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Understanding an Image 
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Object naming -> Object categorization 
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Why Categorize? 

1.  Generalization 
2.  Knowledge Transfer 
3.  Communication 
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Classical View of Categories 

• Dates back to Plato & 
Aristotle  
1.  Categories are defined by a 

list of properties shared by all 
elements in a category 

2. Category membership is binary 
3.  Every member in the category 

is equal 



Problems with Classical View 
• Humans don’t do this! 

–  People don’t rely on abstract definitions / lists of 
shared properties (Wittgenstein 1953, Rosch 1973) 
• e.g. define the properties shared by all “games”  
• e.g. are curtains furniture?  Are olives fruit? 

–  Typicality 
• e.g. Chicken -> bird,  but bird -> eagle, pigeon, etc. 

–   Language-dependent 
• e.g. “Women, Fire, and Dangerous Things” category is 

Australian aboriginal language (Lakoff 1987) 
–   Doesn’t work even in human-defined domains 

• e.g. Is Pluto a planet?    



Problems with Visual Semantic 
Categories 

• A lot of categories are 
functional 
 

• World is too varied 

• Categories are 3D, but 
images are 2D 

Chair	



car	





Typical HOG car detector 

Felzenszwalb et al, PASCAL 2007	





Solution: hierarchy? 

Ontologies, hierarchies, levels of 
categories (Rosch),  etc. 

WordNet, ImageNet, etc etc  
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Still Problematic! 
–  Intransitivity 

• e.g. car seat is chair, chair is furniture, but … 
–  Multiple category membership  

•   it’s not a tree, it’s a forest! 
 

Clay Shirky, “Ontologies are Overrated”	





Two Solutions: 

• Ditch semantics: 
– Categories based on Visual Shapes 

• Ditch categories altogether: 
–  exemplar-based models 



Visual Subcategories 
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  categories	
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  models	
  



Fundamental Problem with 
Categorization 

 
 
 
 
 
 
Making decisions too early! 
We should only categorize at run-time, once 

we know the task! 



The Dictatorship of Librarians 
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Philosophy and 
Psychology	
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categories are losing… 

vs.	





On-the-fly 
Categorization? 

1.  Knowledge Transfer 
2.  Communication 



Association instead of 
categorization 

Ask not “what is this?”, ask “what is this like”  
       – Moshe Bar 

• Exemplar Theory (Medin & Schaffer 1978, 
Nosofsky 1986, Krushke 1992) 
– categories represented in terms of remembered objects 

(exemplars) 
– Similarity is measured between input and all exemplars 
– think non-parametric density estimation 



Extreme of Visual 
Subcategories 

• Every example is a category by itself! 

• No more generalization…no more parametric 
models! 



We do not need to recognize the exact 
category 

•  A new class can borrow information from 
similar categories 

Slide by Torralba	





Prototype or Sum of Exemplars ? 
• Prototype Model • Exemplars Model 

•  Category judgments are made 
by comparing a new exemplar 

to the prototype. 

•  Category judgments are made 
by comparing a new exemplar 

to all the old exemplars of  a category 
or to the exemplar that is the most 

appropriate 

Slide by Torralba	





Systematically 

Can we even manage so many examples ? 



What’s the Capacity of Visual Long Term 
Memory? 

“Basically, my recollection is that we just 
separated the pictures into distinct thematic 
categories: e.g. cars, animals, single-person, 2-
people, plants, etc.) Only a few slides were 

selected which fell into each category, and they 
were visually distinct.”	



According to Standing	



Standing (1973) 

10,000 images 

83% Recognition 

What we know… What we don’t know… 

Sparse Details	
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“Gist” Only	

 Highly Detailed	



… people can 
remember thousands 

of images 

… what people are remembering for 
each item? 

High Fidelity Visual 
Memory is possible 
(Hollingworth 2004) 

Slide by Aude Oliva 



Massive Memory I: Methods 
...	

 ...	

...	



Showed 14 observers 2500 categorically unique objects 

1 at a time, 3 seconds each 

800 ms blank between items 

Study session lasted about 5.5 hours 

Repeat Detection task to maintain focus 

1-back 

Followed by 300 2-alternative forced choice tests 

1024-back 

Slide by Aude Oliva 
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how far can we push the fidelity of 
visual LTM representation ? 

Same object, different states 

Slide by Aude Oliva 



Visual Cognition	


Expert Predictions	



92%	



Massive Memory I: Recognition Memory 
Results 

Replication of 
Standing (1973) 

Slide by Aude Oliva 



92%	

 88%	

 87%	



Massive Memory I: Recognition Memory 
Results 

Slide by Aude Oliva 


