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Rather than passively ‘waiting’ to be activated by
sensations, it is proposed that the human brain is con-
tinuously busy generating predictions that approximate
the relevant future. Building on previous work, this pro-
posal posits that rudimentary information is extracted
rapidly from the input to derive analogies linking that
input with representations in memory. The linked stored
representations then activate the associations that are
relevant in the specific context, which provides focused
predictions. These predictions facilitate perception and
cognition by pre-sensitizing relevant representations.
Predictions regardingcomplex information, suchas those
required in social interactions, integrate multiple analo-
gies. This cognitive neuroscience framework can help
explain a varietyof phenomena, ranging from recognition
tofirst impressions, and fromthebrain’s ‘defaultmode’ to
a host of mental disorders.

General framework
When we are immersed in the world of neuroscience
findings, the brain might seem like a collection of many
little modules, each expert in a specific task. Is it possible
that, instead, one can account for much of the brain’s oper-
ation using a small set of unifying principles? One such
principle could be that the brain is proactive in that it
regularly anticipates the future, a proposal that has been
promoted in thepast indifferent formsand contexts. Specifi-
cally, I propose that the cognitive brain relies on mem-
ory-based predictions, and these predictions are generated
continually either based on gist information gleaned from
the senses or driven by thought. The emphasis in this
proposal is on the analogical link to memory and the role
of associations in predictions, as well as on the idea that we
use rudimentary information to generate these predictions
efficiently. Furthermore, by developing this framework
using a cognitive neuroscience approach and aminimalistic
terminology, key concepts can directly be tested and used in
empirical and theoretical future research.

The proposed account integrates three primary
components. The first is associations, which are formed
by a lifetime of extracting repeating patterns and statisti-
cal regularities from our environment, and storing them in
memory. The second is the concept of analogies, whereby

we seek correspondence between a novel input and existing
representations inmemory (e.g. ‘what does this look like?’).
Finally, these analogies activate associated representa-
tions that translate into predictions (Figure 1).

Each of these key components – associations, analogies
and predictions – has been the focus of rich and active
research for a long time. By connecting these concepts in
one unifying principle of memory-based predictions, the
framework proposed here builds on this valuable back-
ground to emphasize the functional coherence between the
three processes.

To make the underlying mechanismmore explicit, I will
elaborate on each of the elements that mediate the gener-
ation of predictions. I will start with the proposal that the
foundation of predictions is provided by the associative
nature of memory organization.

Associations as the building blocks of predictions
How does our experience translate into focused, testable
predictions? The answer proposed is thatmemory is used to
generate predictions via associative activation. In memory,
our experiences are represented in structures that cluster
together related information. For example, objects that
tend to appear together are linked on some level, and these
representations include properties that are inherent to and
typical of that same experience. Such structures have been
termed ‘context frames’ [1,2], which are reminiscent of ear-
lier concepts such as schemata [3], scripts [4] and frames [5],
whichall implyaunified,global representationofperceptual
and semantic associated attributes. The structure of these
context frames enables co-activations that prime our sub-
sequent perception, cognition and action by remaining ‘on-
line’ and making available predictions of what to expect in
the immediate environment. For example, placing a picture
of a certain recognizable object next to an ambiguous object
can make that object recognizable if it looks like something
familiar that is contextually congruent with the clear object
(i.e.ananalogy) [1].Thisprincipleoperatessimilarly inother
domains. For example, contextual framing has a direct
influence on our judgments of the emotions of others [6].

Taken together, the associative nature ofmemorymakes
it possible to take advantage of frequent trends in the
environment to help interpret and anticipate immediate
and future events. One basis for this proposal is provided
by the literature on priming, with its various types (e.g.
perceptual, semanticandcontextual).Thesestudies support
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the idea that the perception of a certain stimulus
co-activates the representations of related items [7], altho-
ugh these items have not been experienced as part of the
presentphysical environment. Indeed, recentneuroimaging
studies demonstrate the involvement of associative predic-
tions in cognitive facilitation [2].

The proposal promoted here is that the brain is
continually engaged in generating predictions, and that
these predictions rely on associative activation. Taken
together, it is important to demonstrate that the brain is
frequently busy with associative processing, an idea dating
back to Plato, Aristotle, Hobbes and the Empiricists. Sup-
port for this idea comes from a recent link we havemade [8]
between the neural underpinnings of associative proces-
sing and reports regarding the cortical activation that is
considered to reflect the brain’s ‘default’ mode [9]. Specifi-
cally, we showed that significant parts of the default net-
work, which refers to the collection of brain regions that are
consistently activated when subjects are not engaged in a
task-specific cognitive effort, overlap with the regions acti-
vated by tasks that recruit associative processing [8] (Box
1). This remarkable overlap between the default network
and activity attributable to contextual associative proces-
sing demonstrates that what people do when their mental
capacity is not completely consumed by a specific task is to
generate associations. In other words, associative acti-
vation is an integral process of the brain’s mental ‘default’
mode. Given the proposal that predictions are derived from
associations, this overlap is in agreement with the idea of a
continuous generation of predictions.

Associations, therefore, provide the representational
tool used for predictions. In the next section I will consider
the mechanism that activates these associations, and how
it does so most effectively such that only the associations
and predictions that aremost relevant andmost helpful for
a given situation are activated.

Analogies as the trigger of predictions
I propose that our brains are equipped with the ability
to extract gist, minimally analyzed information, from a

situation and to use it to derive an analogy, mapping the
novel input to similar representations in memory. Figure 2
depicts a simple example, where a new exemplar of
a certain object class is analogically mapped to the
corresponding prototype, and in Box 2 I describe a
model of how such an analogy can be accomplished rapidly
using coarse information.

