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The past quarter century has witnessed considerable advances in our understanding of Lightness (per-
ceived reflectance), Brightness (perceived luminance) and perceived Transparency (LBT). This review
poses eight major conceptual questions that have engaged researchers during this period, and considers
to what extent they have been answered. The questions concern 1. the relationship between lightness,
brightness and perceived non-uniform illumination, 2. the brain site for lightness and brightness percep-
tion, 3 the effects of context on lightness and brightness, 4. the relationship between brightness and con-
trast for simple patch-background stimuli, 5. brightness “filling-in”, 6. lightness anchoring, 7. the
conditions for perceptual transparency, and 8. the perceptual representation of transparency. The discus-
sion of progress on major conceptual questions inevitably requires an evaluation of which approaches to
LBT are likely and which are unlikely to bear fruit in the long term, and which issues remain unresolved. It
is concluded that the most promising developments in LBT are (a) models of brightness coding based on
multi-scale filtering combined with contrast normalization, (b) the idea that the visual system decom-
poses the image into “layers” of reflectance, illumination and transparency, (c) that an understanding
of image statistics is important to an understanding of lightness errors, (d) Whittle’s log W metric for con-
trast-brightness, (e) the idea that “filling-in” is mediated by low spatial frequencies rather than neural
spreading, and (f) that there exist multiple cues for identifying non-uniform illumination and transpar-
ency. Unresolved issues include how relative lightness values are anchored to produce absolute lightness
values, and the perceptual representation of transparency. Bridging the gap between multi-scale filtering

and layer decomposition approaches to LBT is a major task for future research.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The past 25 years have seen the study of lightness, brightness
and transparency (LBT) grow in leaps and bounds. New theories
have emerged, and some established theories have found new
expression. Other theories have failed to fulfil their promise and
have withered away. No theory has yet fully flowered. Aided by
the computer graphics revolution, we have witnessed an explosion
of captivating demonstrations showing how much we may err in
our judgements of brightness and lightness. And the controversies
continue unabated. Divided into different camps, each with its own
preferred stimuli, methodology and theory, the study of LBT is
sometimes more reminiscent of the social sciences with its deep
ideological divides than it is of the neurosciences.

This review poses major conceptual questions that engaged LBT
researchers a quarter of a century ago and considers to what extent
progress has been made towards answering them. In particular, the
review will critically analyze the principal theoretical approaches
to LBT that have been advanced in the recent period and suggest
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which are likely and which are unlikely to bear fruit in the long
term. Of course what the major conceptual questions are, and
which approaches will ultimately succeed, is largely a matter of
opinion, but hopefully what transpires below will resonate not
only with those who hold a particular viewpoint about LBT, but
also with the interested, albeit uncommitted members of the wider
vision community. The questions posed are as follows:

1. What is the relationship between brightness, lightness and per-
ceived illumination?

. Where is lightness and brightness encoded in the brain?

3. Is there a general theory for the effects of context on brightness
and lightness?

4, What is the function relating brightness to contrast in simple
patch-background displays?

5. How are brightness and lightness “filled-in"?

6. How are relative lightness values converted to absolute ones?

7. What are the cues for perceiving non-uniform illumination and
transparency?

8. What are the dimensions of perceptual transparency and how
are they encoded?

N
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Before considering these questions in detail, the following
introductory sections provide some rudimentary background.

1.1. Image decomposition

Any luminance image can be decomposed into ‘layers’, or
‘intrinsic-images’ (Barrow & Tenenbaum, 1978), and the reflec-
tance, illumination and transparency layers are critical to vision.
Surface reflectance, or ‘albedo’, is the proportion of light incident
on a surface that is reflected from it. Spatio-temporal variations
in surface albedo arise from changes in material composition, such
as from different shades-of-grey of paint. Illumination is neither
temporally nor spatially uniform. Temporally, the most dramatic
changes in illumination occur in the ambient level as a result of
the diurnal cycle. Spatially, the visual world is replete with various
types of non-uniform illumination: shadows, shading, spotlights,
inter-reflections, highlights and light sources, to name the main
varieties. Shadows are caused by occlusion of the light source;
shading (sometimes termed “attached” shadows) from changes
in the angle of a surface with respect to the direction of illumina-
tion; spotlights by the projection of a light beam onto a surface; in-
ter-reflections from light bouncing back and forth between
surfaces; highlights, or specular reflections, from non-diffuse illu-
mination of shiny or metallic surfaces. Example light sources are
the sun, moon and artificial lighting.

Transparencies are media that we can see through, and vary
along a number of dimensions. The principal two physical dimen-
sions of transparency are transmittance, which is the proportion of
light that passes through the medium, and reflectance, which is the
proportion of incident light reflected from the medium. Transpar-
ent media have a dispersion, which is the degree of internal light
scatter, and a specular reflection, the degree to which the medium
acts like a mirror. A standard pair of dark glasses transmits a pro-
portion of the incident light but does not reflect any light. Dark
glasses hence act similarly to a shadow, in that they divide the
background luminance by a constant factor, reducing the light
level but leaving the contrast of objects viewed through them
unchanged. Transparencies that reflect as well as transmit light
are said to possess a reflective or additive component, since they
reduce the contrast of objects seen through them. Reflective trans-
parencies invariably appear ‘milky’, and include media such as
frosted glass, grease-proof paper, milky water and fog. These
example media also have a dispersion. Example simulated

Fig. 2. Perceptual layer decomposition enables us to distinguish among reflectance
(the white walls) shading (underside of roof, inside of left wall) and shadows (on
front-facing walls).

transparencies that vary in transmittance and reflectance are
shown in Fig. 23.

Fig. 1 provides a simple framework for describing the physical
dimensions of the achromatic visual world. The focus of this review
however is on the perceptual representation of these dimensions.
Some of these dimensions can be seen in the photograph in
Fig. 2, an image that will serve as a focal point for many of the is-
sues discussed below.

1.2. Lightness

Lightness is perceived reflectance. If x and y are Cartesian coor-
dinates in the two-dimensional image plane, the luminance L(x, y),
reflectance R(x, y) and illumination I(x, y) layers are related by the
simple equation: L(x, y) = I(x, y) R(x, y). This equation reveals that it
is impossible to determine from the luminance of any one image
point whether it is part of a light surface that is shaded or a dark
surface that is brightly illuminated: pixel luminance is inherently
ambiguous because an infinite combination of the two unknowns,
R(x,y) and I(x, y) can produce the same L(x, y). It is therefore axiom-
atic that only by examining the relations among image points can
one determine the perceptual correlates of R(x,y), i.e. lightness.
The ability to recognize that surfaces under different illuminations

Image
lllumination Reflectance Transparency
Ambient Non-uniform
level lllumination
Trans- Reflect- Disper-  Specular
mittance ance sion reflection
Shadows  Spotlights  Shading Highlights Light
(specular sources
reflections)

Fig. 1. The physical dimensions of achromatic experience.
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have the same reflectance is termed ‘lightness constancy’. Light-
ness constancy in natural scenes is generally believed to be quite
good (though see recent findings to the contrary by Baddeley, Atte-
wall, & Patel, 2010) - the white walls in Fig. 2 appear white even
though their luminances vary considerably over space and time.
It is virtually axiomatic that the visual system achieves lightness
constancy in part by comparing the luminances of surfaces be-
tween different parts of the image. Although the details of the
underlying computations are not fully understood, the basic strat-
egy works because luminance ratios, or contrasts, between sur-
faces remain invariant with changes in illumination (Jacobsen &
Gilchrist, 1988; Wallach, 1976). The notion that brightness and
lightness involves the computation of contrast originated in Her-
ing’s (1874/1964) ideas on the role of reciprocal neural interactions
for the perception of brightness, whose closest modern expression
are the spatial-filtering models discussed in Section 4.

While the computation of contrast is in principle sufficient to
generate a scale of relative lightness values (i.e. this surface is light-
er than that one but only slightly darker than that other one), abso-
lute lightness values (this surface is light-grey, that one is white)
require that the contrasts be ‘anchored’ to some value. The main
contendors for lightness anchors are the highest luminance, which
is assigned white, and/or the mean luminance which is assigned
mid-grey. Lightness anchoring is discussed in Section 7.

It is no exaggeration to say that the study of lightness percep-
tion over the past 25 years has been dominated by an exhaustive
examination of its errors. This however needs to be put in context.
In our everyday visual experience we rarely encounter lightness er-
rors in the form of blatantly contradictory lightness percepts, as for
example when a surface appears to change in lightness when
viewed under a different illumination or against a different back-
ground. Good lightness constancy is presumably related to the fact
that our natural visual world is sufficiently rich in contextual infor-
mation to enable our visual system by-and-large to get it right
(though again see Baddeley et al., 2010). It is in the terrain of the
laboratory stimulus that we are confronted with the limitations
of lightness perception, precisely because laboratory stimuli are
deliberately fashioned to bring out those limitations. The simplest
of these laboratory stimuli is the classic simultaneous contrast dis-
play shown in Fig. 3, in which two equal-in-luminance patches ap-
pear different in lightness when set against different luminance
backgrounds. This stimulus, together with its innumerable vari-
ants, continues to play a big part in the scientific investigation of
lightness (and brightness).

An even more striking error that also reveals the importance of
contrast, but in addition the process of layer decomposition for
lightness perception, is the well-known Gelb effect, popularized
in recent times by Alan Gilchrist in numerous live-audience dem-
onstrations (Gelb, 1929; a translation of Gelb’s own description
of the effect can be found in Gilchrist, 2006, p. 62). The schematic
in Fig. 4 shows a smooth black disk lit from below by a powerful
stage lamp. The light from the lamp falls on the wall behind the
disk but well above it, such that an observer standing in front of

Fig. 3. Demonstration of simultaneous contrast.

Fig. 4. Schematic of demonstration of Gelb Effect. The disk protruding from the wall
is painted black, but appears light-grey or white when illuminated from the theatre
lamp in the way shown.

the disk views a strongly lit disk set against an unlit background.
Although the disk is painted black it appears light-grey, or even
white if the lamp is powerful enough and the disk sufficiently
smooth. Even when one realizes that the whiteness of the disk is
an illusion caused by the light from the lamp, it is hard to shake
the impression that it is...white. The critical physical property
underpinning the illusion is that a discontinuity in illumination oc-
curs precisely at the border of the disk with its background, such
that the change in illumination is perfectly correlated with the
change in reflectance. In the absence of the normal visual cues
for decoupling illumination edges from reflectance edges, lightness
is computed primarily from the contrast of the disk relative to its
background. The role of contrast in producing the illusion is
pressed home further when a large white card is placed directly
behind the disk (and hence also illuminated by the stage lamp).
Now the contrast reverses and the disk appears dark grey or black.
Another influential class of lightness error is assimilation.
Assimilation is the opposite of contrast, in that lightness shifts to-
wards rather than away from that of the immediate surround. One
of the most celebrated and intensely researched phenomenon,
which in its most popular form may be considered an example of
assimilation, is White’s Effect (White, 1979), shown in Fig. 5. The
two sets of grey bars have the same luminance but differ markedly
in lightness. The lightnesses of the test bars are shifted towards
those of the flanking phases of the grating, which abut more with
the test bars than the coaxial phases. However, White's Effect
should not be regarded as a general case of assimilation; the same
direction of illusion occurs with test bars that are horizontally
elongated and as a result abut more with the coaxial than the
flanking phases of the grating, thus making the effect an instance
of contrast (Kingdom & Moulden, 1991). Indeed, the fact that
White’s effect can switch from assimilation to contrast depending
on spatial configuration shows that ‘contrast’ and ‘assimilation’ are
best regarded as operational short-hands for the direction of light-
ness errors not signatures for different underlying mechanisms.

Please cite this article in press as: Kingdom, F. A. A. Lightness, brightness and transparency: A quarter century of new ideas, captivating demonstrations and
unrelenting controversy. Vision Research (2010), doi:10.1016/j.visres.2010.09.012



http://dx.doi.org/10.1016/j.visres.2010.09.012

4 F.A.A. Kingdom/ Vision Research xxx (2010) xXx-xXxx

Fig. 5. White’s Effect. The two sets of grey bars are the same luminance. Based on
the original stimulus in White (1979).

