x4
matrices

Scaling and translation matrices are simply:

100t
T-l010t
001t

0001

Rotation is a bit more complicated in 3-D

— left- or right-handedness of coordinate system affects direction of
rotation

— different rotation axes

3-D Coordinate Systems

Right-handed VS. left-handed

Y Y
(into page)
‘ﬁ

(out of page) X X
7

Z-axis determined from X and Y by cross product: Z=XxY
X2Y3 - X3Y2
Z=XxY =|XY,- XY,
X1Y2 - X2Y1

Cross product follows right-hand rule in a right-handed coordinate
system, and left-hand rule in left-handed system.

Sequences of Transformations

TRANSFORMED
POINTS

» Often the same
transformations are applied to
many points

Calculation time for the
matrices and combination is
negligible compared to that of
transforming the points

Reduce the sequence to a
single matrix, then transform

SHY313INVHVd
S3DIHLVIN

UNTRANSFORMED
POINTS

10

Collapsing a Chain of Matrices.

Consider the composite function ABCD, i.e. p’= ABCDp
Matrix multiplication isn’t commutative - the order is important

But matrix multiplication is associative, so can calculate from right
to left or left to right: ABCD = (((AB) C) D) = (A (B (CD))).

Iteratively replace either the leading or the trailing pair by its
product

e Postmultiply: left-to-right
(reverse of function
both give the application.)

same result. . .
Premultiply: right-to-left
(same as function
application.)
Premultiply Postmultiply

Implementing Transformation Sequences

Calculate the matrices and cumulatively multiply them into a global
Current Transformation Matrix

Postmultiplication is more convenient in hierarchies -- multiplication
is computed in the opposite order of function application
The calculation of the transformation matrix, M,
— initialize M to the identity
— in reverse order compute a basic transformation matrix, T
— post-multiply T into the global matrix M, M <~ MT
« Example - to rotate by 6 around [x,y]:
gl Mat ri xMode(GL_MODELVI EW /* transform objects in scene */
gl Loadl dentity() /* initialize Mto identity mat.*/
gl Transl atef(x, vy, 0) /* LAST: undo translation */
gl Rotatef (theta, 0,0, 1) /* rotate about z axis */
gl Transl atef (-x, -y, 0) /* FIRST: nove [Xx,y] to origin. */
 Remember the last T calculated is the first applied to the points
— calculate the matrices in reverse order

11

Column Vector Convention

» The convention in the previous slides
—transformation is by matrix times vector, Mv
—textbook uses this convention, 90% of the world too

[l Ty my myg Ty
|y’|=| My My, Mpg || y|

LlJ Lm31 My, m33J|_ 1J

» The composite function A(B(C(D(x)))) is the matrix-
vector product ABCDx

Beware: Row Vector Convention
» The transpose is also possible

:
[v 1]=[v 1{%

my,

mg3

* How does this change things?

—all transformation matrices must be transposed
— ABCDx transposed is XTDTCTBTAT
—pre- and post-multiply are reversed

* OpenGL uses transposed matrices!

—You only notice this if you pass matrices as arguments to
OpenGL subroutines, e.g. glLoadMatrix.

—Most routines take only scalars or vectors as arguments.

12

What is a Normal?

Indication of outward facing direction
for lighting and shading

Order of definition of
vertices in OpenGL

Right hand rule

Note: GL conventions...
gl Front Face(G._CCW
gl Front Face(G._CW

Transforming Normals

* It's tempting to think of normal vectors as being like
porcupine quills, so they would transform like points
 Alas, it's not so, consider the 2D affine transformation

below.

* We need a different rule to transform normals.

Transformed shape with
T T normals treated as points - _—7

W=

—

Original Shape shown

with narmals J k Transformed shape with
correct normals

13

Normals Do Not Transform Like Points

e If M is a 4x4 transformation matrix, then
—To transform points, use p’=Mp, where p=[x y z 1]7

—So to transform normals, n’=Mn, where n=[ab ¢ 1]7
right?

—Wrong! This formula doesn’t work for general M.

Normals Transform Like Planes

A planeax+ by + cz+d = 0 can be written

np=n'p=0, wheen=[a b ¢ d[',p=[x y z 1]
(a,b,c) isthe planenormal, d isthe offset.

If p istransformed, how should n transform?