Traditionally this process has been considered as
recognition, classification, or even a type of memory retrie-
val, but in thepresent context I treat thisprocess asanalogy-
making instead. In the process of recognition or retrieval,
the task is to answer the ‘what is it?’ question, whereas, in
analogy, the emphasis is on ‘what is it like?’ In other words,
although it might seem like an issue of terminology, in

Figure 1. A minimalistic depiction of the proposed principle. An input (A0) is
connected with an analogous representation in memory (A). This link results in the
co-activation of related representations (B, C, D), associations that remain ‘online’
to provide testable predictions. The input can be either an external, sensory input,
or internally generated during thought processes. Furthermore, the input can be of
varying degrees of complexity, which would result in predictions that are
correspondingly of different levels of elaboration, encompassing the range from
perceptual to executive predictions.

Box 1. The brain’s ‘default’ mode and associative

processing

A collection of cortical regions is consistently active when human
subjects are not engaged in a goal-directed behavior. This network
has been termed the ‘default network’ [9], and is currently drawing a
large amount of attention.

The primary method of considering neuroimaging data is to
subtract the signal elicited by one condition from the signal elicited
by another condition. To look at the main effect of a single
condition – how did this condition affect activity in the brain – one
typically uses a ‘baseline’ condition in which a fixation cross is
presented. The implicit assumption in the many studies that have
used this method was that the brain uses these fixation intervals for
resting. However, increasingly more imaging studies are reporting
negative activations (‘deactivations’) when one condition is
compared with the fixation ‘baseline’. Regions that demonstrate
such deactivation are taken to have been more active during the
fixation baseline then during the compared experimental condi-
tion, although what are the cognitive processes that are carried out
by this network during rest is still unclear. This default network is
remarkably similar, in its medial view, to the network activated by
contextual associations (Figure I) [8], supporting the proposal put
forward here that the brain is continually engaged in the generation
of associations-based predictions.

Figure I. Medial view of the typical default network and the typical contextual
associations network. The default network regions are those that tend to show
deactivation during the experimental task. In other words, these regions are
more active during fixation rest than during task performance. The context
network activations were obtained from the contrast between strongly
contextually associative objects (e.g. a tennis racket) and weakly contextual
objects (e.g. cherries). Importantly, the superimposed labels demonstrate the
striking overlap between associative processes and resting, task-independent
processes [8].
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recognition per se we recognize by linking to memory to
interpret the input,whereas inanalogy the input is linked to
memory not only for the sake of interpretation, but also for
the purpose of projecting attributes and generating predic-
tions. Therefore, by using the term analogy, the emphasis is
placed on the associations-based predictions that analogies
elicit beyondmererecognition,and it is thisextra step that is
the focus of the proposed framework.

Nevertheless, analogicalmappingstill serves to interpret
the input: inferring what physical input caused a certain
percept, an issue that has received a lot of attention [10–12].
Therefore, the analogy itself also provides an important top-
down prediction regarding the identity of the input using
initial bottom-up information [13,14] (Box 2). However, the
focus here is on the considerably less explored type of pre-
dictions: forecasting that pertains to what is about to hap-
pen,what is likely toappear in the samecontext, andwhat is
the most beneficial action that needs to be taken given the
specific input. In other words, the analogy in Figure 2 med-
iates interpretation, by linking input to memory, whereas
forecasting predictions stem from the subsequent activation
of information associated with that analogy (e.g. Figure 3).

This principle is not limited to the realm of visual
recognition, but rather encompasses a wide variety of
domains where input can be linked to memory to generate
predictions. For example, imagine meeting a new person.
Our first impressions are rapid [15,16] and are based on
rapidly extracted coarse information [15]. According to the
present proposal, this process is mediated by linking the
features of the new person to the most similar representa-
tion in memory; someone we know and that looks to some
extent like this new person. We automatically project
information such as personality attributes to the new
person based simply on this analogy. Although this ana-
logy is an approximated set of traits, it might be beneficial,
at least under some circumstances, to not start inter-
actions without any assumptions on that new person.

Analogies can be based on similarity on various levels,
including perceptual similarity (e.g. in shape or smell),
abstract conceptual dimensions, and goals [12]. Analogy-
based mappings of properties manifest themselves in
processes ranging from perception and memory [17] to
stereotypic judgments and prejudice [18].

It is important to note that the input is rarely mapped
with a single analogy directly to memory. Instead, the
function of analogies can be based on the integration of
multiple analogies that accumulate to complex mapping.
For example, if you are trying to understand a conversation
that is taking place on a screen when watching a new
movie, you will have to map novel sounds to similar and
familiar sounds in memory (which will then be connected
with their associated linguistic meaning), to map the novel
face appearances to similar and familiar face expressions
(which will then be connected with the intentions associ-
ated with them), the context in which the conversation is
taking place will be mapped to other similar contexts in
memory and, when combined, these analogies can help
map the complete, new situation to a collection of frag-
ments in memory that together can allow you to under-
stand the scene, and to forecast what is likely to be next.

While our existing memories are used to derive analo-
gies and activate predictions, they are constantly being
updated. The analogical process, in addition to affording
the interpretation of our environment, subsequently aug-
ments previous representations in a way that fosters
increasingly flexible future analogies.

Box 2. Top-down facilitation based on rudimentary

information

In the framework outlined here, the activation of a memory
representation based on a sensory or internally generated input is
a process of analogical mapping. A central question is how gist
information, how ever defined, can be sufficient for mapping the
input onto an analogous memory. One model (Figure I), from object
recognition, postulates that rudimentary information in the image
(i.e. low spatial frequencies), which is extracted rapidly, is suffi-
ciently powerful to activate expectations about what the observed
object might be [14,75]. A similar mechanism is proposed to be
operating on multiple levels, although the representation of gist
information on higher levels of analysis is yet to be defined (see
Concluding remarks section). Note that the gist-based initial guess
could elicit more than a single alternative. This ambiguity is
resolved gradually as high-spatial frequencies arrive with the
bottom-up streams. But it can also be resolved more quickly by
incorporating other rapidly extracted sources of information, such
as context [2], which would fine-tune this analogical mapping to
have fewer alternatives and, thus, less ambiguity.