1.3. Brightness

Brightness, the perceptual correlate of perceived luminance,
could in principle be derived from the sensory measurement of a
single image point. However, it has been understood for over two
millenia that brightness, like lightness, depends on context, and
specifically on contrast. The similarity between brightness and
lightness under many circumstances is exemplified by the simulta-
neous contrast display in Fig. 3, where the percepts of brightness
and lightness are synonymous. In fact the literature refers to
Fig. 3 either as either simultaneous brightness contrast, simulta-
neous lightness contrast or plain simultaneous contrast.

Brightness and lightness assume very different qualia however
when there are visible illumination variations in the scene, as in
Fig. 2. The surfaces of the walls in the photograph appear uniformly
white (a lightness judgement), yet are brighter in some places than
others (a brightness judgement) due to the presence of shading
and shadows.

As with lightness perception, our understanding of brightness
perception over the past 25 years has developed primarily through
an exhaustive examination of its errors. The relationship between
brightness, lightness and perceived non-uniform illumination is
discussed in Section 2, and again in Section 4.5.

1.4. Transparency

Research on perceptual transparency during the past quarter
century has focused on two issues: the conditions that give rise
to the impression of transparency and the perceptual dimensions
of transparency. The first issue is discussed in Section 8, the second
Section 9. Most research on the latter issue has focused on under-
standing the relationship between the perception of transparency
and the physical dimensions of transmittance and reflectance.
Transparent media have also figured prominently in studies of
brightness and lightness perception; some of the most compelling
demonstrations of brightness errors have been revealed when sur-
faces are overlaid by simulated transparencies, as discussed in
Section 4.5.

Now to examine each of the eight questions posed in this
review.

2. Question 1: What is the relationship between brightness,
lightness and perceived illumination?

The study of LBT over the past 25 years has been profoundly
influenced by the growing appreciation of the importance of the
distinction between three percepts: brightness (perceived lumi-
nance), lightness (perceived reflectance) and perceived illumina-
tion. Yet in spite of the apparent ease with which these percepts
can be separated in natural scenes such as the photograph in
Fig. 2, the importance of the distinction between them has been

slow in coming. Notwithstanding important early work by Katz
(1935), and studies by Beck (1959), Arend and Goldstein (1987)
and Schirillo, Reeves, and Arend (1990), it took two seminal studies
by Arend and Spehar (1993a, 1993b)to definitively change the sit-
uation. Using Mondrian-like displays in which test patches were
compared under visibly different illuminations, Arend and Spehar
found that subjects made different judgements depending on
whether they were required to compare lightness, brightness or
perceived contrast, revealing unequivocally that there were cir-
cumstances in which these three percepts were separable dimen-
sions of achromatic experience.

Experiments such as Arend and Spehar’s, which revealed that
lightness is perceptually distinct from brightness when illumina-
tion is visibly non-uniform, have been pivotal in persuading some
researchers that brightness is the primary and lightness the sec-
ondary sensation (Blakeslee & McCourt, 2003; Blakeslee, Reetz, &
McCourt, 2008). According to Blakeslee et al. (2008), when there
is no visible illumination component, lightness follows directly
from brightness; however with a visible illumination component,
lightness comparisons across differently illuminated regions are
inferential. The idea that lightness is either direct or inferential
depending on whether there are visible illumination regions paral-
lels the “phenomenal” versus “projective” distinction advanced by
other authors for surface colour (i.e. chromatic) perception
(Reeves, Amano, & Foster, 2008). Blakeslee et al. (2008) argue that
lightness inferences may be easy or difficult depending on how
much contextual information is present; a difficult case would be
when two comparison patches are completely isolated within their
own illumination regions. This view of the relationship between
lightness, brightness and perceived non-uniform illumination is
schematized in Fig. 6a.

Blakeslee and McCourt’s arguments raise two important ques-
tions: 1. does brightness precede, or follow layer decomposition
and 2. what does it mean to say that lightness judgements are in
some circumstances inferential? Taking the first question, an
immediate rejoinder is the mounting body of evidence that bright-
ness depends on perceived illumination or on transparency. For
example, shadows appear brighter than their equal-in-luminance
reflectance counterparts (Logvinenko, 2005), light sources appear
brighter than their equal-in-luminance reflectance counterparts
(Agostini & Galmonte, 2002; Correani, Scott-Samuel, & Leonard,
2006; Gori & Stubbs, 2006; Zavagno & Caputo, 2001), and surfaces
appearing to lie in shadow or behind dark transparencies appear
brighter than if presented on equivalent reflectance back-
grounds(Adelson, 1993, 1997; Kingdom, Blakeslee, & McCourt,
1997; Logvinenko, 1999). Although the interpretation of some of
these findings is controversial (see Section 4.5), they nevertheless
allude to the idea that brightness follows rather than precedes layer
decomposition, as schematized in Fig. 6b (see also Gilchrist, 2006,
pp. 338-339). This scheme also accords with recent ideas on the
influence of layer decomposition on perceived chromaticity in
chromatic-contrast displays (Ekroll, Faul, & Niederee, 2004).
Remember however that for both schemes in Fig. 6 brightness
and lightness are synonymous when there are no visible disconti-
nuities in illumination.

Are lightness judgements across illumination boundaries infer-
ential, as Blakeslee and McCourt suggest? It depends what one
means by inferential. If one means that the visual system draws
upon inbuilt knowledge of the spatio-temporal relations between
reflectance and illumination in the natural visual world, then few
would disagree. Lightness inferences in this sense are akin, for
example, to the way perceived shape-from-shading is influenced
by the lighting-comes-from-above assumption (Ramachandran,
1988); in other words lightness inferences are examples of what
Helmholtz famously termed “unconscious inferences”. However,
if by inferential one means that lightness judgements across
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Fig. 6. Alternative schemes for the relationship between lightness, brightness and
perceived illumination.

illumination boundaries are cognitive and effortful, then this
would seem contrary to our everyday visual experience. The qualia
of surface albedo are no less compelling in a world with shadows
than in one without, as the photograph in Fig. 2 attests. Indeed,
it would be odd for the visual system to have developed a smooth
and effortless mechanism for estimating lightness in the context of
variations in the ambient level of illumination, but a clunky and
effortful one in the context of shadows and shading. Does it not
in fact make sense for the visual system to prioritize those compu-
tations that are functionally important, such as surface lightness
and non-uniform illumination, rather than brightness?

It is possible that both schemes in Fig. 6 describe what happens
in vision, but under different circumstances. Perhaps the primacy
of lightness over brightness is a characteristic of our visual experi-
ence with highly articulated scenes such as Fig. 2, whereas the
reverse situation pertains to simple laboratory stimuli.

2.1. Summary

During the past quarter century numerous studies have attested
to the importance of the distinction between three percepts -
brightness, lightness and perceived illumination - as well as to
the influence of perceived non-uniform illumination on brightness
and lightness. However, the precise relationship between the three
percepts and their relationship to the process of layer decomposi-
tion is still unresolved.

3. Question 2: Where is lightness and brightness encoded in the
brain?

Prior to the period dealt with in this review, the prevailing wis-
dom was that lightness was encoded in the retina. For example,
Cornsweet’s (1970) influential book on vision championed the idea
that reciprocal interactions among retinal neurons were responsi-
ble for simultaneous brightness contrast, and by implication light-
ness. During the past quarter-century however, opinion has shifted
in favour of a cortical locus for lightness perception. One must bear
in mind however that even if lightness values are ‘read-out’ at a
cortical level, the retina plays a crucial role in lightness perception.
Light adaptation, the process whereby the visual system adjusts to
the local average light level is universally believed to be the result
of rapid gain changes among retinal neurons. Thus it is the retina
that normalizes luminance differences to the local light level,
converting those differences into contrasts (or ‘ratios’), a critical
computation for achieving lightness constancy (Shapley &
Enroth-Cugell, 1984; Walraven, Enroth-Cugell, Hood, MacLeod, &

Schnapf, 1990). Second, the retina possesses neurones, such as gan-
glion cells, that encode those contrasts. A pre-cortical involvement
in brightness-from-contrast processing is evidenced by the ‘haplo-
scopic superimposed-background display’ shown in Fig. 7 (Whittle,
1994a). When the two patterns in the figure are free-fused, the two
equal-in-luminance patches are seen on a common background yet
appear very different in brightness, suggesting that the lightnesses
of the patches are encoded before the point of binocular combina-
tion, i.e. pre-cortically. Using the haploscopic display method,
Shevell, Holliday, and Whittle (1992) confirmed a pre-cortical
involvement of local contrast in processing lightness perception,
but went on to show that the influence of remote context on light-
ness occurred after the point of binocular combination, i.e. was
cortical.

Besides the study of Shevell et al. (1992), the challenge to a
solely pre-cortical locus for lightness perception has emerged from
a number of quarters. One of these are the studies showing how
depth relations influence lightness perception; for if depth percep-
tion is cortical and depth relations affect lightness, lightness per-
ception must be at least partly cortical in origin. Gilchrist (1977,
1980) was the first to demonstrate that the lightness of a patch
depended not only on the local surround (as seen retinally) but
on the context that is specific to the patch’s perceived depth plane.
He employed a scaled-down model of two adjoining rooms, with
the near room dimly lit and containing a black patch, and the far
room brightly lit and containing a white patch. Subjects judged
the lightness of a grey test patch that even though fixed in position,
could be made to appear either in the near or far room depending
on its interposition relationship with the white and black patches.
Gilchrist found that when the test patch appeared to be coplanar
with the near room (containing the black patch), subjects judged
the test patch as white, but when it appeared to be coplanar with
the far room (containing the white patch) the test patch appeared
dark grey. This led Gilchrist to formulate his “coplanar ratio princi-
ple”, which states that lightness is computed from luminance
ratios within the perceived depth plane of the surface rather than
in the retinal image.

Schirillo et al. (1990) repeated Gilchrist’s experiment and repli-
cated the main result, though they found that the effects were
weaker than those reported by Gilchrist. Howe (2006) has argued
from other evidence that it is the perceived illumination not local
contrast within each depth plane that is critical, and Dalby,
Saillant, and Wooten (1995) have shown that the coplanar ratio
principle does not hold if the luminance range is small. Zaidi,
Spehar, and Shy (1997) found that the effects predicted by the
coplanar ratio hypothesis were reversible when the configuration
induced strong illusory lightness differences in the opposite direc-
tion - they achieved the reversal using a three-dimensional version
of White’s Effect. However, Zaidi et al.’s finding is less evidence

Fig. 7. In the haploscopic superimposed-background display, the two patterns are
dichoptically superimposed such that the two circular patches are seen next to one
another on the same background. This can be achieved here by free-fusion, and
observers may notice that when free-fused the two equal-in-luminance patches
appear more different in lightness than when the backgrounds are viewed side-by-
side. Based on Whittle (1994a).
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against the coplanar ratio principle as it is a demonstration that
other contextual factors influence and in some circumstances
counteract the effects of coplanar ratios. A recent summary of
the research on the effects of depth and lightness can be found
in Gilchrist (2008) pp. 120-122 and pp. 159-172.

The influence of depth relations on lightness has been further
corroborated by studies showing that changes to the perceived
three-dimensional structure of a stimulus may cause surfaces to
switch in appearance from being different in reflectance to differ-
ent in illumination (Buckley, Frisby, & Freeman, 1994; Knill &
Kersten, 1991; Logvinenko & Menshikova, 1994). All the above
studies are therefore consistent with a cortical locus for lightness
perception.

