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representation is efficient enough to be learned jointly;
we show in our experimental results that joint learn-
ing is crucial for accurate performance. A small part
trained by itself is too weak to provide a strong signal,
but a collection of patches trained contextually are
rather discriminative.

Image features: An important issue for computer
vision tasks is feature description. Past work has
explored the use of superpixels [28], contours [26],
[29], [30], foreground/background color models [9],
[7], edge-based descriptors [31], [32], and gradient
descriptors [27], [33]. We use oriented gradient de-
scriptors [34] that allow for fast computation, but our
approach could be combined with other descriptors.
Recent work has integrated our models with steerable
image descriptors for highly efficient pose estimation
[35].

Large vs small parts: In recent history, researchers
have begun exploring large-scale, non-articulated
parts that span multiple limbs on the body (’Poselets’)
[3]. Such models were originally developed for human
detection, but [36] extends them to pose estimation.
Large-scale parts can be integrated into a hierarchical,
coarse-to-fine representation [37], [38]. The underly-
ing intuition behind such approaches stems from the
observation that it is hard to build accurate limb
detectors because they are nondescript in appearance
(i.e., limbs are defined by parallel lines that may
commonly occur in clutter). This motivates the use of
larger parts with more context. We demonstrate that
jointly training small parts has the same contextual
effect.

Object detection: In terms of object detection, our
work is most similar to pictorial structure models that
reason about mixtures of parts [39], [1], [4], [15]. We
show that our model generalizes such representations
in Section 4.1. Our local mixture model can also be
seen as an AND-OR grammar, where a pose is derived
by AND’ing across all parts and OR’ing across all
local mixtures [4], [40].

3 MOTIVATION

Our model is an approximation for capturing a con-
tinuous family of warps. The classic approach of using
a finite set of articulated templates is also an approx-
imation. In this section, we present a straightforward
theoretical analysis of both. For simplicity, we restrict
ourselves to affine warps, though a similar derivation
holds for any smooth warping function, including
perspective warps (Fig. 2).

Let us write x for a 2D pixel position in a template,
and w(x) = (I +�A)x+ b for its new position under
a small affine warp A = I+�A and any translation b.
We use �A to parameterize the deviation of the warp
from an identity warp. Define s(x) = w(x) � x to be
the shift of position x. The shift of a nearby position

(a) Original (b) Foreshortening (c) Out-of-plane

Fig. 2: We show that 4 small, translating parts can
approximate non-affine (e.g., perspective) warps.

x+�x can be written as

s(x+�x) = w(x+�x)� (x+�x)

= (I +�A)(x+�x) + b� x��x

= s(x) +�A�x

Both pixels x and x + �x shift by the same amount
(and can be modeled as a single part) if the product
�A�x is small, which is true if �A has small determi-
nant or �x has small norm. Classic articulated models
use a large family of discretized articulations, where
each discrete template only needs to explain a small
range of rotations and foreshortening (e.g., a small-
determinant �A). We take the opposite approach,
making �x small by using small parts. Since we want
the norm of �x to be small, this suggests that circular
parts would work best, but we use square parts as a
discrete approximation. In the extreme case, one could
define a set of single-pixel parts. Such a representation
is indeed the most flexible, but becomes difficult to
train given our learning formulation described below.

4 MODEL

Let us write I for an image, li = (x, y) for the pixel
location of part i and ti for the mixture component
of part i. We write i 2 {1, . . .K}, li 2 {1, . . . L} and
ti 2 {1, . . . T}. We call ti the “type” of part i. Our moti-
vating examples of types include orientations of a part
(e.g., a vertical versus horizontally oriented hand),
but types may span out-of-plane rotations (front-view
head versus side-view head) or even semantic classes
(an open versus closed hand). For notational conve-
nience, we define the lack of subscript to indicate a set
spanned by that subscript (e.g., t = {t1, . . . tK}). For
simplicity, we define our model at a fixed scale; at test-
time we detect people of different sizes by searching
over an image pyramid.

Co-occurrence model: To score of a configuration of
parts, we first define a compatibility function for part

Fig.	  from	  Yang	  &	  Ramanan	  
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Fig. 2. Detections obtained with a 2 component bicycle model. These examples illustrate the importance of
deformations mixture models. In this model the first component captures sideways views of bicycles while the second
component captures frontal and near frontal views. The sideways component can deform to match a “wheelie”.

the background data to find a relatively small number
of potential false positives, or hard negative examples.

A methodology of data-mining for hard negative ex-
amples was adopted by Dalal and Triggs [10] but goes
back at least to the bootstrapping methods used by [38]
and [35]. Here we analyze data-mining algorithms for
SVM and LSVM training. We prove that data-mining
methods can be made to converge to the optimal model
defined in terms of the entire training set.