Figure I. A top-down facilitation model. A partially processed, low spatial
frequency (LSF) image of the visual input is rapidly projected to OFC from the
early visual cortex and/or from subcortical structures such as the amygdala,
while detailed, slower analysis of the visual input is being performed along the
ventral visual stream. This ‘gist’ image activates predictions about candidate
objects that are similar to the image in their LSF appearance, which are fed
back to the ventral object recognition regions to facilitate bottom-up
processing. Reproduced with permission from Ref. [14].

Box 3. Questions for future research

! What are the computational operations and the underlying
cortical mechanisms mediating the transformation of a past
memory into a future thought?

! How does the brain handle completely novel situations where no
reliable predictions can be generated?

! To what extent are we aware of our predictions and their origin? In
some cases, such as in stereotypical thinking, being aware of
these predictions can eliminate unwanted influences.

! What does it mean for predictions to provide a perception of
stable environment? In most typical situations, we know what to
expect and what not to expect. How is finding something
alarmingly incongruent with our expectations (e.g. an elephant
in the living-room) different from finding something unexpected
yet insignificant (e.g. a shoe in the living-room)?

! How do we become aware of a mismatch between predictions
and perception? And how do we incorporate lessons from
prediction errors into future behavior?
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Finally, the activation of associations for prediction will
not be as useful if it simply activates automatically all the
information associatedwith the linked representation(s) in
memory. Instead, it needs to take into account the context
in which this input is encountered, and selectively activate
the most relevant associations [2]. For example, an object
such as a hairdryer can be naturally encountered in several
possible contexts: hair-salon, appliance store, bathroom, as
well as associated with abstract contexts (Figure 3). If the
hairdryer is encountered in the hair-salon context, there is
no need to activate objects that are typically found in
bathrooms and appliance stores, which would not only
be wasteful but also generate incorrect predictions. By
taking context cues into account, this switchboard-like
mechanism will only activate the most relevant associ-
ations, which will result in the generation of the most
accurate predictions.

To summarize, analogies map novel inputs to
representations in memory that most resemble this input.
Subsequently, information associated with these repres-
entations is activated to provide predictions about what
else might be expected in the same situation. By taking
context into account in this associative activation, only the
most relevant predictions are generated. In the next sec-
tion I will describe possible neural underpinnings for
associations, analogies and predictions.

Possible neural underpinnings
Neural substrates
Many cortical projections that connect separate regions are
known to be reciprocal [19–22], which suggests bi-direc-
tional cortical communication. According to some esti-
mates, the number of feedback (top-down) projections
might even exceed the number of feedforward (bottom-
up) connections [23]. Although this aspect of the anatomy
is known, and the implication of omnipresent bi-directional
flow consequently seems highly reasonable, this finding
has not yet been sufficiently incorporated into contempor-
ary thinking regarding cognitive processing. However, this
‘provocative’ anatomy implies something profound about
how the brain works. Specifically, the reciprocal connec-
tions might provide the infrastructure that supports the
continuous top-down involvement of internal representa-
tions with the interpretation of the world around us.

There are three main components in this proposal:
associations, analogies and predictions, and they interact
with each other regularly. Associations have largely been
found in the medial temporal lobe (MTL), in the hippo-
campus [24,25], and in the parahippocampal cortex (PHC)
[26]. As reviewed above with regard to the overlap seen
between associative processing and the default network,
other medial regions, such as the medial prefrontal cortex
(MPFC) and medial parietal cortex (MPC) are involved as

Figure 2. A simplified mechanism for analogy whereby the analogous representation is selected based on the maximal amount of feature (F) overlap with the input. This is
a basic model, which has been used often in the past, and is introduced here to demonstrate the primary element of analogical mapping between input and memory. Such
analogies can rely on similarity on various levels (e.g. physical, conceptual and function). I treat this process here as analogy, rather than classification, to emphasize that
the main purpose of this process goes beyond mere interpretation of the input, to connect the input with known and predicted attributes that are manifested as predictions.

Opinion TRENDS in Cognitive Sciences Vol.11 No.7 283

www.sciencedirect.com



well. Given the diverse types of possible associations, it is
indeed expected that they will be mediated by a large
collection of regions, depending on complexity, modality
and purpose. For example, other types of associations, such
as visuomotor associations, seem to be represented in other
regions, such the basal ganglia.

The brain regions that mediate analogical thinking are
much less explored. Nevertheless, some types of analogical
thinking have been found to activate the lateral andmedial
PFC [27,28].

Regarding the neural regions that mediate predictions,
there aremultiple sub-processes that need to be considered:
the generation of predictions, their verification, and their
updating. Expectations-based preparatory activation has
been observed in numerous domains. For example, anticip-
ating a somatosensory stimulus activates the somatosen-
sory cortex [29]; pictures of food activate gustatory cortices
[30]; visual imagery, even if not in a directly predictive task,
activates the visual cortex, and has even been shown to
activate early visual cortex in a retinotopically organized
manner [31].

We have previously proposed a neural mechanism in the
domain of context-based predictions and visual recognition
[2,14,36]. Briefly, the associations relevant to the present
discussion seem to be represented by the MTL in general,

and the PHC in particular. The retrosplenial complex (RSC
in the MPC), which is consistently found to be recruited in
associative tasks (Figure I in Box 1), has been suggested to
represent prototypical, rather than episodic, information
about associations [26]. In other words, the PHC represents
stimulus-specific context and associations, which are sensi-
tive to specific appearance (e.g. my kitchen), whereas the
RSC/MPC represents knowledge about associations related
to the prototypical context (e.g. a kitchen). Their combined
contribution presumably elicits prediction-related repres-
entations in the PFC (orbitofrontal cortex, OFC, in particu-
lar), as well as in a domain-specific cortex such as the
fusiform gyrus in the case of object recognition.

Neural mechanisms
The neural mechanism that generates predictions is
largely unknown, but it is thought to be mediated, or at
least balanced, by neural oscillations and synchrony [32],
and some evidence for such a mechanism in the PFC exists
[33]. However, in addition to synchrony, there are other
promising proposals [10,34,35] that are appealing and could
benefit from further physiological and cognitive testing.