What of physiology and brain-imaging? It has been argued that
evidence for a cortical involvement in lightness perception is the
presence of cortical cells or brain areas that respond to changes
in surface lightness but that are unresponsive either to the borders
of the surfaces or to changes in illumination. For example, Roe, Lu,
and Hung (2005) reported cells in monkey V2 that responded to
the purely illusory lightness variations in the Cornsweet illusion,
and MacEvoy and Paradiso (2001) described cells in cat V1 whose
responses were modulated by interactions from outside the classi-
cal receptive field in a manner that rendered them immune to
changes in illumination. Human fMRI studies report strong re-
sponses to changes in surface lightness but not surface borders
in retinotopic areas V1, V2 and V3 (Boyaci, Fang, Murray, &
Kersten, 2007; Haynes, Lotto, & Rees, 2004).

When considering the evidence for “surface” as opposed to
“border” neurons it is worth bearing in mind that neurons sensitive
to low spatial frequencies and that have even-symmetric receptive
fields would be expected to respond optimally when centred on a
surface rather than on a surface’s border, so the aforementioned
studies are compatible with the multi-scale filtering accounts of
lightness perception discussed later. However, studies showing
evidence for surface-lightness-sensitive neurons that are neverthe-
less insensitive to illumination are not so easily compatible with
such accounts.

What of the higher cortical areas? Zeki (1983a, 1983b) has re-
ported that area V4 of macaque contains cells that respond to
the perceived colour (i.e. chromaticity) of a surface rather than to
its spectral (i.e. wavelength) composition, in other words that ex-
hibit colour constancy (see also Schein & Desimone, 1990). More-
over, damage to human cortical area V4 (see Wandell & Wade,
2003, for a discussion of the relationship between macaque and
human V4) can result in a failure of constancy in a colour-naming
task (Zeki, Aglioti, McKeefry, & Berlucchi, 1999). One might reason-
ably assume that lightness constancy and colour constancy would
be instantiated in the same brain region, but there does not seem
to be strong evidence that V4 is involved in lightness constancy.
Taken together however, the above evidence suggests that a num-
ber of brain areas in the ventral cortical stream are involved in
lightness perception.

Is brightness also cortical, as implied by models based on multi-
scale filtering combined with contrast normalization (see
Section 4.4)? A cortical origin for brightness perception is consis-
tent with demonstrations showing the influence of depth relations
on brightness and not just lightness (Adelson, 1993, 2000). It is
worth noting however that in Schirillo et al.s (1990) study, one
of the only studies on depth relations in which subjects were
explicitly required to make both lightness and brightness judge-
ments, there was no effect of depth on brightness.

3.1. Summary

Lightness and brightness perception is a multi-stage process
involving both retina and cortex. While the retina normalizes

luminance variations to the local average light level and encodes
rudimentary contrast information, neurons in the ventral cortical
stream explicitly signal lightness and brightness.

4. Question 3. Is there a general theory for the effects of context
on brightness and lightness?

This, of course, is the big question. The demonstrations of simul-
taneous contrast, the Gelb-effect, White’s effect, and a multitude of
other phenomena amassed during the previous quarter century
have revealed the profound influence that context plays on light-
ness and brightness. However the devil lies with the details and
it is with the details that the approaches reviewed in this section
are concerned. We now critically examine the various models that
have attempted to account for how the particular spatio-
luminance structure of the image influences the brightness and
lightness of test regions within. These models reveal more than
anything else the fault-lines that demarcate the study of LBT. The
models reviewed are: edge-integration, Gestalt-anchoring,
spatial-filtering feature, multi-scale filtering with contrast normal-
ization, intrinsic-image and empirical.

4.1. Edge-integration models

Land and McCann (1971) first championed the idea that light-
ness was computed by integrating local edge contrasts across the
image. Their Retinex algorithm was designed to recover the light-
nesses of Mondrian-like patterns that were subject to gradual illu-
mination gradients such as from shading. Lightness computation
was achieved by a four stage process: (1) the detection of edges
via differentiation of the image; (2) thresholding to remove any
gradual discontinuities; (3) integration to combine edge contrasts
across space in order to establish a scale of relative lightness val-
ues; and (4) anchoring of relative lightness values to convert them
to absolute ones. The Retinex, as well as the models it spawned
(e.g. Hurlbert & Poggio, 1988; Land, 1986), would fail however with
the photograph in Fig. 2, because any sharp-bordered shadows
would be incorrectly identified as reflectance changes. The Retinex
would also fail to predict the illusory lightness differences in the
Gelb effect, simultaneous contrast and White’s Effect, designed as
it is to generate an approximately veridical representation of
lightness.

Whittle (1994b), more than anyone else at the time, understood
the contradiction between the role of contrast in producing errors
such as simultaneous contrast and the role of edge integration (or
some process analogous to it) in providing a veridical representa-
tion of lightness. He noticed that in the haploscopic superim-
posed-background display shown in Fig. 7, simultaneous contrast
was considerably enhanced, reasoning that this was because the
effects of edge integration that normally occurred when the back-
grounds were seen side-by-side were being bypassed. Whittle pro-
posed that are two types of constancy: Type I and Type IL. Type I is
constancy with respect to the ambient level, is achieved by
computing contrast, and produces errors such as simultaneous
contrast. Type II is constancy with respect to the changing
background, and is achieved by integrating contrasts across the im-
age. Type I and Type II constancy thus tend to work in opposite
directions, with Type II serving to mitigate the errors resulting
from Type I in order to provide a more veridical representation.
In keeping with Whittle’s ideas, the study by Shevell et al. (1992)
mentioned earlier provided empirical support for the Type I versus
Type II distinction by showing that ‘contrast’ processes were pre-
cortical whereas ‘surround-integrative’ processes were cortical.

More recently, Rudd and colleagues (Rudd, 2001, 2003; Rudd &
Arrington, 2001; Rudd & Popa, 2007; Rudd & Zemach 2004, 2005,
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2007) have developed the idea of edge-integration into a fully-
fledged model of lightness perception, one capable of quantitatively
accounting for both contrast, assimilation and edge-integrative
phenomena. By doing so they have shifted the focus of the edge-
integration approach away from its original goal of modelling
veridical lightness perception to towards an entirely new role of
modelling its errors. Critical to the development of Rudd and col-
leagues edge-integration models is the finding that with patch-
ring-surround stimuli (Shapley & Reid, 1985; see Fig. 8), not only
contrast but assimilation may be observed between the ring and
test patch, especially when the ring is relatively thin. Rudd and col-
leagues argue that this assimilation is a consequence of a cortical
contrast gain control mechanism acting between neighbouring
edge detectors, with the gain of each edge detector being a positive
function of the response magnitudes of neighbouring edge detec-
tors, but a negative function of the distances between them. Thus
if the spatial span of the gain control bridges the distance between
the inner and outer edges of the ring (for example when the ring is
relatively thin), assimilation is predicted.

Rudd et al. have successfully dove-tailed a well-established
physiological mechanism, contrast gain control, to a model of
edge-integration, and as a result have been able to quantitatively
model assimilation, contrast and edge-integration data. However
the edge-integration approach, as it stands, has profound limita-
tions. The language of edge integration is primarily one of stimulus
properties: “edges”, “contrasts”, “areas”, “widths” etc. As such, the-
ories of edge-integration are restricted to a Mondrian-world, and a
simplified one of radially-symmetric stimuli at that. Why? The
defining computation of all edge-integration models is that edge
signals are integrated across space to generate a map of lightness
values. For simple stimuli this is relatively straightforward, but
with complex two-dimensional images the process is computa-
tionally expensive and, one cannot help feel, physiologically
implausible. Rudd and colleagues are keenly aware of this limita-
tion of the edge-integration approach and anticipate incorporating
multi-scale filtering into their model (e.g. see discussion in Rudd &
Zemach, 2005). This may make the approach more amenable to
dealing with complex stimuli such as natural scenes, replete as
they are with luminance gradients, textured surfaces and other
forms of structural complexity.

4.2. Gestalt-anchoring models

‘Anchoring’ refers to the process that converts relative lightness
values into absolute ones, by associating a particular lightness (e.g.
mid-grey, white) to a particular luminance (mean, maximum).
Anchoring as such is discussed in Section 7. “Anchoring theory”
on the other hand refers to a theory of lightness perception in
which multiple anchors exist within nested image frameworks,
with all anchors contributing to the computation of lightness.
Because the frameworks in anchoring theory are determined
by Gestalt grouping principles, the models are termed here

Fig. 8. Left: patch-ring-surround stimulus. Typically the subject adjusts the
luminance of the patch on the right to match the central test patch on the left.

‘Gestalt-anchoring’ models. The best-known is that of Gilchrist
and colleagues (Gilchrist, 2006; Gilchrist et al., 1999). Bressan
(20064, 2006b, 2007) has advanced a version of Gestalt-anchoring
model based on different anchoring principles and modified
putative frameworks.

While the full details of these models are beyond the remit of
this review, the principle of the best-known, that of Gilchrist and
colleagues, can be grasped by considering how it applies to the
simultaneous contrast display in Fig. 3. The idea is that the stimu-
lus is divided into two local and one global perceptual framework,
with the lightness of each test patch computed as a weighted aver-
age of two lightness values, one derived from the local, the other
from the global framework. The global framework is comprised
of the stimulus as a whole, whereas the local frameworks consist
of the two surrounds each with their respective test patch. Within
each framework the anchor is the highest luminance, which is
assigned white, and all other regions within the framework are
assigned greys according to their luminance ratio with respect to
the white anchor. Within the global framework, the white back-
ground of the stimulus as a whole is the highest luminance and
therefore assigned white, and the two test patches are assigned
identical lower lightnesses, since their luminance ratios with re-
spect to the background are the same. However, for the two local
frameworks, the patch lightness assignments are different. For
the patch on the dark surround, the patch is the highest luminance
and therefore assigned white. For the patch on the light surround,
the surround is the highest luminance and therefore assigned
white, while the patch is assigned a value relative to it, i.e. mid-
grey. The net patch lightnesses are the averages of the global
framework values (both patches equal and mid-grey) and the local
framework values (patch on dark surround white, patch on light
surround mid-grey). The result is a higher lightness value for the
patch on the dark compared to the light surround. Thus
although the global framework has an important influence on the
lightnesses of the patches, it is the two local frameworks that cause
the difference in patch lightness and hence the illusion.

Although the model makes successful predictions with rela-
tively simple stimuli, there are some notable failures. One is the
prediction that if the patches in the simultaneous contrast display
are both equal-in-luminance increments, they should appear equal
in lightness (two equal-in-luminance decrements on the other
hand are predicted to have different lightnesses). This prediction
follows from the rule that the two patch lightnesses are computed
only with respect to the white background of the stimulus; the
local frameworks do not contribute to patch lightness because they
are each of lower luminance than the patches they surround.
Double increments however do differ in lightness (Blakeslee, Reetz,
& McCourt, 2009; Bressan, 2006a, 2006b; Bressan & Actis-Grosso,
2001; Rudd & Zemach, 2005; Whittle, 1994Db), as the top panel of
Fig. 9 shows, though in general by not as much as double decre-
ments (Whittle, 1994b) (bottom panel).

Bressan’s (2006a, 2006b, 2007) ‘double-anchoring’ model suc-
cessfully predicts double-increment lightness differences by
assuming that there are two anchors per framework: highest-
luminance-is-white and surround-luminance-is-white. One cannot
help however but question the plausibility of the idea that, for
example, a black surround can take on the contributory role of a
white anchor.

A problem generic to all Gestalt-anchoring models is their fail-
ure to adequately deal with gradients in brightness/lightness, such
as the form of simultaneous contrast known as grating-induction
(Blakeslee & McCourt, 1997; McCourt, 1982), shown here in
Fig. 10. The challenge of grating induction for Gestalt-anchoring
models is in dividing the stimulus into the necessary frameworks
in order to predict the continuous lightness variations along the
test stripe. Although Bressan’s double-anchoring model correctly
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Fig. 9. Top: double increment; bottom: double-decrement simultaneous contrast
displays. The two patches in each stimulus are equal-in-luminance.