Our object models are defined by filters that score
subwindows of a feature pyramid. We have investigated
feature sets similar to the HOG features from [10] and
found lower dimensional features which perform as well
as the original ones. By doing principal component anal-
ysis on HOG features the dimensionality of the feature
vector can be significantly reduced with no noticeable
loss of information. Moreover, by examining the prin-
cipal eigenvectors we discover structure that leads to
“analytic” versions of low-dimensional features which
are easily interpretable and can be computed efficiently.

We have also considered some specific problems that
arise in the PASCAL object detection challenge and sim-
ilar datasets. We show how the locations of parts in an
object hypothesis can be used to predict a bounding box
for the object. This is done by training a model specific
predictor using least-squares regression. We also demon-
strate a simple method for aggregating the output of
several object detectors. The basic idea is that objects of

some categories provide evidence for, or against, objects
of other categories in the same image. We exploit this
idea by training a category specific classifier that rescores
every detection of that category using its original score
and the highest scoring detection from each of the other
categories.

2 RELATED WORK
There is a significant body of work on deformable mod-
els of various types for object detection, including several
kinds of deformable template models (e.g. [7], [8], [21],
[43]), and a variety of part-based models (e.g. [2], [6], [9],
[15], [18], [20], [28], [42]).

In the constellation models from [18], [42] parts are
constrained to be in a sparse set of locations determined
by an interest point operator, and their geometric ar-
rangement is captured by a Gaussian distribution. In
contrast, pictorial structure models [15], [20] define a
matching problem where parts have an individual match
cost in a dense set of locations, and their geometric
arrangement is captured by a set of “springs” connecting
pairs of parts. The patchwork of parts model from [2] is
similar, but it explicitly considers how the appearance
model of overlapping parts interact.

Our models are largely based on the pictorial struc-
tures framework from [15], [20]. We use a dense set of
possible positions and scales in an image, and define
a score for placing a filter at each of these locations.
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Su	  et	  al.,	  2009	  
Figure 10: Examples of viewpoint estimation for bicycle [27, 9], swivel chair, microscope and car [27, 9]. Blue arrows indicate the viewpoint T for the
detected object (in red bounding box). Green bounding box indicates correct detections of the objects, but in a different viewpoint.

5. Conclusion
We have proposed a 3D object class model based on a

dense, multiview representation of the viewing sphere. A
morphing parameter S is introduced to allow our model
to recognize and synthesize unseen views. Our experi-
ments show promising results in object detection, view-
point classification and synthesis tasks. For future work,
we would like to incorporate a more discriminative learning
process into the model building step, as well as to combine
viewpoint synthesis into incremental learning framework to
maximize the usage of the data.
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Visual	  Sub-‐categories	  Taxonomy Subcategories 

“ImageNet”,  Deng  et  al.,  2009 
18 

Divvala	  et	  al.	  (2012)	  
Chen	  et	  al.	  (2014)	  	  

80 Role of Subcategories

Figure 4.3: Top 8 of 15 components using the proposed unsupervised clustering approach. The
models are much more interpretable and lead to higher detection performance. Figure shows a
few examples (top), the mean image (left bottom), and the learned SVM weight vector (bottom
right).

deformable part model of Felzenszwalb et al. [44] without their deformable parts. Furthermore,
we show that the uniform griding of the feature space chosen as a convention in typical sliding
window detectors may no longer be desirable. By taking advantage of the high intra-subcategory
alignment, we present a simple way to prime the feature space to obtain a compact yet discrimi-
native representation. Second, the discovered subcategories are interpretable and in many cases
match the fine grained subordinate categories carved using human supervision. This is attractive
as it alleviates the need for ground-truth annotations for gathering fine grained subcategories.

4.1 Background

Our approach is inspired in part by work in the machine learning literature [22, 50, 51, 76,
78] that considers solving a complex (nonlinear) classification problem by using locally linear
classification techniques. The basic idea is to approximate a nonlinear decision boundary by
linear decision surfaces, each of which is determined by a local linear classifier. In mixtures of
local experts [76], different classifiers compete to control different regions of the input space, and

Evidence	  in	  Neuro-‐science	  
DiCarlo	  et	  al.,	  2013	  

…	  



Visual	  Sub-‐category	  Visual  Subcategories:  ‘Horse’ 

39 



Visual	  Sub-‐categories	  Visual  Subcategories:  ‘Cat’   

38 



Visual	  Sub-‐categories	  
in	  very	  broad	  stokes	  



Visual	  Sub-‐categories	  
•  Ini>alize	  sub-‐categories	  
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Visual	  Sub-‐categories	  
•  Ini>alize	  sub-‐categories	  
•  Clustering	  (kmeans)	  on	  feature	  space	  (AR,	  HOG	  etc.)	  
•  Train	  Models	  