Predictions are proposed to be activated rapidly, using
information that is available relatively early (i.e. low spatial
frequencies; LSF). Such LSF-based predictions can be

Figure 3. Translating analogies to predictive associative frames. The linked stored representation (i.e. an analogy mapped as depicted in Figure 2) activates only the
associations that are relevant in the specific context, which provides focused predictions. In the example depicted here, although a hairdryer is associated with many
objects, and multiple contexts (e.g. bath, hair-salon and appliance store), only the appropriate subset of predictions will be activated based on the associations relevant in
the specific context (e.g. hair-salon). These connections result in predictions that are then tested against the input (sensory, or internally generated).
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triggered in the PFC for the purpose of object recognition
while interacting with the visual occipito-temporal cortex
[14], and for context-related predictions while interacting
with MTL and MPC [2]. The generation of object-related
predictions in the PFC by rudimentary information is ela-
borated in Ref. [14], and how LSF rudimentary information
might activate context-related predictions is elaborated in
Refs [2,37,38].

Bayesian analysis is a natural computational
formulation that can be used for capturing the idea that
experiences accumulated in our memory guide our predic-
tions and behavior. Every moment of our lives involves
some level of uncertainty, and associative memories can
help cope with this uncertainty. The statistical history of
events and stimuli in our surroundings guides the acti-
vation of what is the most appropriate information to
expect. Such statistical regularities can be extracted from
our environment [39,40]. We frequently use the Bayesian
principle that past experiences shape the priors for pre-
dicting aspects of the environment in everyday life, and
there are sound reasons to suggest that the brain operates
according to these principles [10,41,42].

Detecting errors in predictions
Humans can detect and learn from regularities in the
environment, even without awareness [40]. When the pre-
dictions derived from these learned associations are vio-
lated, people can nevertheless detect them [43]. The
neuronal and computational mechanisms that subserve
the detection of prediction violation have been considered
in the past [44,45]. The fMRI signal that corresponds to a
detection of a violation of expectations seems to concentrate
on the lateral ventral prefrontal cortex [46]. This suggests
that the mechanisms that detect and potentially correct
mismatches are mediated by at least partially different
regions than those that participate in the medial network
that is proposed here to generate predictions. Various other
cortical regions have been implicated in processes related to
prediction errors. For example, activity in the anterior
cingulate cortex (ACC) has been reported to correlate with
the likelihood of prediction error [47]. Prediction errors are
detected for the purpose of adjusting the specific prediction
for the immediate context, as well as for learning and
updating internal generalizations that will help improve
predictions in the future. Such errors canbedetected intern-
ally, via mismatches between predictions and perceptions,
and they canbedetectedusingexternal cues, suchas reward
and punishment. Our brains seem wired to detect change
efficiently, at various levels. It is possible that the compari-
son betweenpredictions and perception is processed outside
of awareness and we become aware of it only when a mean-
ingful mismatch is encountered.

In learning and developing the ever-evolving
knowledge-base from which predictions are later gener-
ated, we frequently face a choice between relying on what
we know (i.e. exploitation) or attending novel aspects that
can augment our existing knowledge (i.e. exploration). This
is particularly pronounced in conditions of uncertainty
[48,49], which in the present framework might reflect
reduced ability to rely on analogies when such analogies
cannot be mapped with high confidence. Interestingly, the

same prefrontal regions that are proposed to be involved in
predictions, OFC and the ACC inMPFC (e.g. Ref. [8]), have
been theorized to monitor exploration and exploitation
behavior (via the locus coeruleus) [50]. The MPFC, in
particular, has been proposed to be crucial for cognitive
control and specifically for evaluation of potential out-
comes (see Ref. [51] for review). How is this related to
the present attribution of a predictive function to regions of
the MPFC? Processes such as evaluation of performance
and outcomes, coping with response errors, response con-
flicts, and decision uncertainty all have in common an
extensive reliance on predictions. This can further help
explain why the same MPFC area is also activated by a
diverse range of additional processes, including error
detection [51], contextual activations [2], and ‘reading’
somebody else’s mind (i.e. theory-of-mind) [52].

Additional factors related to the neural substrates that
subserve the proposed framework will be interspersed in
upcoming sections, but in general, given the amount of
available reports, it is hard to say substantially more on
this theme without being overly speculative. Among the
relevant issues that deserve extensive future research (Box
3), of particular interest are the spatiotemporal inter-
actions among the various components of this network.

Applied predictions
Predictions, as described here, span a wide spectrum of
complexity and function. At one extreme, there is the
simple prediction that stems from a simple association
(e.g. knowing to expect pain after bumping your toe on
the leg of the sofa). At the other extreme, one can anticipate
complicated experiences, plan far ahead, or mentally
‘travel’ in time to the future, based on simulations and
memory. In spite of this extreme variety, there is no
evidence to indicate that predictions of various levels of
complexity, abstraction, timescale and purpose use mech-
anisms that are qualitatively different. As suggested ear-
lier, simple perceptual predictions can be a result of direct
analogical mapping followed by the automatic activation of
a Hebbian-like association. By contrast, complex executive
predictions result from the integration of multiple smaller
analogies and ‘atomic’ associations.

Our accumulated experience creates an ever-evolving
platform for predictions, and the influence of these predic-
tions can be observed on many levels. In this section I will
briefly review findings from such various domains that all
demonstrate the ubiquitous role of predictions in the brain
and in behavior, as well as the ways in which predictions
rely on associations and analogies.

The first is a phenomenon termed ‘representational
momentum’ [53]. This term pertains to the finding that
a sequence of static photographs that implies a certain type
of motion (e.g. imagine a rectangle that in each consequent
image is rotated a few degrees clockwise) significantly
affects the subjects’ performance on the last, target image,
as a function of its rotation difference from the previous
image in the sequence. This robust demonstration suggests
that subjects generate the representation of the anticip-
ated next image before it is presented. A related fMRI
study [54] showed that when human subjects view static
images with impliedmotion (e.g. an athlete about to jump),
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the motion-processing areas in the middle temporal and
the middle posterior superior temporal sulcus are acti-
vated although the images are static.