Fig. 10. Grating induction. The horizontal stripe is uniform in luminance but
appears modulated in brightness out-of-phase with the inducer grating. Based on
McCourt (1982).

predicts that with a square-wave grating inducer, the lightnesses
of the test stripe are different depending on whether they fall on
the dark or light phase of the grating (Bressan, 2007), it is hard
to see how the model predicts the continuous variation in lightness
along the test stripe, which for the sinusoidal inducer in Fig. 10 is
itself near-sinusoidal. The model presumably requires a unique
confluence of anchor(s) and framework(s) to predict each of the
many different lightness values along the test stripe, and the spec-
ification of the confluences is inevitably ad hoc. Contrast this with
the relative parsimony with which grating induction is explained
by multi-scale filtering (Blakeslee & McCourt, 2005; Moulden &
Kingdom, 1991). Note also that if the test stripe is placed into a
completely separate “framework” from the inducing grating by
presenting it in a different stereoscopic depth plane, grating

image

interpretation
rules

edges bars

image
reconstruction

Fig. 11. Flow diagram of principle components of spatial-filtering feature models.

induction is still observed (Kingdom, 2003b). In short, grating
induction highlights a critical problem with Gestalt-anchoring
models: specifying the frameworks (see also Howe et al.’s (2007)
critique of Bressan’s double-anchoring model, but also reply by
Bressan (2007)). For anything other than the simplest of Mondrian
worlds, specifying the frameworks is always going to be diffi-
cult, and for really complex stimuli such as natural scenes, it is
hard to see how one could ever begin. Therefore, as with edge-
integration models, Gestalt-anchoring models do not at present
have the inherent flexibility for dealing with the relatively complex
world of our everyday visual experience (as noted also by Corney &
Lotto, 2007).

4.3. Spatial-filtering feature models

Although the idea that the clues to brightness errors lie in the
responses of spatial bandpass filters has its roots in Hering, it
was Marr’s (1982) theory of the primal sketch that inspired a class
of model that gave Hering's ideas one of its most modern expres-
sions. I am referring to the class of model that posits that the re-
sponses of spatial filters are interrogated by a set of rules in
order to create a map of the salient features in the image, specifi-
cally a symbolic description of the image in terms of ‘edges’ and
‘bars’. This symbolic description is then used to construct an inter-
nal image by integrating the edge signals and combining them
with the bar signals, and it is within this internal image that bright-
ness errors are found. Fig. 11 illustrates the principle. Although
individual models bases upon the principle differ in terms of the
details of filtering and the degree to which they are concerned with
brightness errors as opposed to spatial vision in general, all have
something to say about illusory brightness phenomena. The three
main protagonists are MIRAGE (Watt & Morgan, 1985), the Local
Energy Model (Morrone & Burr, 1988) and MIDAAS (Kingdom &
Moulden, 1992), the last of which is aimed specifically at modelling
brightness phenomena.

Briefly, MIRAGE proposes that the outputs of centre-surround
spatial filters at various spatial scales are (non-linearly) combined
to produce a pattern of positive and negative response ‘lobes’. The
interpretation rules posit that any response lobe flanked either side
by two opposite-polarity response lobes indicates the presence of a
bar (whose width is proportional to the lobe’s standard deviation),
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while an abutting pair of positive and negative response lobes indi-
cates the presence of an edge (whose polarity is determined by the
ordering of the two lobes and whose slope or ‘blur’ is proportional
to the lobes’ standard deviations). Although formulated primarily
to account for data obtained from positional acuity and edge blur
discrimination experiments, Watt and Morgan (1985) and Watt
(1988) show that MIRAGE predicts illusory brightness phenomena
such as Mach bands - these are the illusory bars at the ‘foot’ and
‘knee’ of a trapezoid - as well as the Chevreull illusion, the phe-
nomenon in which a staircase in luminance appears as a triangular
wave in brightness.

MIDAAS (Kingdom & Moulden, 1992) draws upon the same
implementation rules as MIRAGE but applies them to the individ-
ual filter rather than combined filter responses, and then averages
the symbolic edge-bar description across the different filter scales.
One of the cases for this model variant is that it explains why a
trapezoid can simultaneously appear trapezoidal and have Mach
bands; MIRAGE predicts that a trapezoid appears either as a blurred
edge or as a uniform region demarcated by two Mach bands
(depending on the trapezoid’s slope), but not both at the same
time, unlike what is usually perceived.

The Local Energy model (Morrone & Burr, 1988) locates edges
and bars as peaks in ‘local energy’, defined as the square root of
the sums of squares of the responses of odd and even-symmetric
spatial filters. The nature of the feature (edge or bar) is obtained
by evaluating the relative responses of the even and odd detectors
at the local energy location. If the peak in local energy coincides
with that of the even-symmetric filter, the feature is a bar, whereas
if it coincides with the peak of the odd-symmetric filter, the feature
is an edge. The Local Energy model gives a good account of both the
presence and magnitude of Mach bands (Morrone, Ross, Burr, &
Owens, 1986; Ross, Morrone, & Burr, 1989), as well as other illu-
sions such as the Craik-Cornsweet-O'Brien effect (Burr, 1987,
and see Fig. 19).

Although spatial-filtering feature models are undoubtedly per-
tinent to some aspects of vision, they have arguably failed to pro-
vide a plausible and lasting account of brightness errors. There are
a number of reasons for this. The first is that evidence has failed to
accrue that the early visual system classifies image discontinuities
into edges and bars, the defining and unifying theme of these mod-
els (see review of the literature in Huang, Kingdom, & Hess, 2006).
Although Burr, Morrone, and Spinelli (1989) found apparently good
evidence for dedicated edge and bar detectors in human vision,
others have failed to replicate their results and have instead pro-
posed that dedicated detectors only exist for coding increments
and decrements, i.e. for the different polarities of even-symmetric
stimuli, such as bars (Huang et al., 2006) (and see Section 5.2). The
second problem with these models is that as with edge-integration
models, edge signals must be integrated across space to generate
the internal image, which as was noted earlier is for two-dimen-
sional images computationally very expensive and probably phys-
iologically implausible.

The Local Energy model runs into particular difficulties as a
model of brightness perception because it predicts that a sinusoi-
dal grating is featureless, since (sin? + cos?) = 1 everywhere in the
stimulus (Georgeson, 1994; Hesse & Georgeson, 2005; Kingdom
& Moulden, 1992; Meese & Georgeson, 2005). A sine-wave grating
is a visible modulation in brightness that would be expected to be
captured by any model of brightness perception. Although it might
be argued that the luminance non-linearities in early vision
sufficiently distort a sinusoidal grating to make its features visible
to a local energy transformation, this leads to the implausible
prediction that if the non-linearities were nulled, for example by
multiplying the sine-wave luminance profile by the appro-
priate function, the bars should disappear (Meese, 1999; Meese
& Georgeson, 2005). Furthermore, at contrasts at which the

distorting effects of a luminance non-linearity are probably negli-
gible (<5%), the light and dark bars of sine-wave gratings are visible
across a range of spatial frequencies.

The final reason why spatial-filtering feature models have failed
in their bid to account for brightness phenomena is that they have
been superseded by another class of spatial-filtering model that is
more physiologically realistic, easier to implement in two dimen-
sions and which accounts for a wider range of phenomena. It is
to these models that we now turn.

4.4. Spatial-filtering models involving contrast normalization

The other class of filtering model anticipated by Hering involves
the combination of multi-scale spatial filtering and contrast nor-
malization. Unlike the models reviewed in the previous section,
the models discussed here do not require rules to interpret the out-
puts of spatial filters in order to generate an ‘output’. Rather, the
filter responses themselves constitute the output. The best-known
of model of this class is the ODOG (Oriented Difference-of-Gauss-
ian) model of Blakeslee, McCourt and colleagues (Blakeslee &
McCourt, 1999, 2001, 2003, 2004, 2005; Blakeslee, Pasieka, &
McCourt, 2005). Dakin and Bex (2003) have argued for a similar
approach but with a different model implementation, and have
applied it to the well-known Craik-Cornsweet-O’Brien illusion
(see Fig. 19). Their model is discussed again in Section 6.2.

Convolving an image with an array of narrowband, linear filters
tuned to different spatial frequencies and orientations, followed by
summation of outputs does not in itself predict brightness errors,
because if the filters form a ‘complete’ set, the output is a more-
or-less veridical copy of the original. In the Blakeslee and McCourt
approach, two processes conspire to produce brightness errors.
First, very low spatial frequencies are attenuated, and this accounts
for a variety of contrast errors such as simultaneous contrast and
grating induction (see also Shapiro, Knight, & Lu, 2008). The second
is contrast normalization, which we saw earlier was a key feature
of Rudd and colleagues’ edge-integration model. In Blakeslee and
McCourt’s ODOG model, the contrast normalization stage equates
the root-mean-square (RMS) output across the six orientation
channels, each of which is a weighted linear sum of seven spa-
tial-frequency channels. The contrast normalization stage is the
key to assimilation phenomena such as White’s Effect (Fig. 5).
The most responsive filters to White’s stimulus are the relatively
high spatial frequency, vertically-oriented filters tuned to the indu-
cer grating. Contrast normalization has the effect of reducing the
responses of these filters relative to those sensitive to horizontal
orientations. Since it is the horizontally-oriented filters that pool
the luminances of the flanking bars with those of the test patches,
the enhancement of their relative contribution is the cause of the
illusion. In Dakin and Bex’s (2003) model, the contrast normaliza-
tion equates filter responses across spatial-frequency not orienta-
tion, and they show that it provides a good explanation for the
Craik-Cornsweet-0O’Brien illusion (Section 6.2).

The idea that brightness phenomena result from the attenua-
tion of low spatial frequencies is not a new idea (e.g. see early re-
view by Kingdom & Moulden, 1988), but the idea that contrast
normalization is the key to assimilation and other brightness errors
is arguably one of the most important developments in LBT re-
search to have emerged in the past quarter century.

A particular strength of the ODOG model is that its parameters
are fixed across all stimuli to which it is applied. Another strength
is that it predicts quantitative data obtained using point-wise
brightness matching of the stimulus (as in Fig. 12), enabling bright-
ness gradients and not just uniform surfaces to be modelled.

“Contrast” theories of lightness and brightness perception, of
which multi-scale filtering models are the most modern expres-
sion, have traditionally been criticized for failing to take into
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Fig. 12. ODOG model applied to White’s Effect. (a) filter profile, (b) filters of different spatial scales are summed at a given orientation, (c) filter gains as a function of centre
spatial frequency, (d) orientations of combined filters (e) stimulus, (f) result of convolving each stimulus with d, (g) contrast normalization equates RMSs of filter outputs (h)
outputs are summed across filter orientation, (i) the continuous line is the predicted brightness of a horizontal cross-section of the stimulus, while circles are the results of
point-wise brightness matching. Figure supplied by B. Blakeslee and M. McCourt, based on Fig. 1 in Blakeslee and McCourt (1999).

account the effects of remote context, the assumption being that
they only deal with contrast in the immediate vicinity of the edge.
The models of Blakeslee and McCourt and Dakin and Bex however
should hopefully bury this red herring once and for all: in these
models remote context makes its impact through the coarse-scale
filters. Moreover, many of the phenomena traditionally explained
by ‘edge-integration’ (e.g. Fig. 7) may similarly be accounted for
by coarse-scale filtering.

Are there shortcomings to the current generation of models that
combine multi-scale-filtering with contrast normalization? A gen-
eral criticism is that they fail to deal with the effects of illumina-
tion/transparency on brightness perception. As we shall see
however, there is at present no mechanistic model of such effects,
so it is perhaps not surprising that models such as ODOG do not
deal with them. Another shortcoming, though less problematic in
the long run, is that at present multi-scale filtering models do
not account for anisotropies in the brightnesses of increments
and decrements (Corney & Lotto, 2007). However, as will be argued
in Section 5.1, this could easily be remedied by applying a suitable
non-linearity to the filter responses to embody the effects of local
light adaptation.

One other concern with ODOG is choice of filter. The ODOG re-
sponse profile does not match anything known physiologically.
There is no reason however to suppose that the use of more phys-
iologically-realistic filters such as ones modelled on cortical simple
cells should not work equally well.