•  Latent	  Update	  or	  Re-‐clustering	  
•  Find	  cluster	  assignments	  again	  using	  learned	  models	  
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Visual	  Sub-‐categories	  
1.  Ini>alize	  sub-‐categories	  
•  Clustering	  (kmeans)	  on	  feature	  space	  (AR,	  HOG	  etc.)	  
•  Train	  models	  

2.  Latent	  Update	  or	  Re-‐clustering	  
•  Find	  cluster	  assignments	  again	  using	  learned	  models	  

3.  Re-‐train	  models.	  
•  Back	  to	  2	  
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– Large	  enough	  to	  capture	  all	  varia>on	  



Some	  Caveats	  
•  Number	  of	  Sub-‐categories	  (K)	  
– Large	  enough	  to	  capture	  all	  varia>on	  
– But	  not	  too	  large	  
•  If	  too	  large,	  sub-‐categories	  fight	  for	  instances	  
•  Less	  training	  data	  for	  each	  sub-‐category	  



4.3 Experimental Results 91

Figure 4.8: Variation in detection accuracy as a function of number of subcategories. (Top) Re-
sult obtained across 20 VOC classes, (bottom) result on four selected classes. The A.P. gradually
increases with increasing number of subcategories and stabilizes beyond a point.
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– But	  not	  too	  large	  
– Different	  sweet-‐spot	  for	  every	  category	  



Some	  Caveats	  
•  Number	  of	  Sub-‐categories	  (K)	  
– Large	  enough	  to	  capture	  all	  varia>on	  
– But	  not	  too	  large	  
– Different	  sweet-‐spot	  for	  every	  category	  

•  Tricky	  calibra>on	  
– Combining	  mul>ple	  clusters	  
– Removing	  noisy	  clusters	  



Evolu&on	  of	  HoG	  based	  	  
Object	  Detectors	  

[?]	   #	  of	  Mixtures	   Type	  of	  
Clustering	   #	  of	  Parts	   mAP	  on	  PASCAL	  

HOG’	  05	   1	   -‐-‐NA-‐-‐	   -‐-‐NA-‐-‐	   0.17	  

DPM’08	   1	   -‐-‐NA-‐-‐	   6	   0.21	  

DPM’10	   2	   Aspect	  Ra>o	   6	   0.26	  

DPM’11	   6	   Aspect	  Ra>o	   8	   0.32	  

SUB’12	   15	   Appearance++	   8	   0.35	  

SUB’12	   15	   Appearance++	   0	   0.24	  

SUB’12	   15	   Appearance++	   “1”	   0.31	  

ESVM’11	   N	   -‐-‐NA-‐-‐	   -‐-‐NA-‐-‐	   0.23	  



What	  does	  Neuroscience	  literature	  say	  
about	  Object	  Representa&on	  in	  IT	  
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Bell	  et	  al.,	  2009	  
…	  
..	  
.	  
	  

Logothe>s	  et	  al.,	  1996	  
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Seman&c	   vs.	   Visual	  



Infero-‐temporal	  Cortext	  (IT)	  
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Neural-‐ac&vity	  Recording	  Setup	  

•  2	  Monkeys	  
•  94	  well-‐isolated	  single	  units	  from	  anterior	  IT	  
•  ~5x4	  mm	  area	  (SCS	  and	  AMTS)	  
•  No	  alempt	  done	  to	  target	  preferen>al	  cells	  
•  Smaller	  AP	  and	  ML	  extent	  regions	  sampled	  as	  
opposed	  to	  [14]	  



Figure	  1.	  Recording	  loca&ons.	  
•  The	  blue	  dots	  show	  the	  projec>ons	  of	  the	  recording	  chamber	  grid-‐point	  loca>ons	  from	  the	  

top	  of	  the	  skull	  to	  the	  ventral	  bank	  of	  the	  superior	  temporal	  sulcus	  (STS)	  and	  the	  ventral	  
surface	  lateral	  to	  the	  anterior	  middle	  temporal	  sulcus	  (AMTS).	  

•  The	  projec>ons	  are	  shown	  over	  a	  sequence	  of	  MRI	  images	  (spanning	  a	  13–17	  
anteroposterior	  range;	  Horsley-‐Clarke	  coordinates)	  that	  were	  collected,	  for	  one	  of	  the	  
monkeys,	  before	  the	  chamber	  implant	  surgery.	  Only	  the	  grid	  loca>ons	  in	  which	  the	  electrode	  
was	  inserted	  at	  least	  once	  are	  shown.	  

