

Brain Directions

top, superior, dorsal

front anterior rostral

back posterior caudal

bottom, inferior, ventral

Brain Directions

Lateral

Medial

Ventral

Lobes of the brain

Visual Pathways: Retina

Rods:

Scotopic
High sensitivity
Low spatial resolution
Achromatic

Cones:

Photopic Lower sensitivity High resolution Chromatic

Receptive fields of visual neurons

A receptive field for a given neuron is the area of the retina where the pattern of light affects the cell's firing pattern

Receptive fields:

- Correspond to location in space
- Can overlap
- Can be different sizes

Retinal Layers

Outer nuclear layer (photoreceptors)

Catch light

Inner nuclear layer (INL) (bipolar cells)

Relay information

Ganglion cell layer (GCL) (ganglion cells)

Send signals to brain

light

Linear Receptive Field Model

The Blind Spot

- (a) Close your left eyeFixate on the FAdjust distance til the red circle disappears
- (b) Same thing, but you should see a continuous red line

Eccentricity Magnification Illustration

Image

Representation

Horizontal processing in the Retina

Horizontal cells: Integrate across many (100s) photoreceptors

Calculate mean

Luminance

GABA

Amacrine cells: integrate across many bipolar cells

Feedback to bipolar & ganglion cells

GABA

Center-Surround Organization: Function

ON-center cell

RGC Spikes

Neural image

Input image (cornea)

"Neural image" (retinal ganglion cells)

Center-surround receptive fields: emphasize edges.

What is going on?

Why don't you see a spot where you are fixating?

000

Visual Pathways: LGN

Retina to LGN to Primary Visual Cortex

Optic nerve

Optic chiasm

Optic tract

Lateral geniculate nucleus

Optic radiation

Primary visual cortex

80% of the projections are to LGN

20% to superior colliculus

- Visual orienting
- Eye movements
- Multisensory auditory input
- "where pathway"

Parallel visual processing streams:

Parvocellular

- Midget ganglion cells
- Small pools over fewer receptors
- Have a sustained response
- Involved in color, fine details, textures, and depth processing
- High resolution

Magnocellular

- Parasol ganglion cells
- Large cells pools over many receptors
- Fire in bursts
- Involved detection of motion
- Low resolution

Visual Pathways: V1

Projections from LGN to V1

Topographic mapping

 There is an ordered representation throughout the visual system

Cortical magnification

 Large portion of the cortex is devoted to a small portion of the retina

V1 Ocular dominance and orientation columns

(Hubel & Wiesel; Ice cube model)

Vertical column: same orientation, ocular dominance

Next column: nearby orientation, ocular dominance

Systematic changes across cortical surface

Hypercolumn = functional unit

Function of V1: Bring together information for the two eyes and reorganize the inputs so that cells respond best to oriented lines.

No stimulus in receptive field: no response

Non-preferred stimulus: no response

Single unit recordings in V1: Orientation selectivity

http://www.youtube.com/watch? v=X8AukcNn_Zk

Visual Pathways: beyond V1

Visual Streams

Ventral or "what" stream

Ventral or "what" stream

Vision beyond identification

12 METERS (40 FEET)

Visual Streams

Ventral or "what" stream

Monkey Visual Areas

Total number of feedforward projection neurons

(both hemispheres)

Hierarchical Organization