Finally, however appealing is the idea that contrast normaliza-
tion is responsible for many brightness errors, there is at present

little actual evidence for it. Experiments that manipulate the
amount of contrast normalization, perhaps via adaptation or mask-
ing, in order to test whether the predicted changes in the magni-
tude and direction of brightness errors occur, would be welcome.

4.5. Intrinsic-image models

For the most part, intrinsic-image ‘models’ are not really models
at all, but rather compilations of demonstrations showing the
influence of non-uniform illumination and transparency on surface
lightness and brightness (e.g. Adelson, 1993, 2000; Adelson & Pent-
land, 1996; Albert, 2006; Arend, 1994; Bergstrom, 1994, Chap. 6;
Logvinenko, 1999; Logvinenko, Adelson, Ross, & Somers, 2005).
Some protagonist however go further and suggest that even in dis-
plays containing no obvious regions of non-uniform illumination
or transparency, the visual system assumes that some form of illu-
mination/transparency exists with profound consequences for per-
ception (Anderson, 1997, 2001; Ekroll et al.,, 2004). This latter
viewpoint should perhaps be termed the ‘strong’ form of intrin-
sic-image model, to differentiate it from the ‘weak’ form described
above which is concerned only with visible regions of illumination/
transparency.

In situations where there are visible regions of illumination or
transparency, for which both weak and strong forms of intrinsic-
image model apply, there are two issues. The first issue concerns
the cues used by vision to identify the presence of non-uniform
illumination and transparency, such as X-junctions, three-dimen-
sional shape, motion, occlusion, and colour. This issue is dealt with
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Fig. 13. Schematic of display used by Gilchrist et al. (1983). On the right is the
standard simultaneous contrast display, while on the left one half of the display
appears to be brightly illuminated. The luminances of the grey patches and their
immediate surrounds are the same in both displays. Gilchrist used real rather than
simulated illumination, and its effect on the magnitude of simultaneous contrast
was reportedly much greater than seen here. The figure is taken from Fig. 6.21 in
Gilchrist (2006) and supplied by the author.

Fig. 14. Logvinenko’s figure of a wall-of-blocks with shading. All rows of diamonds
have the same luminance but alternating rows appear to differ dramatically in
lightness and brightness. From Logvinenko (1999), supplied by the author.

in Section 8. The second issue concerns the effect of perceived illu-
mination and transparency on lightness and brightness. Some of
the contested ideas concerning the relationship between bright-
ness, lightness and layer decomposition were discussed earlier in
Section 2. Here we focus on the evidence that visible non-uniform
illuminations and transparencies influences surface brightness and
lightness.

The seminal studies by Gilchrist and colleagues (Gilchrist,
Delman, & Jacobsen, 1983; see also Gilchrist, 1988) were unques-
tionably the watershed that precipitated the recent interest in
intrinsic-image models, though the basic idea goes back to Helm-
holtz (see below). Gilchrist observed that the magnitude of simul-
taneous contrast was enhanced when the two grey patches,
normally seen as surrounded by materials of different reflectance,
were instead seen as lying in different illuminations, as illustrated
in Fig. 13. The luminance contrasts between the patches and their
immediate surrounds were kept the same under both configura-
tions, so Gilchrist argued that the enhancement of simultaneous
contrast could not be due to the effects of contrast but instead
due to the perceived non-uniform illumination.

Capitalizing on the development of computer-graphics technol-
ogy, a multitude of demonstrations soon followed. These showed
how depictions of transparency (e.g. Adelson, 1993; Logvinenko
et al., 2005), shading/shadows (Adelson, 2000; Adelson & Pentland,
1996; Knill & Kersten, 1991; Logvinenko, 1999) and figure-ground
relationships (Anderson & Winawer, 2005) could profoundly influ-
ence brightness perception. One of the author’s favourites is Log-
vinenko’s (1999) wall-of-blocks-with-shading demonstration in
Fig. 14; another celebrated example is Adelson’s (2000) ‘snake’ fig-
ure in Fig. 15. The allure of these demonstrations is the sheer mag-
nitude of their illusory brightness differences, which seem to far
surpass those of standard simultaneous contrast displays. All ap-
pear to demonstrate that with depictions of non-uniform illumina-
tion or transparency, brightness shifts dramatically towards the
‘true’ lightnesses of the test regions ‘beneath’ the transparencies/
shadows. So impressive are these brightness illusions that many
in the vision community have come to eschew the importance of
basic luminance relations for brightness perception in favour of
the idea that intrinsic-image relations are all that are really
important.

Impressive as these demonstrations are, caution must be exer-
cised when interpreting them (Kingdom, 2003a; Todorovic,
2006). Consider the snake/anti-snake figure. The difference in
brightness between the two rows of equiluminant diamonds is
clearly much bigger in the snake than it is in the ‘control’, anti-
snake figure. The argument goes that because the corresponding
rows of diamonds in the two figures have the same luminance con-
trast with their immediate surrounds, the difference in illusion
magnitude must be a result of the apparent transparency in the
snake figure. The problem with this argument is that it is not the
case that the luminance contrasts in the snake and anti-snake
are equivalent, providing one accepts that luminance contrast is
not just something that happens “at the edge”, but involves the
wider context. In the snake figure, the upper row of diamonds is
surrounded by a larger area of black, and the lower row of dia-
monds by a larger area of white, than the corresponding diamonds

Fig. 15. Adelson’s ‘snake’(left) and ‘anti-snake’(right) figures. The small diamonds in both figures all have the same luminance. The brightness difference between the upper
and lower rows of diamonds is much bigger in the snake compared to the anti-snake. From Adelson (2000), supplied by the author.
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in the anti-snake figure. Although it seems unlikely, it is hard to be
certain that local luminance contrasts operating at multiple spatial
scales are not the reason for the difference in size of illusion in the
two figures (Kingdom, 2003a; Todorovic, 2006).

Few researchers have seriously attempted to tackle this prob-
lem. One exception is an experiment conducted by Kingdom
etal. (1997). They used a stimulus designed to minimize the differ-
ence in luminance relations between the with- and without-trans-
parency conditions. They found that the depicted transparency did
have an impact on brightness, as in Adelson’s and Logvinenko’s
figures, though in general the effects were quite small with the
biggest effect being about a factor of two.

What of the strong form of intrinsic-image model? The roots of
the strong form lie in (one of) Helmholtz’s (1866/1962) explanations
of simultaneous colour (i.e. chromatic) contrast (see Kingdom,
1997). Helmholtz opined that two identical-in-colour patches set
against differently-coloured backgrounds appeared different in col-
our because it was assumed that they were bathed in differently-
coloured illuminations; for if the patches are differently-illuminated
yet identical in reflected colour, they must, by inference, have differ-
ent surface colours. This explanation is underpinned by the idea that
prior knowledge about the conditions in which non-uniform illumi-
nation normally occurs leads to assumptions about non-uniform
illumination being present even if there are no strong cues.

The evidence in support of the strong form of intrinsic-image
model includes those demonstrations described above that support
the weak form of the model. For example, support comes from the
observation that simultaneous contrast is increased when the two
patch backgrounds appear as different illumination rather than
reflectance regions (Gilchrist et al., 1983; Williams, McCoy, &
Purves, 1998b). The argument goes that if simultaneous contrast
is especially large when strong illumination cues are present, then
inferred illumination must be the cause of simultaneous contrast
even in the absence of those cues. The problem with this argument
is that it imputes causality by association. Consider in this regard
Anderson’s (2001) account of White’s Effect (Fig. 5). Anderson cor-
rectly notes that one obtains impressions of transparency and occlu-
sion for the test bars placed on, respectively, the black and white
phases of the grating, and concludes that the illusion must be a re-
sult of the effects of layer decomposition, or “scission”. However,
the illusion is pronounced for single test bars (e.g. Moulden and
Kingdom, 1989) and occurs even when the T-junctions at the ends
of the test bars (which are regarded as critical to the impressions
of occlusion and transparency) are eliminated through the use of
ellipsoid-shaped test bars (Yazdanbakhsh, Arabzadeh, Babadi, &
Fazl, 2002). Moreover, provided the gratings are of relatively high
spatial frequency, the same direction of illusion as White’s Effect
is observed in continous circular test bars embedded in circular
gratings, i.e. also without T-junctions (Hong & Shevell, 2004a,
2004b). It is hard to convince oneself that in those versions of
White’s Effect and its relatives that do not elicit impressions of
transparency and occlusion, transparency and occlusion are the
cause.

A current limitation of all intrinsic-image models is that they of-
fer no mechanistic explanation as to how layer decomposition is
combined with luminance values to compute lightness.

Notwithstanding the above caveats, intrinsic-image models
have provided a lush new terrain for exploring both the visual cues
that facilitate layer decomposition and the impact of non-uniform
illumination and transparency on our perception of brightness and
lightness.

4.6. Empirical models

In their “empirical” approach to lightness perception, Purves
and Lotto (2003) suggest that when organisms are confronted with

the need to identify reflectances in the context of spatially non-
uniform illumination, they estimate the most likely reflectance val-
ues based on the pattern of luminances observed together with
their knowledge of image statistics learnt through goal-directed
behaviour. Lightness illusions occur because in any given situation
the most likely value of reflectance will often differ from its true
value. For example, in the case of simultaneous contrast, Purves
and Lotto argue that patches on dark backgrounds are more likely
to be lying in shadow compared to patches on bright backgrounds,
and hence that two equal-in-luminance patches, one on a dark the
other on a bright background, will likely have a different reflec-
tance, and that is how they are perceived (Purves & Lotto, 2003 -
for details see Williams, McCoy, & Purves, 1998a). Other illusions
such as Mach bands and the Craik-Cornsweet-O’Brien illusion
(Fig. 19) are similarly explained: the illusory percepts match
physical illumination patterns that often arise because of the
way non-diffuse illumination is reflected from the surfaces of
three-dimensional objects. Moreover, according to Nundy and
Purves (2000), the scaling of brightness values (Section 5) is also
explicable in terms of learned image statistics.

At first sight the empirical approach appears to echo that of
intrinsic-image models: note the similarity between the empirical
explanation of simultaneous contrast and that given by Helmholtz
described above. However there is nominally at least an important
difference. With intrinsic-image models the visual system decom-
poses the image into separate representations of illumination and
reflectance prior to coding the lightnesses of the reflectance layer.
In the empirical approach no process of layer-decomposition
occurs. Rather, image statistics learnt through goal-directed behav-
iour are used to make lightness estimates. To illustrate the differ-
ence with the intrinsic-image approach and to demonstrate the
operation of the empirical approach as it relates to lightness errors,
Corney and Lotto (2007) trained an artificial back-propagation
neural network to identify the reflectances of target surfaces in
synthetic images. The synthetic images consisted of three-dimen-
sional arrangements of multiple-sized reflectance patches subject
to simulated non-uniform illumination. The only sense data avail-
able to the network were the luminances of the patches, so the net-
work had to learn to identify surface reflectance in spite of the
inherent ambiguity of patch luminance. Having learned to identify
the target reflectances in the synthetic images to a criterion level of
accuracy, the network was then given the task of estimating the
reflectances of target patches in classic lightness-illusion displays
such as simultaneous contrast, White's Effect and Mach bands.
The network made very similar lightness errors to those reported
by human observers.