•  The	  red-‐shaded	  areas	  highlight	  the	  es>mated	  cor>cal	  span	  that	  was	  likely	  sampled	  during	  
recording,	  given	  that:	  
•  each	  electrode	  penetra>on	  usually	  spanned	  the	  whole	  depth	  of	  the	  targeted	  cor>cal	  

bank	  (either	  STS	  or	  AMTS);	  and	  
•  the	  upper	  bound	  of	  the	  variability	  of	  each	  recording	  loca>on	  along	  the	  mediolateral	  axis	  

(due	  to	  bending	  of	  the	  electrode	  during	  inser>on)	  can	  be	  es>mated	  as	  +/-‐	  2	  mm	  [80].	  
•  The	  figure	  also	  shows	  the	  range	  of	  possible	  loca>ons	  of	  the	  three	  anterior	  face	  patches	  (AL,	  

AF	  and	  AM)	  according	  to	  [33],	  so	  as	  to	  highlight	  their	  poten>al	  overlap	  with	  the	  recording	  
loca>ons.	  



S&muli	  Setup	  
•  213	  Gray-‐scale	  
•  5	  images/sec	  
•  Simple	  object	  detec>on	  task	  (?)	  



Figure	  2.	  The	  s&mulus	  set.	  The	  full	  set	  of	  213	  objects	  used	  in	  our	  study.	  	  
i)  188	  images	  of	  real-‐world	  objects	  belonging	  to	  94	  different	  categories	  (e.g.,	  two	  hats,	  two	  

accordions,	  two	  monkey	  faces,	  etc.);	  	  
ii)  5	  cars,	  5	  human	  faces,	  and	  5	  abstract	  silhoueles;	  
iii)  5	  patches	  otexture	  (e.g.,	  random	  dots	  and	  oriented	  bars);	  
iv)  a	  blank	  frame;	  
v)  4	  low	  contrast	  (10%,	  3%,	  2%	  and	  1.5%)	  images	  of	  one	  of	  the	  objects	  (a	  camera).	  



Image-‐level	  Clustering	  
•  Seman>c	  
•  Shape-‐based	  
•  Low-‐level	  



Seman&c	  Categories	  



Shape-‐based	  Categories	  



Shape-‐based	  features	  

Mutch	  J,	  Lowe	  DG	  
Object	  Class	  Recogni>on	  and	  Localiza>on	  Using	  Sparse	  Features	  with	  Limited	  Recep>ve	  Fields.	  
IJCV	  2008	  
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Figure 2. Feature computation in the base model. Each layer has
units covering three spatial dimensions (x/y/scale), and at each 3D
location, an additional dimension of feature type. The image layer
has only one type (pixels), layers S1 and C1 have 4 types, and the
upper layers have d (many) types per location. Each layer is com-
puted from the previous by applying template matching or max
pooling filters. Image size can vary and is shown for illustration.

Gabor filter (S1) layer. The S1 layer is computed from the
image layer by centering 2D Gabor filters with a full range
of orientations at each possible position and scale. Our base
model follows [32] and uses 4 orientations. While the im-
age layer is a 3D pyramid of pixels, the S1 layer is a 4D
structure, having the same 3D pyramid shape, but with mul-
tiple oriented units at each position and scale (see figure 2).
Each unit represents the activation of a particular Gabor fil-
ter centered at that position/scale. This layer corresponds to
V1 simple cells.
The Gabor filters are 11x11 in size, and are described by:

G(x, y) = exp
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cos
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λ
X
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(1)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ. x
and y vary between -5 and 5, and θ varies between 0 and
π. The parameters γ (aspect ratio), σ (effective width), and
λ (wavelength) are all taken from [32] and are set to 0.3,
4.5, and 5.6 respectively. Finally, the components of each
filter are normalized so that their mean is 0 and the sum of
their squares is 1. We use the same size filters for all scales
(applying them to scaled versions of the image).
It should be noted that the filters produced by these pa-

rameters are quite clipped; in particular, the long axis of
the Gabor filter does not diminish to zero before the bound-
ary of the 11x11 array is reached. However, experiments
showed that larger arrays failed to improve classification
performance, and they were more expensive to compute.
The response of a patch of pixels X to a particular S1

filter G is given by:
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Local invariance (C1) layer. This layer pools nearby
S1 units (of the same orientation) to create position and
scale invariance over larger local regions, and as a result
can also subsample S1 to reduce the number of units. For
each orientation, the S1 pyramid is convolved with a 3D
max filter, 10x10 units across in position2 and 2 units
deep in scale. A C1 unit’s value is simply the value of
the maximum S1 unit (of that orientation) that falls within
the max filter. To achieve subsampling, the max filter is
moved around the S1 pyramid in steps of 5 in position (but
only 1 in scale), giving a sampling overlap factor of 2 in
both position and scale. Due to the pyramidal structure of
S1, we are able to use the same size filter for all scales.
The resulting C1 layer is smaller in spatial extent and has
the same number of feature types (orientations) as S1; see
figure 2. This layer provides a model for V1 complex cells.