Demonstrations of contextual priming [55,56] provide
another example of the generation of visual predictions,
where seeing a certain object activates the representa-
tions of other objects that are likely to appear in the same
environment. Furthermore, predictions have a clear and
crucial role in language comprehension and sentence
integration [57,76], and being able to predict the inten-
tions and actions of others is beneficial, and has recently
been shown to confer direct facilitation on sensory proces-
sing [58]. Finally, studies have shown that activity in
task-specific regions during anticipatory preparation is
predictive of subsequent performance success [59]. These
findings indicate that by generating a prediction, the brain
activates the specific regions that are responsible for
processing the type of information that is about to be
encountered.

Louis Pasteur said that ‘chance favors the prepared
mind’. According to the proposal described here, the ‘pre-
paredness’ of the mind is derived from the generation of
specific predictions, which shapes the pre-sensitization of
the representations of some information and not another.
Therefore, what we see can be driven by our motivations,
goals and desires, which all might bias attention and
sometimes determine our perception [60]. Therefore, by
enabling privileged processing of anticipated information,
regardless of the source of this anticipation, predictions
might be seen as constraining the selection of what aspects
of the environment will be primed and perceived, and how
they will be interpreted.

Predictions have ubiquitous clinical implications. On
the debilitating end, predictions and associations can pro-
vide the basis for anxiety disorders and phobias, as well as
post-traumatic stress disorders. But predictions in other
clinical circumstances can result in a positive influence,
such as in placebo effects. Indeed, placebo analgesia that is
enhanced by expectations has been shown to activate
regions in the PFC, such as the OFC [61], which are
proposed here to be part of the network that generates
predictions.

Beyond helping us anticipate, prepare and simulate, the
continual generation of predictions has another purpose,
which is to help us to perceive stability and coherence in
our environment. Our senses deliver a profoundly impo-
verished version of the environment to us, due to factors
such as themassive reduction in the amount of information
reaching the visual cortex from the retina, the presence of
clutter and noise, and the fact that even familiar items vary
in their appearance from one occasion to another. So pre-
dictions, derived from memory, fill-in the gaps based on
experience.

This reconstructive contribution of predictions can be
helpful not only when dealing with impoverished sensory
input, but could eliminate the need to attend every aspect
of our environment exhaustively, and could also be the
reasonwhy our brain can often ignore details and encode in
memory only a reduced, gist-based version of actual mem-
ories because these details can later be reconstructed with
sufficient resolution.

Predictions from within: mind-wandering and
mental time travel
The focus here has been on predictions triggered by and
geared towards the sensory world around us. But thinking
about the future is often oriented internally, as we do when
we plan, imagine, reason, fantasize, and so on. There has
been a recent surge of interest in the subject, which
includes stimulating findings from neuroimaging and
patient work [62–65]. This ability to project oneself into
the future and imagine upcoming or imaginary situations
can be seen as a prediction tool, which also relies on
analogies and associative processing, and whose primary
goal is preparatory in nature. The areas involved seem to
be highly overlapping with the associative and the default
networks (Box 1).

An interesting aspect common to those findings is that
systems that are typically associated with memory, prim-
arily in MTL, are consistently active when people think
about the future. This does not change the function that
these memory regions have been implicated with, as some
have suggested, but it does underscore the fact that to
consider the future we need to retrieve information from
our memory of the past (i.e. analogies and associations in
the terminology used here). This makes sense, given the
supreme importance of our acquired memory for our future
survival and interaction with the environment. In that
regard, it might be overly broad to look at the involvement
of memory structures in internal mental processes as link-
ing memory and imagination [66], because the specific part
of imagination that recruits memory is, according to the
proposal described here, the generation of predictions. Con-
sequently, the cardinal purpose of memory starts to seem
less for leisured reminiscing, as in the famous example of
Proust’s madeleine, and more as a knowledge-base that
guides our lives in an increasingly more informed manner.

It is important to consider the potential functional
role of mental time travel. My proposal is that its primary
role is to create new ‘memories’. We simulate, plan and
combine past and future in our thoughts, and the result
might be ‘written’ in memory for future use. These simu-
lated memories are different from real memories in that
they have not happened in reality, but both real and
simulated memories could be helpful later in the future
by providing approximated scripts for thought and action.
This could be why athletes often report that they find
imagining a future race helpful in the race itself. Therefore,
simulating the future guides us by providing a rudimen-
tary script for the optimal course of action when the
anticipated future arrives.

Concluding remarks and predictions about
predictions
I propose that the knowledge that is stored in our memory
exerts its contribution to behavior bywayof predictions, and
that our perception of the environment relies on existing
knowledge as much as it does on incoming sensory infor-
mation. The framework proposed here is composed of three
main ingredients: associations, analogies andpredictions. It
can be summarized as follows: the input is linked tomemory
via analogies, and once an analogy has been found, it elicits
the activation of the representations associated with the
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input. This co-activation of related items provides on-line,
focused predictions on what else is highly likely to be
relevant in that specific situation. Regardless of whether
oriented internally and externally, the primary role of these
predictions is to guide our actions, plans and thoughts.

As discussed in the introduction, several of these
concepts have been studied individually in the past. How-
ever, the present proposal integrates these concepts in a
single unifying framework, with a cognitive neuroscience
perspective. The synthesis proposed here might neverthe-
less be seen as related to notions such as ‘embodied cogni-
tion’ [67,68]. Embodied cognition is a movement involving
primarily philosophy and artificial intelligence, and it is
related to situated cognition [69]. The sense of similarity
between the frameworks stems from the following elements
of embodied cognition: that the brain ‘has an agenda’ and,
thus, that it is proactive, as proposed here too; that it takes
context (i.e. the situation) into account; and that memory is
embodied (e.g. not amodal) to promote interactions with the
world. However, other claims diverge significantly from
what is promoted here. For example, the idea that the
function of cognitive processes is directed solely towards
the body’s interactions with the world, the suggestion that
themind cannot be studied in isolation, and that the outside
world is part of the cognitive system and, therefore, that
representations in memory have a lesser role than the one
endorsed here. In other words, embodied cognition links
even the most abstract processes to sensorimotor low-level
processes, whereas the framework proposed here relies on
mental simulations, foresight and various types of anticip-
ation that cannot always be directly mapped to low-level
actions.