Is the empirical approach really different from the mechanistic
accounts of lightness errors discussed elsewhere in this section? It
has been understood for some time that visual mechanisms have
evolved to code the useful information in the visual environment
world in an optimally efficient manner (Field, 1994; Geisler,
2008; Olshausen & Field, 2004). The pivotal idea in the empirical
approach, namely that knowledge of image statistics learnt
through goal-directed behaviour leads to predictable lightness er-
rors, is not a far cry from the idea that visual mechanisms have
evolved to encode the useful image statistics in the environments
and that these mechanisms produce lightness errors. For example,
the response of a cortical bandpass filter is designed to be largely
invariant to the ambient level of illumination, so the output of such
filters will, on average, more closely correlate with the pattern of
image reflectances than with the pattern of image luminances. In
other words cortical bandpass filters serve to reduce the range of
lightness values from which the visual system has to choose. By
the same token, a mechanism that discounts spatially-varying
illumination via a process of layer decomposition also reduces
the potential range of lightness choices. In short, the mechanisms
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deployed by vision for coding lightness (bandpass spatial filtering,
contrast gain control, layer decomposition, etc.) have been honed
during evolution and/or development to maximize the probability
of judging lightness correctly, but being imperfect they neverthe-
less make errors. The difference between the empirical and mech-
anistic approaches to lightness perception then seems to come
down to the type of image statistics exploited by vision for judging
lightness. For example the process of layer decomposition is be-
lieved to exploit relatively high-order statistical relations such as
X-junctions and three-dimensional shape (Kingdom, 2008),
whereas the neural networks employed in Corney and Lotto’s
study presumably captures relatively low-order image statistics.
The exploitation of high-order image statistics is a defining prop-
erty of our visual system, so we should not be surprised that these
statistics are used by vision for judging lightness. Therefore, we
will conclude that the main contribution of the empirical approach
is in impressing upon the vision community the need to under-
stand the role of image statistics in the visual system’s computa-
tion of lightness.

4.7. Summary

Three promising theoretical developments of the past quarter
century for understanding the role of context in lightness and
brightness perception are 1. multi-scale filtering combined with
contrast normalization, 2. the idea that the visual system performs
intrinsic-image, or layer decomposition, and 3. that an understand-
ing of image statistics is important to an understanding of light-
ness errors. Multi-scale filtering, when combined with contrast
normalization, has the potential for dealing with complex stimuli
such as images of natural scenes. An important refinement to this
approach will be the incorporation of the effects of local light adap-
tation to model anisotropies in the brightness of increments and
decrements (see Section 5.2). Intrinsic-image approaches have
helped refine our understanding of the cues available to vision
for segmenting the image into reflectance, illumination and trans-
parency (see Section 8), and have demonstrated the importance of
layer decomposition for brightness and lightness perception. How-
ever, intrinsic-image studies are at present compromised by inad-
equate controls for ruling out the effects of contrast. Finally, both
multi-scale filtering and intrinsic-image approaches will continue
to benefit from a deeper understanding of image statistics.

5. Question 4: What is the function relating brightness to
contrast in simple patch-surround displays?

A quarter of a century ago there was no clear formulation of the
relationship between brightness and contrast for the simple case of
a patch on a uniform background. This situation has been remedied
largely by Whittle (1986, 1992; summarized along with earlier
relevant studies in Whittle, 1994a). Using the haploscopic
superimposed-background display described in Section 3, Whittle
measured the brightness of patches across a wide range of back-
ground luminances and increment contrasts, and, presciently,
across the full range of decrement contrasts. The measurements
were obtained from three tasks: brightness matching, brightness
discrimination and brightness scaling. The results turned out to
be closely related. Whittle coined the term “contrast-brightness”
to capture the intimate relationship he observed between bright-
ness and contrast (Whittle, 1994a).

5.1. Log W

Whittle showed that a simple metric of contrast captured the
relationship between brightness and contrast for patch-on-back-

increment decrement

AL

AL

;A
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W= AL/ (L nin+k)

Fig. 16. Calculation of W for both an increment and a decrement.

ground stimuli: log W. In log W, W = AL/(Lpn + k), where AL is
the difference in luminance between patch and background, L,
is the smaller of the patch and background luminances, and k is
a constant that prevents W approaching infinity when L, ap-
proaches zero. k can be regarded as a measure of the internal noise
level when luminance is zero, but if L, is not close to zero the
constant can be safely omitted. Fig. 16 illustrates how W is calcu-
lated for both an incremental and decremental patch. Note first
the difference between W and the two more commonly employed
measures of contrast: Weber contrast and Michelson contrast.
Weber contrast is defined as AL/L,, where Ly is the background
luminance, and Michelson contrast as (Lmax — Lmin)/(Lmax * Lmin)-
In the parameters of the figure, Michelson contrast translates to
AL/(2L, + AL) for the increment and AL/(2L, — AL) for the decre-
ment. Note that W is calculated differently for the increment and
decrement, because L, is the background luminance for the
increment but the patch luminance for the decrement.

Fig. 17 shows data from Whittle (1992) along with an illustra-
tion of the two types of measurement involved: brightness scaling
and brightness discrimination. In the brightness scaling experi-
ment, subjects set the luminances of a series of patches so that
they appeared to be at equal brightness intervals. The data
(Fig. 17a, closed squares) are the differences in AL, termed AL, be-
tween adjacent settings as a function of the luminance of the lower
setting. The brightness discrimination data, shown as crosses, are
taken from Whittle (1986). These were the just-noticeable-differ-
ences (JNDs) in patch luminance, with one of the patches serving
as a baseline, or ‘pedestal’. The AL values in this case are therefore
threshold luminance differences, and have been scaled upwards by
a suitable factor to bring them into line with the brightness scaling
A2Ls. For both tasks, A’L rises with pedestal luminance for incre-
ments, but is inverse-U-shaped for decrements. Fig. 17c shows that
when the data are re-plotted in terms of log W, the increment and
decrement data nearly superimpose and are linearized.

Why does log W capture the brightness behaviour of both incre-
ments and decrements? The likely reason is that it encapsulates
two visual processes: local light adaptation and a compressive,
specifically logarithmic, contrast non-linearity (Kingdom & Whit-
tle, 1996, see also Mcllhagga & Peterson, 2006). In all metrics of
contrast, the light-adaptation level is embodied in the equation’s
denominator, and with the denominator set to Ly, W embodies
the idea that a neural filter sensitive to patch contrast light-adapts
to the lower of the two luminances falling within its receptive field.
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Fig. 17. (a) Data from two types of task, contrast discrimination (crosses) and brightness scaling (filled squares). (b) Illustration of the two types of task, from Kingdom,
(2003a). (c) Data from the brightness scaling, and in the inset from the brightness discrimination task, re-plotted in terms of log W. Both graphs reproduced from Whittle

(1992).

With regard to the logarithmic transformation of W, this presum-
ably embodies the ‘true’ shape of the contrast transducer, and is
notably different from the power exponent typically used to model
contrast behaviour when using Michelson contrast (see Kingdom &
Whittle, 1996).

Is log W useful in situations other than that of the haploscopic
superimposed-background display? The brightness scaling data
in Fig. 17 was measured for a number of patches presented along-
side each other on the same background, and Kingdom and Whittle
(1996) found that log W was a good model of grating contrast dis-
crimination. In both these studies however, the test patches/grat-
ings were on a common background, as one perceives in the
haploscopic display. However for the conventional simultaneous
contrast display, in which two different backgrounds are viewed
side-by-side, log W ostensibly runs into difficulties (Whittle,
1994b). For example, for corresponding increment and decrement
patches with the same luminance ratios, log W predicts that two
equal-in-luminance increments on different backgrounds should
appear no less different in brightness than two equal-in-luminance
decrements on different backgrounds, whereas most of the data
shows the brightness difference to be bigger for decrements
(Whittle, 1994b). However, this may simply reveal the limitations
of considering log W solely in terms of the simple patch-
background arrangement. Log W may turn out to be useful

complex displays if incorporated at the individual filter response
level of a multi-scale transformation. Log W thus remains to this
day an under-appreciated theoretical tool in vision research.

5.2. Increments versus decrements

Although log W is a good model for increment and decrement
brightness perception, it does not follow that it is instantiated by
a single mechanism. An enduring home-truth of the past quarter
century is that increments and decrements are processed in differ-
ent neural pathways. This should be seen against the notable fail-
ure to find consistent evidence that edges enjoy dedicated
channels (e.g. Burr et al., 1989 versus Huang et al., 2006). It would
appear that the visual system possesses specialized mechanisms
for encoding the two luminance-contrast polarities of even-sym-
metric stimuli (e.g. bars, patches), but no specialized mechanisms
for either contrast-polarity of odd-symmetric stimuli (e.g. edges).
This leads to the idea that the discrimination of opposite polarity
edges, and of edges from bars, is based on the spatial ordering of
even-symmetric detector responses. Put another way, a black-
white edge is a decrement abutting an increment and a white-
black edge is an increment abutting a decrement. The fact that
the brightnesses either side of an edge can extend to infinity
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merely alludes to the fact that increment and decrement channels
operate at multiple spatial scales.

The evidence for separate channels for increments and decre-
ments is both physiological--specifically the “On” and “Off’” path-
ways of the mammalian visual system beginning in the retina
(Schiller, 1982; and for a review see Fiorentini, Baumgartner,
Magnusson, Schiller, & Thomas, 1990)--and psychophysical (re-
viewed by Huang et al., 2006). Phenomenologically, it is striking
how difficult it is to find a luminance setting of an increment that
matches the brightness of a decrement and vice versa: they simply
never look the same. Increments invariably appear brighter than
decrements whatever their luminance or contrast. A simple dem-
onstration of the categorical nature of increment and decrement
perception is shown in Fig. 18 (from Kingdom, 2003a). Fusion of
the two stereo-halves reveals two fusible and one rivalrous ste-
reo-pair. The difference in luminance between the top two incre-
ments, and between the bottom two decrements, is much greater
than between the increment-decrement pair in the middle, yet
only the top and bottom pair fuse to produce patches more-or-less
midway in brightness between their monocular half-images. It
should be noted however that Fig. 18 is equally consistent with
the view that opposite edge-polarities, not increments versus
decrements, cannot be fused.

5.3. Summary

Log W represents an important development in our understand-
ing of brightness and lightness perception, one that will likely
prove seminal in our understanding of a number of anisotropies
in increment and decrement brightness. Increments and decre-
ments, not edges and bars, are processed in separate neural
channels.

6. Question 5: How are brightness and lightness “filled-in?

A quarter of a century ago it was virtually axiomatic that the
brightness and lightness of a uniform region was computed by a
process that began with the detection of the region’s edges and
was then followed by a propagation, or spreading of neural activity
to “fill-in” the region in between. This idea, along with its corollary
that brightness and lightness values are determined by what hap-
pens “at the edge” (because the putative edge detectors are neces-
sarily small-in-scale otherwise there would be no need for filling-
in), continues to exercise a powerful hold on our thinking (e.g.
Grossberg & Todorovic, 1988; Paradiso & Nakayama, 1991; Rossi
& Paradiso, 1996). The term “filling-in” is not however synony-
mous with neural spreading. Filling-in has been used as a meta-
phor for both edge integration as well as the representation of
uniform areas by low spatial frequencies (see later this section).

Fig. 18. Increment and decrement perception is categorical. When free-fused, the
two decrements (top) and the two increments (bottom) easily fuse, but the
increment-decrement pair in the middle whose luminance difference is actually
smaller, is rivalrous. From Kingdom (2003a).

/I/

Fig. 19. Craik-Cornsweet-0O’Brien illusion. The figure appears like a step-edge, but
its luminance profile below shows otherwise.

However it is with the idea that filling-in involves neural spreading
that is of issue here.

Interestingly, the primary test-bed of the idea of neural spread-
ing, for both protagonists and adversaries alike, has been induced
(or illusory) brightness phenomena, even though the principle of
neural spreading applies to both real and illusory brightness.
Although anecdotal evidence against the idea of neural spreading
has been prevalent in the literature for some time (e.g. Kingdom,
2003a), two recent studies by Dakin and Bex (2003) and Blakeslee
and McCourt (2008) have been instrumental in persuading a num-
ber of people, the present author included, that neural spreading,
at least as it relates to brightness perception, is a myth. However,
before reviewing these studies, recent evidence in support of the
neural spreading hypothesis should be discussed.