2Note that the max filter is itself a pyramid, so its size is 10x10 only at
the lowest scale.
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Figure 2. Feature computation in the base model. Each layer has
units covering three spatial dimensions (x/y/scale), and at each 3D
location, an additional dimension of feature type. The image layer
has only one type (pixels), layers S1 and C1 have 4 types, and the
upper layers have d (many) types per location. Each layer is com-
puted from the previous by applying template matching or max
pooling filters. Image size can vary and is shown for illustration.

Gabor filter (S1) layer. The S1 layer is computed from the
image layer by centering 2D Gabor filters with a full range
of orientations at each possible position and scale. Our base
model follows [32] and uses 4 orientations. While the im-
age layer is a 3D pyramid of pixels, the S1 layer is a 4D
structure, having the same 3D pyramid shape, but with mul-
tiple oriented units at each position and scale (see figure 2).
Each unit represents the activation of a particular Gabor fil-
ter centered at that position/scale. This layer corresponds to
V1 simple cells.
The Gabor filters are 11x11 in size, and are described by:

G(x, y) = exp
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(
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(1)

where X = x cos θ − y sin θ and Y = x sin θ + y cos θ. x
and y vary between -5 and 5, and θ varies between 0 and
π. The parameters γ (aspect ratio), σ (effective width), and
λ (wavelength) are all taken from [32] and are set to 0.3,
4.5, and 5.6 respectively. Finally, the components of each
filter are normalized so that their mean is 0 and the sum of
their squares is 1. We use the same size filters for all scales
(applying them to scaled versions of the image).
It should be noted that the filters produced by these pa-

rameters are quite clipped; in particular, the long axis of
the Gabor filter does not diminish to zero before the bound-
ary of the 11x11 array is reached. However, experiments
showed that larger arrays failed to improve classification
performance, and they were more expensive to compute.
The response of a patch of pixels X to a particular S1

filter G is given by:

R(X, G) =

∣

∣

∣

∣

∣

∑

XiGi
√

∑

X2
i

∣

∣

∣

∣

∣

(2)

Local invariance (C1) layer. This layer pools nearby
S1 units (of the same orientation) to create position and
scale invariance over larger local regions, and as a result
can also subsample S1 to reduce the number of units. For
each orientation, the S1 pyramid is convolved with a 3D
max filter, 10x10 units across in position2 and 2 units
deep in scale. A C1 unit’s value is simply the value of
the maximum S1 unit (of that orientation) that falls within
the max filter. To achieve subsampling, the max filter is
moved around the S1 pyramid in steps of 5 in position (but
only 1 in scale), giving a sampling overlap factor of 2 in
both position and scale. Due to the pyramidal structure of
S1, we are able to use the same size filter for all scales.
The resulting C1 layer is smaller in spatial extent and has
the same number of feature types (orientations) as S1; see
figure 2. This layer provides a model for V1 complex cells.

2Note that the max filter is itself a pyramid, so its size is 10x10 only at
the lowest scale.
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Shape-‐based	  Categories	  



Low-‐level	  Categories	  



Pearson	  correla&on	  coefficient	  

small objects was significantly different in the first two branches of
the dendrogram (p,0.001, x2 test), with large objects representing
more than 60% of the total in one branch and only about 20% in
the other (Fig. 3C).

To further investigate what properties shaped the representation
of the objects in the IT neuronal space, we performed a Principal
Component Analysis (PCA) of the recorded neuronal population
vectors. The total variance explained by the first two principal

Figure 3. Similarity matrix, hierarchical clustering and PCA of IT population responses to visual objects. (A) Each pixel in the matrix
color-codes the correlation (i.e., similarity) between the neuronal population vectors representing a pair of visual objects. The order of the objects
along the axes is defined by the dendrogram produced by hierarchical clustering of the population vectors (to avoid crowding, one every three
objects is shown; the complete object set is shown in Fig. 2). The first two branches of the dendrogram (shown at the top) are colored in cyan and
magenta. (B) The fraction of animate and inanimate objects is not significantly different in the first two branches of the dendrogram (NS, p.0.1, x2

test). (C) The proportion of large and small objects is significantly different in the first two branches of the dendrogram (**, p,0.001, x2 test), (D)
Layout of visual objects in the two-dimensional space defined by the first two principal components of the IT population responses (to avoid
crowding, only some of the objects are shown). (E) Object area and object ranking along the first principal component are linearly related (r = 20.69,
p,0.001, t-test).
doi:10.1371/journal.pcbi.1003167.g003

Structure of Visual Object Representations in IT
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Inanimate	  vs.	  Animate	  

small objects was significantly different in the first two branches of
the dendrogram (p,0.001, x2 test), with large objects representing
more than 60% of the total in one branch and only about 20% in
the other (Fig. 3C).