Humans seem to minimize processing of incoming
information when this information is predictable (e.g. habi-
tuation, repetitionblindness, changeblindness, inhibitionof
return), and in parallel encourage the allocation of mental
resources to unexpected and/or novel information (e.g.
orienting response toward novel and unexpected stimuli,
perceptualpop-out).Howdoes this somewhat circularmech-
anism work? After all, we should process the input (i.e. find
an existing analogy) to understand whether there is some-
thing unexpected there or not. The bias to not invest in the
predictable is proposed to be primarily a top-down, intern-
ally driven process, whereas the alertness for detecting the
novel and unexpected is primarily a bottom-up, sensory-
driven process [70]. One possibility is that the decision is
madebasedontheevaluationofamatchbetweenperception
and prediction using only gist information that is available
early (Box 3).

An interesting direction for future research concerns the
roles of the different types of memory in predictions. I have
concentrated here on episodic memory, the central role of
which is supported by the repeated activation of the MTL
in prediction-related processing, but it is reasonable to
hypothesize that semantic memory plays a role as well.
Studying how these memory types interact, as might be
reflected by interactions between the medial network dis-
cussed here and, for example, the dorso-lateral PFCwill be
crucial for such understanding.

In spite of the advantage that predictions provide for
behavior, they can sometimes interfere and put us on the

‘wrong path’. Examples range from a baseball illusion
called the rising fastball [71], to smell judgments that vary
significantly based on how that smell was labeled [72], to
demonstrations of false-memory in social cognition [73].
In addition, there are other phenomena that might be
explained as interference from predictions, although they
have not been portrayed as such. For example, that cog-
nitive performance can be improved when subjects are
instructed to be passive and not to ‘try hard’ [74]; when
we are unable to retrieve a memory and the same incorrect
memory keeps coming up; or when a break from a persist-
ing intellectual problem seems to be all that was needed to
then find a quick solution upon returning to the problem.
The common component in these cognitive phenomena
might be top-down predictions that are persistent but
unhelpful and we have to find ways to ignore them
altogether in such cases.

The independent role of predictions, analogies and
associations in our mental lives hardly requires further
demonstrations, given the rich and fruitful research of
these concepts. However, their integration and orchestra-
tion here under a single framework could nevertheless
benefit from direct testing. One hypothesis that stems from
the current proposal is that because predictions are
derived from analogies, increased similarity between novel
input and representations in memory should result in
increasingly efficient predictions. This could be tested on
multiple levels of predictions, ranging from perceptual to
more executive predictions. Another interesting test will
be of the notion that analogies and predictions are gener-
ated based on gist. Although this has been specified and
tested in fields such as recognition (e.g. LSF-based; Box 2),
it becomes more challenging when one considers higher
levels of abstraction. It seems reasonable that gist will be
helpful in abstract analogies as well, and characterizing
how abstract gist (such as that often also used in the
memory literature) is extracted, represented and used will
be necessary.

Given the omnipresence of predictions, their influence
pervades far more processes than can be treated here.
These include predictions in emotion, their effects on
awareness and their interactions with attentional allo-
cation. These are major issues, and addressing them will
be crucial for any complete theory of the human brain.

In regard to clinical implications, aging seems to
compromise many of the regions that are proposed here
to constitute the network of associations-based predictions:
MTL,MPC andMPFC. Therefore, older adults should have
a diminishing ability to predict future events. However, at
the same time, the observation that older adults can use
their increased experience to derive improved expectations
is common. Gaining a better understanding of which pre-
dictions are affected by atrophy, and of what regions, will
help chart the global network of predictions as well as
characterizing any qualitative differences between differ-
ent types of predictions, both of which will ultimately
improve future cognitive approaches to aging-related
decline. Furthermore, several clinical disorders, such as
major depression, are associated with a reduced ability to
take context into account during everyday judgments
and decisions. This could be seen as intuitive when
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considering the debilitating tendency of depressed patients
to ruminate on a (usually negative) thought. As elaborated
here, context consists of associations, and associations
provide the basis of predictions. It is possible that engaging
such patients in cognitive programs that train them to
activate predictions that rely on associations from a wide
variety of contexts would help alleviate their symptoms.
Such optimistic prospects will have to be tested explicitly
in the future.

Finally, according to the proposal outlined here, the
brain constantly anticipates the future, and to do this it
constantly accesses information in memory. This implies
that our subjective feeling of present is actually an integ-
ration that also includes past and future information: we
need to know where we were (both in time and space) and
what is next, in addition to our present state. Indeed,
people who study meditation initially find it extremely
difficult to eliminate any future and past thoughts. Un-
derstanding how the brain integrates and holds simul-
taneously information from multiple points in time is an
important question for the future.

Acknowledgements
I thank E. Aminoff, J. Boshyan, M. Fenske, N. Gronau, K. Kveraga, M.
Mason and three anonymous reviewers for their help. Supported by
NINDS R01-NS044319 and NS050615, and the MIND Institute.

References
1 Bar,M. andUllman, S. (1996) Spatial context in recognition.Perception

25, 343–352
2 Bar, M. (2004) Visual objects in context. Nat. Rev. Neurosci. 5, 617–

629
3 Mandler, J.M. and Johnson, N.S. (1976) Some of the thousand words a

picture is worth. J. Exp. Psychol. [Hum Learn] 2, 529–540
4 Schank, R.C. (1975) Using knowledge to understand. In Theoretical

Issues in Natural Language Processing (Schank, R.C. and Nash-Weber,
B., eds), pp. 117–121, Tinlap Press

5 Minsky, M. (1975) A framework for representing knowledge. In The
Psychology of Computer Vision (Winston, P.H., ed.), pp. 211–277,
McGraw-Hill

6 Mobbs, D. et al. (2006) The Kuleshov Effect: the influence of contextual
framing on emotional attributions. Soc. Cogn. Affect. Neurosci 1, 95–
106

7 Anderson, J.R. (1983) Architecture of Cognition, Harvard University
Press

8 Bar, M. et al. (2007) The units of thought. Hippocampus 17, 420–428
9 Raichle, M.E. et al. (2001) A default mode of brain function. Proc. Natl.