6.1. Evidence for the neural spreading hypothesis

The main approach to evidencing neural spreading has been to
demonstrate that it has a time course. In one study, Paradiso and
Nakayama (1991) flashed a large white disk followed by a mask
consisting of a white ring on a black background. The mask was
found to reduce the brightness of the target within the region
bounded by the ring, as if the ring prevented the brightness signal
from propagating inwards from the target’s edges. Moreover, as the
white disk was increased in size relative to the ring, masking was
obtained at longer inter-stimulus-intervals, consistent with the
idea of a time course for the propagation. In another study,
Paradiso and Hahn (1996) showed that steadily decreasing, or
increasing the luminance of a disk led to a slight delay in the cor-
responding brightness changes in the disk’s centre, again consis-
tent with a time course for the propagation. Rossi and Paradiso
(1996)used a similar approach with a square-wave grating. They
temporally modulated alternate bars of the grating while holding
the luminance of the other bars constant, and measured the tem-
poral-frequency at which the induced brightness modulation dis-
appeared, which they termed the “critical flicker frequency” or
CFF. For narrow-bar gratings the induced CFF was around 5 Hz,
decreasing to around 2 Hz as bar width was increased. Because an
increase in bar width would be expected to increase the CFF if the
brightness modulation came from a real luminance modulation,
the fact that it decreased, and by an amount that was width-depen-
dent, suggested that there was a slow filling-in process for the in-
duced brightness modulations. Attempts to put a precise value on
the time course of the putative neural spreading process in the
above studies were hampered however by imprecision. Robinson
and de Sa (2008) were more successful in this regard; they used a
similar induction stimulus to Rossi and Paradiso but used static pre-
sentations and a noise mask, and found that brightness induction
was still visible with presentations as brief as 58 ms.

Single unit recordings, some of which have produced evidence
in support neural spreading, have also failed to come up with a
consistent value for its time course. Hung, Ramsden, and Roe
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(2007) based their estimates on spike temporal correlations, and
concluded that filling-in within V1 travels between 1300 and
2400 deg/s, and as fast as 4000 deg/s when going from V1 to V2.
The authors pointed out however that the spreading activity in
V1 that they measured was unrelated to perceived brightness. In
contrast, Huang and Paradiso (2008) found that many cells in V1
fired much earlier to a contrast border than to the interior of a large
uniform region and calculated the propagation speed to be about
270 deg/s.

The evidence from fMRI studies is contradictory with regard to
neural spreading, with a study by Pereverzeva and Murray (2008)
in favour and one by Cornelissen, Wade, Vladusich, Dougherty, and
Wandell (2006) against.

6.2. Evidence against the neural spreading hypothesis

Blakeslee and McCourt (2008) attempted to measure the time
course of brightness induction in the grating-induction stimulus
(Fig. 10) using a highly-sensitive method that afforded millisecond
precision. They employed the quadrature motion technique to ex-
ploit the visual system’s excellent motion sensitivity in order to
leverage tiny temporal differences into conspicuous changes in
motion direction. If two counterphasing gratings with phases in
spatial and temporal quadrature (i.e. differing by one-quarter cycle
in both space and time) are summed linearly, a moving grating re-
sults. The travelling wave moves leftwards when the temporal
phase difference is minus one-quarter cycle, and rightward when
the temporal phase difference is plus one-quarter cycle. When
the temporal phase difference is zero the sum is a standing wave.
By counterphasing the inducing grating of a grating-induction
stimulus, Blakeslee and McCourt produced a counterphasing in-
duced grating whose spatial phase was opposite to that of the
inducing grating but whose temporal phase lagged the inducing
grating by 180° plus some unknown quantity that depended on
the time lag of brightness induction. They added to the induced
grating a like-frequency luminance grating that was counterphas-
ing in spatial quadrature to the inducing grating, but varying in
temporal phase. They found that the temporal response of the in-
duced brightness differences lagged by less than 1 ms, and further-
more was constant across wide variations in test field height. The
fact that a method capable of measuring the time course of bright-
ness induction with millisecond precision showed that it is virtu-
ally instantaneous must be seen as a serious blow to the idea of
neural spreading.

The second major piece of evidence against neural spreading
comes from a study by Dakin and Bex (2003). They took a new look
at what is often heralded as the flagship of neural spreading: the
Craik-Cornsweet-0O’Brien (CCOB) illusion (see the varieties of this
illusion in Todorovic, 1987), a version of which is shown here in
Fig. 19. In the CCOB stimulus a step function in luminance is con-
nected by sharp ramps to uniform, equal-in-luminance regions on
either side. Yet the stimulus appears compellingly like a real step-
edge (indeed one of the methods for constructing a CCOB pattern is
to high-pass filter an actual step-edge). The proponents of the neu-
ral spreading idea suppose that neural signals propagate outwards
from the edge to fill in the regions either side and deliver the illu-
sion. Dakin and Bex (2003) however show in Fig. 20 that the CCOB
is critically dependent on the presence of residual low-spatial-
frequency information, in sine-phase, at the edge: if the low fre-
quencies are phase-scrambled, the illusion disappears. They pro-
pose that contrast normalization, which in their model has the
effect of equalizing the energy across log bands of spatial fre-
quency, boosts the residual low-frequency information and it is
this that produces the illusion. They also show, as did Burr
(1987), that filling the CCOB stimulus with luminance noise, which
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Fig. 20. (a) input image; (b) high-pass filtered gives the Craik-Cornsweet-O’Brien
illusion; (c) if the low frequencies are completely removed rather than attenuated,
the illusion disappears; (d) adding luminance noise to b. does not destroy the
illusion. Below each figure is the cross-section luminance profile at the point
marked by the short horizontal lines. From Dakin and Bex (2003), supplied by the
authors.

would be expected to prevent any propagation of neural signals
from the edges, fails to destroy the illusion.

A phenomenon related to the CCOB illusion is the Missing Fun-
damental (MF) illusion (Campbell, Howell, & Robson, 1971; Camp-
bell, Howell, & Johnstone, 1978). A square-wave grating with its
fundamental Fourier component removed appears indistinguish-
able from a square-wave provided its contrast is below that neces-
sary for the fundamental to be visible if presented alone (Campbell,
Howell, & Johnstone, 1978), a finding confirmed also for aperiodic
stimuli (Burr, 1987; Kingdom, 1996). By definition linear filtering
cannot restore a missing Fourier component no matter what the
centre frequency, bandwidth or gain of the filters, so the Dakin
and Bex (2003) model cannot predict the MF illusion (confirmed
by Dakin, personal communication). Campbell et al.’s (1971) expla-
nation for why the MF appeared like a square-wave is the so-called
“default to square-wave” rule, which although arguably ad hoc, re-
mains to this day unchallenged. Therefore, although Dakin and
Bex’s model fails to predict the MF illusion, it is arguably salvage-
able by inclusion of this rule.

The view that illusory filling-in phenomena such as the CCOB
illusion are explained by the enhancement of low frequencies via
contrast normalization, rather than neural spreading, has consider-
able appeal. Apart from fitting so well with our current under-
standing of cortical processing and being consistent with other
evidence against neural filling-in, it has the additional merit of
putting filling-in phenomena such as the CCOB illusion within
the same theoretical framework as assimilation phenomena, which
as we have seen are also explicable in terms of contrast normaliza-
tion. It will be interesting to see if other filling-in phenomenon that
have so far evaded explanation in terms of contrast normalization
can be similarly explained. Two phenomena that spring to mind
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are the watercolour illusion (Pinna, Brelstaff, & Spillman, 2001) and
neon-colour-spreading (Anderson, 1997; Bressan, Mingolla,
Spillmann, & Watanabe, 1997; Hoffman, 1998), both particularly
striking in their chromatic versions.

6.3. Summary

The idea that brightness “filling-in” of uniform regions is med-
iated by neural spreading has been seriously challenged by two
sets of findings: 1. That brightness induction is near-instantaneous
and 2. That the Craik-Cornsweet-0'Brien illusion is dependent on
the presence of residual low-frequency information and is not dis-
rupted by the addition of luminance noise. “Filling-in” should at
best therefore be considered as a metaphor for the representation
of uniform regions by relatively low spatial frequencies. These low
spatial frequencies may in some circumstances be enhanced by
contrast normalization. Low spatial frequency enhancement by
contrast normalization might explain a range of illusory phenom-
ena that have hitherto attracted less parsimonious theoretical
treatment.

7. Question 6: How are relative lightness values converted to
absolute ones?

Gilchrist (2006) defines anchoring as “...a rule that identifies a
specific value of lightness with some physical property of the im-
age (highest luminance, average luminance, average area)”. He ar-
gues that most evidence supports the idea that the lightness
anchor is the highest luminance in the display, which is designated
white, an idea suggested originally by Wallach (1976), incorpo-
rated into models of lightness constancy such as the Retinex (Land
& McCann, 1971), and assumed to be the case by some other
researchers (e.g. Horn, 1986; Marr, 1982). Historically, the other
main contender for the lightness anchor is the average scene lumi-
nance, designated as mid-grey (Buchsbaum, 1980; Hurlbert, 1986;
Hurlbert & Poggio, 1988). One model has posited that both the
highest and the surround luminance are used as anchors (Bressan,
20064, 2006b).

Li and Glichrist (1999), and more recently Gilchrist and Rado-
njic (2009), tested between the two main anchor contenders. Sub-
jects viewed a dome that filled the entire field of view, with one
half painted black the other mid-grey, creating an approximately
5:1 luminance range. Subjects reported that the mid-grey half
looked white and the black half mid-grey. Using a more complex
stimulus, Cataliotti and Gilchrist (1995) presented observers with
a 15-patch Mondrian containing a restricted range of greys from
black to mid-grey. The Mondrian was either presented in a spot-
light within an otherwise dimly lit room or in a closed chamber.
The highest luminance was seen as white, while no black surfaces
were seen.

Although this evidence supports the idea that the highest lumi-
nance is white, the rule as it stands is untenable. First, as Gilchrist
(2006) himself points out, surfaces can appear white even in rooms
where the light source, for example a fluorescent light, is clearly
visible and invariably the highest luminance. Second, the shad-
owed area in the photograph in Fig. 2 looks white, even though it
is not the highest luminance in the image. These observations
point inexorably to the alternative suggested by Rudd and Zemach
(2005): white is determined not by the highest luminance but by
the highest lightness. If this is true anchoring must follow rather
than precede (or at least be independent of) any process of layer
decomposition.

Bressan (2006a) has published a compelling figure shown here
in Fig. 21 that at first sight also appears to contradict the highest
luminance rule. The alternating rows of diamonds, as well as the

Fig. 21. Bressan’s figure challenges the highest-luminance-is-white rule. The
different rows of diamonds, as well as the white of the surrounding paper all have
the same luminance, yet appear markedly different. From Bressan (2006a), supplied
by the author.

background white of this paper, are all of the highest luminance,
yet look strikingly different in lightness. However, readers may
perceive the very bright diamonds in Fig. 21 as self-luminous,
and if so the white appearance of the surrounding paper and inter-
vening rows of diamonds is consistent with a ‘highest’ rule, but
highest lightness not highest luminance.

Experiments on anchoring have invariably employed simple
two-region or Mondrian-like displays, and thus we know little
about how relative lightness values are anchored in complex stim-
uli such as natural scenes. It is possible for example that no one
surface in the image serves as the anchor for the whole image, as
Bressan (2006a) has suggested, whether encoded before or after
layer decomposition, and that instead anchoring operates at multi-
ple spatial scales. It will be interesting to see if the multi-scale fil-
tering approach to brightness perception described earlier can be
made to incorporate anchoring at different spatial scales to enable
it to predict absolute lightness.

7.1. Summary

While some evidence favours the highest-luminance-is-white
rather than average-luminance-is-grey anchoring rule, a plausible
alternative is that it is the highest lightness not highest luminance
that serves as the anchor, implying that anchoring is instantiated
after the process of layer decomposition. At present however little
is known about how anchoring operates in complex stimuli, such
as natural scenes. Anchoring in complex stimuli may be instanti-
ated at multiple spatial scales.