To further investigate what properties shaped the representation
of the objects in the IT neuronal space, we performed a Principal
Component Analysis (PCA) of the recorded neuronal population
vectors. The total variance explained by the first two principal

Figure 3. Similarity matrix, hierarchical clustering and PCA of IT population responses to visual objects. (A) Each pixel in the matrix
color-codes the correlation (i.e., similarity) between the neuronal population vectors representing a pair of visual objects. The order of the objects
along the axes is defined by the dendrogram produced by hierarchical clustering of the population vectors (to avoid crowding, one every three
objects is shown; the complete object set is shown in Fig. 2). The first two branches of the dendrogram (shown at the top) are colored in cyan and
magenta. (B) The fraction of animate and inanimate objects is not significantly different in the first two branches of the dendrogram (NS, p.0.1, x2

test). (C) The proportion of large and small objects is significantly different in the first two branches of the dendrogram (**, p,0.001, x2 test), (D)
Layout of visual objects in the two-dimensional space defined by the first two principal components of the IT population responses (to avoid
crowding, only some of the objects are shown). (E) Object area and object ranking along the first principal component are linearly related (r = 20.69,
p,0.001, t-test).
doi:10.1371/journal.pcbi.1003167.g003
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small objects was significantly different in the first two branches of
the dendrogram (p,0.001, x2 test), with large objects representing
more than 60% of the total in one branch and only about 20% in
the other (Fig. 3C).

To further investigate what properties shaped the representation
of the objects in the IT neuronal space, we performed a Principal
Component Analysis (PCA) of the recorded neuronal population
vectors. The total variance explained by the first two principal

Figure 3. Similarity matrix, hierarchical clustering and PCA of IT population responses to visual objects. (A) Each pixel in the matrix
color-codes the correlation (i.e., similarity) between the neuronal population vectors representing a pair of visual objects. The order of the objects
along the axes is defined by the dendrogram produced by hierarchical clustering of the population vectors (to avoid crowding, one every three
objects is shown; the complete object set is shown in Fig. 2). The first two branches of the dendrogram (shown at the top) are colored in cyan and
magenta. (B) The fraction of animate and inanimate objects is not significantly different in the first two branches of the dendrogram (NS, p.0.1, x2

test). (C) The proportion of large and small objects is significantly different in the first two branches of the dendrogram (**, p,0.001, x2 test), (D)
Layout of visual objects in the two-dimensional space defined by the first two principal components of the IT population responses (to avoid
crowding, only some of the objects are shown). (E) Object area and object ranking along the first principal component are linearly related (r = 20.69,
p,0.001, t-test).
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PCA	  on	  Neuronal	  popula&on	  vectors	  
•  Variance	  by	  2	  components	  ~15%	  (low).	  

•  High-‐level	  IT	  neurons	  won’t	  capture	  all	  (highly	  
varied)	  visual	  proper>es	  

•  Goal	  is	  not	  to	  find	  dimensions	  that	  account	  for	  
most	  varia>ons	  

•  Just	  check	  if	  any	  component	  could	  be	  associated	  
with	  some	  global	  property.	  
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K-‐means	  on	  Neuronal	  Popula&on	  Vectors	  















Animate	  vs.	  Inanimate	  
•  K=2	  (100	  runs)	  
•  |animate_C1	  –animate_C2|	  =	  ~7%	  
•  Not	  significantly	  larger	  than	  chance	  (p=0.39)	  

•  Again	  similar	  to	  pearson	  coefficient.	  



K-‐Means	  Analysis	  
•  Most	  clusters	  explainable	  
by	  visual	  similarity	  

•  Both	  shape	  &	  low-‐level	  
•  Few	  seman>c	  categories	  
do	  exist:	  

	  	  	  	  Birds,	  four-‐limbed	  animals	  
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D-‐MST	  Clustering	  
•  Un-‐supervised	  Clustering	  

•  Combines	  advantages	  of	  both:	  
K-‐means	  like	  par>>ons	  -‐-‐	  allow	  studying	  overlaps	  	  
Hierarchical	  approaches	  –	  fine-‐grained	  rela>onships	  b/w	  objects	  
	  

•  Allows	  non-‐spherical	  clusters	  
As	  opposed	  to	  kmeans	  
	  

•  Outputs	  a	  forest	  –	  richer	  informa>on	  about	  
topology/structure	  of	  data	  
	  



D-‐MST	  Clustering	  

horizontal thick objects in cluster #1; and the music instruments were
part of the larger cluster of horizontal thin objects in cluster #3
(cross-compare Fig. 5 and the third-to-last and last columns of
Tables 1–2). Therefore, regardless of the level of conservativeness
of the permutation test, the D-MST clustering analysis strongly

suggests that visual similarity, rather than semantic membership,
was at the root of the structure of visual object representations in
the recorded IT population (with the noticeable exception to the
four-limbed animals and, to a lesser extent, the birds semantic
categories).