Acad. Sci. U. S. A. 98, 676–682
10 Friston, K. (2005) A theory of cortical responses. Philos. Trans. R. Soc.

Lond. B Biol. Sci. 360, 815–836
11 French, R.M. (2002) The computational modeling of analogy-making.

Trends Cogn. Sci. 6, 200–205
12 Hummel, J.E. and Holyoak, K.J. (2003) A symbolic-connectionist

theory of relational inference and generalization. Psychol. Rev. 110,
220–264

13 Rao, R.P. and Ballard, D.H. (1999) Predictive coding in the visual
cortex: a functional interpretation of some extra-classical receptive-
field effects. Nat. Neurosci. 2, 79–87

14 Bar, M. et al. (2006) Top-down facilitation of visual recognition.
Proc. Natl. Acad. Sci. U. S. A. 103, 449–454

15 Bar, M. et al. (2006) Very first impressions. Emotion 6, 269–278
16 Willis, J. and Todorov, A. (2006) First impressions: making up your

mind after a 100-ms exposure to a face. Psychol. Sci. 17, 592–598
17 Song, J.H. and Jiang, Y. (2005) Connecting the past with the present:

how do humansmatch an incoming visual display with visualmemory?
J. Vis. 5, 322–330

18 Devine, P.G. (1989) Stereotypes and prejudices: their automatic and
controlled components. J. Pers. Soc. Psychol. 56, 5–18

19 Pandya, D.N. (1995) Anatomy of the auditory cortex. Rev. Neurol.
(Paris) 151, 486–494

20 Ghashghaei, H.T. et al. (2007) Sequence of information processing for
emotions based on the anatomic dialogue between prefrontal cortex
and amygdala. Neuroimage 34, 905–923

21 Rockland, K.S. and Drash, G.W. (1996) Collateralized divergent
feedback connections that target multiple cortical areas. J. Comp.
Neurol. 373, 529–548

22 Ergenzinger, E.R. et al. (1998) Cortically induced thalamic plasticity in
the primate somatosensory system. Nat. Neurosci. 1, 226–229

23 Salin, P.A. and Bullier, J. (1995) Corticocortical connections in the
visual system: structure and function. Physiol. Rev. 75, 107–154

24 Eichenbaum, H. (2000) A cortical-hippocampal system for declarative
memory. Nat. Rev. Neurosci. 1, 41–50

25 Ranganath, C. et al. (2004) Inferior temporal, prefrontal, and
hippocampal contributions to visual working memory maintenance
and associative memory retrieval. J. Neurosci. 24, 3917–3925

26 Aminoff, E. et al. (2006) The parahippocampal cortex mediates spatial
and nonspatial associations.Cereb. Cortex, DOI: 10.1093/cercor/bhl078

27 Bunge, S.A. et al. (2005) Analogical reasoning and prefrontal cortex:
evidence for separable retrieval and integration mechanisms. Cereb.
Cortex 15, 239–249

28 Waltz, J.A. et al. (2000) The role of working memory in analogical
mapping. Mem. Cognit. 28, 1205–1212

29 Carlsson, K. et al. (2000) Tickling expectations: neural processing in
anticipation of a sensory stimulus. J. Cogn. Neurosci. 12, 691–703

30 Simmons, W.K. et al. (2005) Pictures of appetizing foods activate
gustatory cortices for taste and reward. Cereb. Cortex 15, 1602–1608

31 Slotnick, S.D. et al. (2005)Visualmental imagery induces retinotopically
organized activation of early visual areas. Cereb. Cortex 15, 1570–1583

32 Engel, A.K. et al. (2001) Dynamic predictions: oscillations and
synchrony in top-down processing. Nat. Rev. Neurosci. 2, 704–716

33 Liang, H. et al. (2002) Synchronized activity in prefrontal cortex during
anticipation of visuomotor processing. Neuroreport 13, 2011–2015

34 Ullman, S. (1995) Sequence seeking and counter streams: a
computational model for bidirectional information flow in the visual
cortex. Cereb. Cortex 1, 1–11

35 Mumford, D. (1992) On the computational architecture of the neocortex.
II. The role of cortico-cortical loops. Biol. Cybern. 66, 241–251

36 Bar, M. and Aminoff, E. (2003) Cortical analysis of visual context.
Neuron 38, 347–358

37 Oliva, A. and Torralba, A. (2001) Modeling the shape of a scene: a
holistic representation of the spatial envelope. Vision. Res. 42, 145–175

38 Sanocki, T. (1993) Time course of object identification: evidence for a
global-to-local contingency. J. Exp. Psychol. Hum. Percept. Perform. 19,
878–898

39 Torralba, A. and Oliva, A. (2003) Statistics of natural image categories.
Network 14, 391–412

40 Chun, M.M. and Jiang, Y. (1998) Contextual cueing: implicit learning
andmemory of visual context guides spatial attention. Cognit. Psychol.
36, 28–71

41 Kersten, D. et al. (2004) Object perception as Bayesian inference.Annu.
Rev. Psychol. 55, 271–304

42 Knill, D.C. and Pouget, A. (2004) The Bayesian brain: the role of
uncertainty in neural coding and computation. Trends Neurosci. 27,
712–719

43 Biederman, I. et al. (1982) Scene perception: detecting and judging
objects undergoing relational violations. Cognit. Psychol. 14, 143–177

