

Ventral or "what" stream

Dorsal Stream: Vision beyond identification

Ventral Stream: Identification Hierarchical Organization

Columnar architecture in other visual areas

Direction columns in MT

"Feature" columns in IT

Hierarchical Organization

Single unit recordings in V1: Orientation selectivity

Response selectivity: the "Jennifer Aniston cell"

Ventral Stream

High Level (LOC, IT)

Fusiform gyrus

Occipitotemporal sulcus

Lateral occipitotemporal gyrus

Inferior temporal sulcus

Inferior temporal cortex (IT): all of these regions; lateral occipital cortex (LOC); TE/TEO (monkey)

Lingual gyrus

Parahippocampal gyrus

Collateral sulcus

Medial temporal lobe; PPA; TE/TEO;TF;TH monkey

Neural Communication

"Neurons that fire together, wire together"

Hebbian Theory

- Spatial organization
- Temporal organization

Spatial organization

- cells that are grouped together into functionally unique zones.
- Reflects functional mechanisms
- connected to other brain areas via long and short sets of pathways (axons of nerve cells)

Temporal organization

• Firing rate of neurons carry meaningful information

Nature Reviews | Neuroscience

Temporal organization

Carried through to levels of fMRI signal

Cognitive Neuroscience Methods

Franz Gall's Phrenology 1796

Franz Gall (1758 –1828)

Wrong about:

- Bumps
- traits

Right about:

Localization

Patient Work/Brain Lesions

Broca's and Wernicke's aphasia – 1870's-ish

Visual Agnosias 1890 – Lissaeuer – Apperceptive and Associative Studies of brain lesions really gained speed in the 1970s

Electrical Stimulation

Figure 7. Human brain labeled as to cortical areas during neurosurgery. From Penfield.

Human neurosurgery

Penfield 1951

Hubel & Weisel – 1950s, 1960s, 1970s – orientation columns

Patient Work/Brain Lesions

- Visual Agnosias 1890
- Studies of brain lesions really gained speed in the 1970s Warrington & Colleagues

• 1980s - neurophysiology

Brain Lesions

As a result of traumas, surgery, infarcts, or diseases

Main advantage: causality

Disadvantages

- Localization uncertainty (affecting connections instead of neural center per se)
- Specificity (multiple/extensive lesions may lead to more than one deficit)
- -Plasticity (neural reorganization complicates interpretation)
- -Rarity (only very few cases may exist)
- -Sufficiency but not necessity

Cognitive Neuroscience Methods

Design experiments – hypothesis driven investigations

Not one ideal technique, but several pretty good ones...

W. W. Norton

Cognitive Neuroscience Methods

Design experiments – hypothesis driven investigations

What kinds of questions can we ask?

Cognitive Neuroscience Methods (non-humans)

• Induced lesions

• Physiology

Intracellular Recording

- Microelectrode
 - Glass micropipette
 - Much smaller tip (<1 micron)
 - Small enough to penetrate the cell wall
- Insert electrode inside of the neuron
- Record changes in resting potential
 - Tells you about the currents entering and exiting the neuron
 - Change voltage of the cell and see how the cell reacts

Intracellular Recording

Single Unit Recording

- Pro
 - Can record from single neurons
 - Can be done in vivo or in vitro
 - Can systematically manipulate the conditions under which the cell will respond
- Con
 - Invasive
 - Anesthesia
 - Difficult to do while animal is awake and behaving
 - Requires responses from a large number of neurons to study a system

Multi-Unit Recording

- Macro electrode
 - Larger diameter electrode is used
- Record the responses of a large number of neurons at the same time
- Local field potentials
 - Changes in the resting potential of the neurons at the dendrites
 - Dipole

Multi Unit Recording

- Pro
 - Can record many neurons at a time
 - Not as invasive
 - Can utilize awake behaving preparations
- Con
 - Not as precise as single unit recording
 - Traces can include artifacts not related to the behavior

Response selectivity: the "Jennifer Aniston cell"

Logothetis, Pauls & Poggio, 1995

Not one ideal technique, but several pretty good ones...

W. W. Norton

Electroencephalography (EEG/ERP)

Electroencephalography (EEG/ERP)

Pros: Temporal Resolution Direct measurement of activity Cons: Spatial Resolution

Magnetoencephalography (MEG)

Pros: Temporal Resolution Direct measurement of activity Better spatial resolution Cons: Still, not great spatial resolution

Questions to ask using MEG/EEG

- Temporal questions
- Neuroimaging questions with very short inter-stimulusintervals