Figure 5. Overlap between D-MST clusters in the IT neuronal space and object categories of the clustering hypotheses. The five most
stable clusters resulting from applying the D-MST clustering algorithm to the IT object representation (see also Fig. S2). The colored frames indicate
the subsets of objects that, within each cluster, significantly overlapped with a semantic, a shape-based or a low-level category. The name of the
overlapping category is reported near to each frame, together with the overlap’s significance level (same overlap score and significance level symbols
as in Table 1). The width and shade of the links connecting the images reflect the robustness of the links across different runs of the D-MST algorithm:
thinner/lighter links appeared less frequently in the D-MST outcome with respect to thicker/darker links.
doi:10.1371/journal.pcbi.1003167.g005
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categories).
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stable clusters resulting from applying the D-MST clustering algorithm to the IT object representation (see also Fig. S2). The colored frames indicate
the subsets of objects that, within each cluster, significantly overlapped with a semantic, a shape-based or a low-level category. The name of the
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as in Table 1). The width and shade of the links connecting the images reflect the robustness of the links across different runs of the D-MST algorithm:
thinner/lighter links appeared less frequently in the D-MST outcome with respect to thicker/darker links.
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Figure 5. Overlap between D-MST clusters in the IT neuronal space and object categories of the clustering hypotheses. The five most
stable clusters resulting from applying the D-MST clustering algorithm to the IT object representation (see also Fig. S2). The colored frames indicate
the subsets of objects that, within each cluster, significantly overlapped with a semantic, a shape-based or a low-level category. The name of the
overlapping category is reported near to each frame, together with the overlap’s significance level (same overlap score and significance level symbols
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part of the larger cluster of horizontal thin objects in cluster #3
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Tables 1–2). Therefore, regardless of the level of conservativeness
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suggests that visual similarity, rather than semantic membership,
was at the root of the structure of visual object representations in
the recorded IT population (with the noticeable exception to the
four-limbed animals and, to a lesser extent, the birds semantic
categories).

Figure 5. Overlap between D-MST clusters in the IT neuronal space and object categories of the clustering hypotheses. The five most
stable clusters resulting from applying the D-MST clustering algorithm to the IT object representation (see also Fig. S2). The colored frames indicate
the subsets of objects that, within each cluster, significantly overlapped with a semantic, a shape-based or a low-level category. The name of the
overlapping category is reported near to each frame, together with the overlap’s significance level (same overlap score and significance level symbols
as in Table 1). The width and shade of the links connecting the images reflect the robustness of the links across different runs of the D-MST algorithm:
thinner/lighter links appeared less frequently in the D-MST outcome with respect to thicker/darker links.
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Overlap	  (this	  paper	  vs.	  Kiani	  et	  a.)	  
•  Compensa>ng	  for	  existence	  of	  mul>ple	  (very	  
similar)	  exemplars	  of	  same	  objects	  (i.e.,	  twins)	  

•  When	  using	  ‘buggy’	  Overlap	  
– Some	  more	  seman>c	  overlaps	  
– Most	  of	  those	  overlaps	  explained	  by	  shape	  or	  low-‐
level	  overlaps	  



This conclusion was strengthened by the qualitative obser-
vation of the D-MST clusters, whose internal structure
provided a richness of information that was not always
captured by our overlap and similarity metrics. For instance,
four-legged grand-pianos and four-wheeled cars (among other
inanimate objects) belonged to the same cluster of the four-
limbed animals, thus suggesting that some shared, hard-to-
quantify visual property, rather than semantic membership,
may have underlain the grouping of objects in cluster #1.
Similarly, shared visual features likely played a relevant role in

determining the clustering of other groups of objects (see, for
instance, the objects with high spatial frequency texture/
patterns in tree #2, or the objects with curved or round
elements in tree #3).

Overall, the object clustering produced by the D-MST
algorithm suggests the existence of a rich multi-level object
representation in IT, which is largely driven by the similarity of
visual objects across a spectrum of visual properties, ranging from
low-level image attributes to complex combinations of shape
features that are often hard to model and quantify.

Table 1. Overlapping between semantic categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