8. Question 7: What are the cues for perceiving non-uniform
illumination and transparency?

During the past quarter-century a considerable effort has been
made towards identifying the cues that enable observers to distin-
guish between reflectance surfaces, transparent media and various
types of non-uniform illumination, such as shadows, shading,
spotlights, light sources and specular reflections. The cues that
have been identified as useful to vision for this purpose are
wide-ranging and include photometric, chromatic, geometric, fig-
ural, motion, depth and shape cues. A catalogue of these cues
and an examination of how they are used by vision has recently
been provided by the present author in a separate review
(Kingdom, 2008), and the interested reader is therefore directed
to this source.
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9. Question 8: What are the dimensions of perceptual
transparency and how are they encoded?

Metelli’'s (1974) classic study on perceptual transparency
launched a distinct sub-discipline within vision science that has
proved fertile ground for both creativity and controversy (e.g., Al-
bert, 2006, 2008; Anderson, Singh, & Meng, 2006; Gerbino, 1994,
Chap. 5; Gerbino, Stultiens, Troost, & de Weert, 1990; Kasrai &
Kingdom, 2001; Masin, 2006; Masin, Tommasi, & Da Pos, 2007;
Robilotto, Khang, & Zaidi, 2002; Robilotto & Zaidi, 2004; Singh &
Anderson, 2002a, 2002b, 2006). This section examines recent ideas
on the perceptual dimensions of transparency, that is the dimen-
sions along which human observers naturally decompose transpar-
ent media.

9.1. Physical transparency

In the introduction it was argued that the two critical physical
properties of transparent media are transmittance, which is the
proportion of light that passes through the medium, and reflec-
tance, which is the proportion of light reflected from the medium.
Fig. 22 shows a simulated transparency overlaying a bipartite
background, resulting in four luminances: A, B, P and Q. Metelli’s
(1974) original equations for transmittance and reflectance were
formulated in terms of the reflectances of the surfaces involved,
but Gerbino (1994, Chap. 5) has re-cast them in terms of lumi-
nances, making them more amenable to analysis for transparencies
simulated on CRT displays where luminance is the variable.
Although Gerbino’s formulations make some simplifying assump-
tions about the passage of light through the transparent medium
to the surface beneath and then back to the observer, the transmit-
tance t and reflectance r of the transparency can be approximated

by:

P-—
'=a B M
_AQ —BP

“A B @

(Gerbino, 1994, Chap. 5; Kasrai & Kingdom, 2001) (an alterna-
tive formulation is provided by Beck, Prazny, & Ivry, 1984, and
one based on a different physical model of transparency by Robil-
otto et al. (2002) and Robilotto and Zaidi (2004)). Egs. (1) and (2)
suffice to show that a minimum of four luminances are required
to determine both t and r.

A

Fig. 22. Simulated transparency of a bipartite background. The luminances A, B, P
and Q are sufficient to specify the transmittance and reflectance of the
transparency.

9.2. Perceptual dimensions of transparency

The physical analysis of transparency in terms of t and r raises
the question of whether the perceptual dimensions of transpar-
ency axe correlates of these two dimensions. The issue is contro-
versial. Singh and Anderson (2002a, 2002b, 2006) and Anderson
et al. (2006) have argued from transparency matching data that
the two perceptual dimensions of transparency are not correlates
of t and r, but instead opacity, or ‘hiding power’ (which they regard
as the inverse of perceived transmittance) and lightness. On the
other hand Albert (2006, 2008), based on his own transparency
matching data, disputes this claim, and Petrini and Logvinenko
(2006), using a multi-dimensional scaling (MDS) method, find evi-
dence in support of t and r as the two perceptual dimensions. In
Petrini and Logvinenko’s study subjects were required to rate the
perceived dissimilarity of pairs of transparencies that varied in
both t and r, and found that the output configuration from the
non-metric MDS was two-dimensional, with one dimension corre-
lated with t, the other with r.

In motivating their case for opacity and lightness as the two
perceptual dimensions of transparency, Singh and Anderson
(2002a) make the important point that the perceptual representa-
tion of transparency is likely to be based on computations that
make up the common currency of perception, for example contrast
and lightness. They suggest that perceived transmittance (the in-
verse of opacity) is proportional to the ratio of two contrasts: the
contrast of the transparency region and the contrast of the back-
ground. Later they modified this formulation to express the ratio
in terms of perceived rather than physical contrast (Anderson
et al., 2006), but for brevity we will refer to the model as the
‘ratio-of-contrast’ model. Interestingly, although Singh and Ander-
son (2002a) identify a ratio-of-contrast computation with per-
ceived transmittance, the measure correlates better with r than ¢,
since when a transparency takes on a reflective component (i.e. r
becomes non-zero), which adds a constant luminance to the
transparency region, its physical contrast decreases. In keeping
with Singh and Anderson (2002a), Robiloto et al. (2002) and Robil-
otto and Zaidi (2004) found that subjects matched transparencies
on the basis of their contrasts, even though the precise dimensions
along which they were required to match were unspecified and
they were instructed simply to match “transparency”.

To obtain a flavour of how these conflicting views on the per-
ceptual dimensions of transparency relate to the physics of trans-
parency, consider the simulated transparencies in Fig. 23 along
with their descriptions in terms of their qualitative differences in
t and r. The condition in which the ratio-of-contrast model is most
noticeably at odds with a model based on t is when r=0, i.e. a
transparency without a reflective component.! Two such transpar-
encies are shown at the top of Fig. 23. When r = 0, the effect of trans-
parency on luminance is purely multiplicative, so for a given
background, varying t does not change the physical contrast of the
transparency region. Moreover for all backgrounds when r =0, the
ratio-of-contrasts for all t is unity. Thus if the evidence were to show
that observers perceive the different ¢ but same r = 0 transparencies
at the top of Fig. 23 as markedly different in perceived transmittance,
the ratio-of-contrast model of perceived transmittance would clearly
be wrong. However, if the evidence were to show that the two trans-
parencies were not perceived as significantly different in transmit-
tance, then this would be consistent with the ratio-of-contrast
model.

1 If contrast is calculated by Michelson contrast (Singh & Anderson, 2002a), the
contrast of the transparency region is (P — Q)/(P+Q), and that of the background
(A —B)/(A+B). The ratio of contrasts is then [(P— Q)/(A-B)] % [(A+B)/(P+Q)], or
tA+B)/(P+Q).
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t=high t=low
F=zero r=zero
t=high t=low
r=med. r=med.
t=med. t=med.
r=high . r=low

Fig. 23. Simulated transparencies varying in transmittance t and reflectance r. The
qualitative descriptions are given next to each transparency. med. = medium. Note
that on an uncalibrated monitor these reproductions may not be accurate.

For the middle and bottom pair of transparencies in Fig. 23, the
relative contrasts of the transparency and background appear to
correlate more closely with t and so the difference between the
two models is less apparent. Therefore, whether the perceptual
dimensions of transparency are opacity (defined by the ratio-of-
contrasts) and lightness, as suggested by Singh and Anderson
(2002a), or whether the perceptual dimensions of transparency
are correlates of t and r (e.g. Petrini & Logvinenko, 2006), hinges
to a large extent on whether or not observers perceive non-reflec-
tive transparencies (those with r = 0) with very different t as also
very different in perceived transmittance.

One reason why the data obtained so far has failed to resolve
this issue is because of limitations in current transparency-match-
ing protocols. Psychophysical studies that have employed match-
ing protocols to study transparency have invariably required
subjects to adjust one of the parameters of a simulated transpar-
ency to match some pre-specified dimension (such as transpar-
ency, transmittance, lightness, reflectance) of another simulated
transparency (Albert, 2008; Gerbino et al., 1990; Robilotto et al.,
2004; Singh & Anderson, 2002a). For example, Singh and Anderson
(2002a), using simulated transparencies placed over identical sine-
wave gratings, fixed the mean luminances of the two transparen-
cies at different levels and required subjects to adjust the
luminance range of one transparency to match that of another in
terms of perceived transmittance. Robilotto and Zaidi’s (2004) sub-
jects adjusted either the inner transmittance or reflectivity (with
the other dimension fixed) of one transparency to match another
in terms of perceived transparency, and Albert’s (2008) subjects
adjusted the transmittance of one transparency (with reflectance
fixed) to match the perceived transmittance of another transpar-
ency. The potential problem with all these protocols is that as soon
as one constrains the form of luminance relations within the trans-
parency region that is being adjusted (e.g. constraining mean lumi-
nance, transmittance, reflectance, contrast etc.), subjects become
locked into a parameter space for which the adjustable physical
dimension may not correlate well with the subject’s perceptual
representation (interestingly, Anderson, Singh, and O’Vari (2008)
highlight this problem with regard to Albert’s (2008) method in
their reply to Albert’s critique of the ratio-of-contrast model).
The result is that subjects’ matches may end up being significantly

biased. For example, suppose hypothetically that the perceptual
dimensions of transparency are correlates of t and r so subjects
perceive the two transparencies at the top of Fig. 23 as very differ-
ent in perceived transmittance. Suppose now that the subjects are
required to adjust the luminance range but not mean luminance of
one transparency to match that of the other transparency in terms
of perceived transmittance, as in Singh and Anderson’s (2002a)
experiments. With the mean luminances fixed and only the lumi-
nance range of the match transparency adjustable, any adjust-
ments involve simultaneous changes to both t and r. If t and r are
correlates of the natural perceptual dimensions of transparency,
the two dimensions might be difficult to disentangle when forced
to co-vary in this way and as a result the perceptual judgements
may be biased.

An alternative approach that would avoid this problem is not to
constrain the form of luminance relations in the transparency
region during the adjustment procedure. In other words allow P
and Q in Fig. 22 to take on any value and instruct subjects simply
to make the transparencies “look like the same transparency”. This
could be achieved either by subjects adjusting P and Q, or by
adjusting the mean and range of P and Q, or by adjusting t and r.
The models described above all predict a unique value of P and Q
for each match, so the method could in principle decide between
different models. One arguable disadvantage of this method how-
ever is that it does not allow one to hold one of the putative dimen-
sions of transparency constant while the other is varied. Another
possible disadvantage is that it necessitates that the backgrounds
of the comparison transparencies are different in order that their
Ps and Qs will be set differently.

9.3. Summary

Important new ideas have emerged during the past 25 years as
to the perceptual dimensions of transparency. However current
transparency-matching protocols are too restricted to provide a
clear picture as to what these dimensions are. This could be reme-
died by the use of matching protocols in which subjects are not
constrained by the form of the luminance relations that they are al-
lowed to adjust. Multi-dimensional scaling (MDS) is also a promis-
ing approach for determining the perceptual dimensions of
transparency.

10. Conclusion: Is a unified account of LBT possible?

Ideally one would like to take any image and decompose it into
separate representations, or ‘maps’, of brightness, lightness, in
homogenous illumination and transparency, with the last two
dimensions being further subdivided into shadows, spotlights,
shading, highlights, light sources and the (two or more) perceptual
dimensions of transparency. Will this ever be possible? It seems to
be a tall order. The above examination of the current state of
knowledge about LBT has revealed a multitude of impressive phe-
nomena, models and partial theories, but not yet the beginnings of
a general theory.

Nevertheless, there have been important new developments.
Models based on multi-scale filtering combined with contrast nor-
malization are particularly promising. Not only have they proven
themselves capable of predicting quantitatively a range of bright-
ness phenomena, but they possess the inherent flexibility to deal
with stimuli much more complex than the stock-in-trade ones of
the vision laboratory. Some of the shortcomings of these models,
such as their failure to account for anisotropies in the perception
of increments and decrements, can easily be remedied. A major
outstanding problem however is in combining the multi-scale fil-
tering approach with the other big success story of the last quarter
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century: the intrinsic-image, or layer decomposition approach.
Combining the two approaches is a pre-requisite for being able
to predict patterns of brightness, lightness, non-uniform illumina-
tion and transparency. The problem is a profound one however, be-
cause the languages of layer decomposition and filtering are so
very different. Bridging the gap between the two will therefore
be a major task for future research.
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