44 Schultz, W. and Dickinson, A. (2000) Neuronal coding of prediction
errors. Annu. Rev. Neurosci. 23, 473–500

45 Friston, K. (2003) Learning and inference in the brain. Neural Netw.
16, 1325–1352

46 Nobre,A.C. et al. (1999)Orbitofrontal cortex is activatedduringbreaches
of expectation in tasks of visual attention. Nat. Neurosci. 2, 11–12

47 Brown, J.W. and Braver, T.S. (2005) Learned predictions of error
likelihood in the anterior cingulate cortex. Science 307, 1118–1121

48 Cohen, J.D. and Aston-Jones, G. (2005) Cognitive neuroscience:
decision amid uncertainty. Nature 436, 471–472

49 Daw, N.D. et al. (2006) Cortical substrates for exploratory decisions in
humans. Nature 441, 876–879

50 Aston-Jones, G. and Cohen, J.D. (2005) An integrative theory of locus
coeruleus-norepinephrine function: adaptive gain and optimal
performance. Annu. Rev. Neurosci. 28, 403–450

288 Opinion TRENDS in Cognitive Sciences Vol.11 No.7

www.sciencedirect.com

http://dx.doi.org/10.1093/cercor/bhl078


51 Ridderinkhof, K.R. et al. (2004) Neurocognitive mechanisms of
cognitive control: the role of prefrontal cortex in action selection,
response inhibition, performance monitoring, and reward-based
learning. Brain Cogn. 56, 129–140

52 Frith, C.D. and Frith, U. (2006) The neural basis of mentalizing.
Neuron 50, 531–534

53 Freyd, J.J. (1983) The mental representation of movement when static
stimuli are viewed. Percept. Psychophys. 33, 575–581

54 Kourtzi, Z. and Kanwisher, N. (2000) Activation in human MT/
MST by static images with implied motion. J. Cogn. Neurosci. 12,
48–55

55 Palmer, S.E. (1975) The effects of contextual scenes on the
identification of objects. Mem. Cognit. 3, 519–526

56 Biederman, I. (1972) Perceiving real-world scenes. Science 177, 77–80
57 Duffy, S.A. (1986) Role of expectations in sentence integration. J. Exp.

Psychol. Learn. Mem. Cogn. 12, 208–219
58 Neri, P. et al. (2006) Meaningful interactions can enhance visual

discrimination of human agents. Nat. Neurosci. 9, 1186–1192
59 Wylie, G.R. et al. (2006) Jumping the gun: is effective preparation

contingent upon anticipatory activation in task-relevant neural
circuitry? Cereb. Cortex 16, 394–404

60 Balcetis, E. and Dunning, D. (2006) See what you want to see:
motivational influences on visual perception. J. Pers. Soc. Psychol.
91, 612–625

61 Kong, J. et al. (2006) Brain activity associated with expectancy-
enhanced placebo analgesia as measured by functional magnetic
resonance imaging. J. Neurosci. 26, 381–388

62 Hassabis, D. et al. (2007) Patients with hippocampal amnesia cannot
imagine new experiences. Proc. Natl. Acad. Sci. U. S. A. 104, 1726–
1731

63 Addis,D.R. et al. (2007)Remembering thepast and imagining the future:
common and distinct neural substrates during event construction and
elaboration. Neuropsychologia 45, 1363–1377

64 Szpunar, K.K. et al. (2007) Neural substrates of envisioning the future.
Proc. Natl. Acad. Sci. U. S. A. 104, 642–647

65 Buckner, R.L. and Carroll, D.C. (2007) Self-projection and the brain.
Trends Cogn. Sci. 11, 49–57

66 Miller, G. (2007) Neurobiology. A surprising connection between
memory and imagination. Science 315, 312

67 Lakoff, G. and Johnson,M. (1980)MetaphoresWe Live By,University of
Chicago Press

68 Noe, A. (2005) Action in Perception (Representation and Mind), The
MIT Press

69 Barsalou, L.W. (2003) Situated simulation in the human conceptual
system. Lang. Cogn. Process. 18, 513–562

70 Grossberg, S. (1980) How does a brain build a cognitive code? Psychol.
Rev. 87, 1–51

71 McBeath, M.K. (1990) The rising fastball: baseball’s impossible pitch.
Perception 19, 545–552

72 de Araujo, I.E. et al. (2005) Cognitive modulation of olfactory
processing. Neuron 46, 671–679

73 Macrae, C.N. et al. (2002) Creating memory illusions: expectancy-based
processing and the generation of false memories. Memory 10, 63–80

74 Smilek, D. et al. (2006) Relax! Cognitive strategy influences visual
search. Vis. Cogn. 14, 543–564

75 Bar, M. (2003) A cortical mechanism for triggering top-down
facilitation in visual object recognition. J. Cogn. Neurosci. 15, 600–609

76 DeLong, K.A. et al. (2005) Probabilistic word pre-activation during
language comprehension inferred from electrical brain activity. Nat.
Neurosci. 8, 1117–1121

Have you contributed to an Elsevier publication?
Did you know that you are entitled to a 30% discount on

books?

A 30% discount is available to all Elsevier book and journal contributors when ordering books or
stand-alone CD-ROMs directly from us.

To take advantage of your discount:

1. Choose your book(s) from www.elsevier.com or www.books.elsevier.com

2. Place your order

Americas:
Phone: +1 800 782 4927 for US customers
Phone: +1 800 460 3110 for Canada, South and Central America customers
Fax: +1 314 453 4898
author.contributor@elsevier.com

All other countries:
Phone: +44 (0)1865 474 010
Fax: +44 (0)1865 474 011
directorders@elsevier.com

You’ll need to provide the name of the Elsevier book or journal to which you have
contributed. Shipping is free on prepaid orders within the US.

If you are faxing your order, please enclose a copy of this page.

3. Make your payment

This discount is only available on prepaid orders. Please note that this offer does not
apply to multi-volume reference works or Elsevier Health Sciences products.

For more information, visit www.books.elsevier.com

Opinion TRENDS in Cognitive Sciences Vol.11 No.7 289

www.sciencedirect.com