Tofind the answer, do somemagic:

0=n"l P equation for point on planeinoriginal space
=n"(M7M)p
=(n"M)(Mp)

=n'"p’ equation for point on planeintransformed space

p’'=Mp totransform point

T
'n totransform plane

14

Transforming Normals - Cases

» For general transformations M that include perspective,
use full formula (M inverse transpose), use the right d

—d matters, because parallel planes do not transform to
parallel planes in this case

* For affine transformations, d is irrelevant, can use d=0.

 For rotations only, M inverse transpose = M, can
transform normals and points with same formula.

Euler Angles for 3-D Rotations

» Euler angles - 3 rotations about each coordinate axis,
however
— rotations are order-dependent, and there are no conventions about
the order to use
—angle interpolation for animation generates bizarre motions

+ Widely used anyway, because theyTe “simple”
+ Coordinate axis rotations (right-handed coordinates):

(0] 0] cos® O

cos0O —sind R. = 0] 1
e

sin® cose —-sin®@ 0

0] 0] 0] 0]

c0sO —sin®

R, = sin® cosO
0] 0]
0] 0]

15

Euler Angles for 3-D Rotations

Axis-angle rotation

The matrix R rotates by a about axis (unit) v:

R=w' +cosa(l —w')+snav’
w' Project onto v

I —w' Project onto v’snormal plane

v Dual matrix. Project onto normal plane, flip by 90°

cosa,Sina Rotate by « in normal plane
(assumesv isunit.)

16

The Dual Matrix
oIf v=[x,y,Zz] is a vector, the skew-symmetric matrix

_y 0
is the dual matrix of v
*Cross-product as a matrix multiply: via=v x a
*helps define rotation about an arbitrary axis
sangular velocity and rotation matrix time derivatives
«Geometric interpretation of v'a
sproject a onto the plane normal to v

erotate a by 90° about v
eresulting vector is perpendicular to v and a

Quaternions

Complex numbers can represent 2-D rotations

Quaternions, a generalization of complex numbers, can
represent 3-D rotations
Quaternions represent 3-D rotations with 4 numbers:

— 3 give the rotation axis - magnitude is sin a/2

—1 gives cos a/2

— unit magnitude - points on a 4-D unit sphere

» Advantages:
—no trigonometry required
— multiplying quaternions gives another rotation (quaternion)
— rotation matrices can be calculated from them
—direct rotation (with no matrix)
—no favored direction or axis

17

Spatial Deformations

Linear transformations
—take any point (x,y,z) to a new point (x',y’,z’)

—Non-rigid transformations such as shear are
“deformations”

Linear transformations aren’t the only types!

A transformation is any rule for computing (X',y',z’) as a
function of (x,y,z).

Nonlinear transformations would enrich our modeling
capabilities.

Start with a simple object and deform it into a more
complex one.

Bendy Twisties

» Method:
—define a few simple shapes

—define a few simple non-linear transformations
(deformations e.g. bend/twist, taper)

—make complex objects by applying a sequence of
deformations to the basic objects

e Problem:

—a sequence of non-linear transformations can not be
collapsed to a single function

—every point must be transformed by every
transformation

18

Bendy Twisties

Original objects

Tapering

Example: Z-Taper

» Method:
—align the simple object with the z-axis

—apply the non-linear taper (scaling) function to alter its
size as some function of the z-position

» Example:
—applying a linear taper to a cylinder generates a cone

“Linear” taper: General taper (f is any
function you want):

x'= (kz+k,)x X:: H(2)x
=z k) V= 1y

, 7=2
7=12

19

Example: Z-twist

+ Method:

—align simple object with the z-axis

—rotate the object about the z-axis as a function of z
+ Define angle, 6, to be an arbitrary function f (z)
+ Rotate the points at z by 6 = f (2)

“Linear” version: f(z) = kz
0= 1(2
X = xcos(d) — ysin(6)
y'= xsin(é) + ycos(6)
Z7=2

Extensions

* Incorporating deformations into a modeling system
— How to handle Ul issues?
+ “Free-form deformations” for arbitrary warping of space
— Use a 3-D lattice of control points to define Bezier cubics:
(x',y',2") are piecewise cubic functions of (x,y,z)
— Widely used in commercial animation systems
» Physically based deformations
— Based on material properties
— Reminiscent of finite element analysis

20