Four-limb. anim. 1 0.73 0.96 0.71 0.0000 ** 0.0000 **

Faces 4 0.78 1.00 0.78 0.0023 ++ 0.0000 **

Fishes 1 0.75 1.00 0.75 0.0742 0.0007 *+

Sea invertebr. 5 0.50 0.86 0.46 0.0840 0.0004 **

Birds 1 1.00 0.48 0.48 0.1048 0.0003 **

Music instr. 3 0.50 0.75 0.43 0.1140 0.0012 *+

Vehicles 1 0.46 0.67 0.37 0.2617 0.0065 ++

Insects 3 0.58 0.47 0.35 0.3635 0.0192 +

Tools 3 0.58 0.44 0.33 0.4587 0.0365 +

Trees 5 0.30 1.00 0.30 0.6240 0.0979

Buildings 5 0.33 1.00 0.33 0.8883 0.1471

The table reports the overlap (fifth column) between each semantic category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects, according to a score defined as the ratio between the intersection of the sub-tree with the category and their union (fifth
column). Significance of the overlap was computed by permuting (1,000,000 times) either sets of twin objects (forth- and third-to-last columns) or individual objects
(second-to-last and last columns) across the categories of a given clustering hypotheses: Holm-Bonferroni corrected p,0.01 (**) and p,0.05 (* and *+); and uncorrected
p,0.01 (++ and *+) and p,0.05 (+). For comparison with [14], two other overlap metrics (Ratio 1 = the fraction of objects in the category overlapping with the cluster;
and Ratio 2 = the fraction of objects in the cluster overlapping with the category) are also reported.
doi:10.1371/journal.pcbi.1003167.t001

Table 2. Overlapping between shape-based categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

#2 (round) 4 1.00 1.00 1.00 0.0000 ** 0.0000 **

#14 (star-like) 5 0.71 0.91 0.67 0.0007 *+ 0.0000 **

#8 (dim) 2 0.78 0.78 0.64 0.0097 ++ 0.0000 **

#13 (vertical thin) 3 0.52 0.68 0.42 0.0347 + 0.0002 **

#6 (horiz. thin) 3 0.41 1.00 0.41 0.0520 0.0003 **

#1 (bright) 2 0.57 0.66 0.44 0.0748 0.0004 **

#5 (horiz. thick) 1 0.44 0.87 0.41 0.0927 0.0008 *+

#12 (diagonal) 1 0.47 0.50 0.32 0.4299 0.0392 +

#15 1 0.50 0.50 0.33 0.4878 0.0368 +

#10 3 0.45 0.50 0.31 0.5313 0.0667

#11 3 0.31 1.00 0.30 0.5347 0.0582

#4 1 0.45 0.41 0.28 0.7109 0.1694

#7 (pointy) 5 0.27 0.60 0.23 0.9279 0.4949

#9 1 0.29 0.50 0.22 0.9451 0.5630

#3 2 0.33 0.40 0.22 0.9530 0.5768

The table reports the overlap (fifth column) between each shape-based category (first column) and the D-MST neuronal-based cluster (second column) containing the
best matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t002
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This conclusion was strengthened by the qualitative obser-
vation of the D-MST clusters, whose internal structure
provided a richness of information that was not always
captured by our overlap and similarity metrics. For instance,
four-legged grand-pianos and four-wheeled cars (among other
inanimate objects) belonged to the same cluster of the four-
limbed animals, thus suggesting that some shared, hard-to-
quantify visual property, rather than semantic membership,
may have underlain the grouping of objects in cluster #1.
Similarly, shared visual features likely played a relevant role in

determining the clustering of other groups of objects (see, for
instance, the objects with high spatial frequency texture/
patterns in tree #2, or the objects with curved or round
elements in tree #3).

Overall, the object clustering produced by the D-MST
algorithm suggests the existence of a rich multi-level object
representation in IT, which is largely driven by the similarity of
visual objects across a spectrum of visual properties, ranging from
low-level image attributes to complex combinations of shape
features that are often hard to model and quantify.

Table 1. Overlapping between semantic categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

Four-limb. anim. 1 0.73 0.96 0.71 0.0000 ** 0.0000 **

Faces 4 0.78 1.00 0.78 0.0023 ++ 0.0000 **

Fishes 1 0.75 1.00 0.75 0.0742 0.0007 *+

Sea invertebr. 5 0.50 0.86 0.46 0.0840 0.0004 **

Birds 1 1.00 0.48 0.48 0.1048 0.0003 **

Music instr. 3 0.50 0.75 0.43 0.1140 0.0012 *+

Vehicles 1 0.46 0.67 0.37 0.2617 0.0065 ++

Insects 3 0.58 0.47 0.35 0.3635 0.0192 +

Tools 3 0.58 0.44 0.33 0.4587 0.0365 +

Trees 5 0.30 1.00 0.30 0.6240 0.0979

Buildings 5 0.33 1.00 0.33 0.8883 0.1471

The table reports the overlap (fifth column) between each semantic category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects, according to a score defined as the ratio between the intersection of the sub-tree with the category and their union (fifth
column). Significance of the overlap was computed by permuting (1,000,000 times) either sets of twin objects (forth- and third-to-last columns) or individual objects
(second-to-last and last columns) across the categories of a given clustering hypotheses: Holm-Bonferroni corrected p,0.01 (**) and p,0.05 (* and *+); and uncorrected
p,0.01 (++ and *+) and p,0.05 (+). For comparison with [14], two other overlap metrics (Ratio 1 = the fraction of objects in the category overlapping with the cluster;
and Ratio 2 = the fraction of objects in the cluster overlapping with the category) are also reported.
doi:10.1371/journal.pcbi.1003167.t001

Table 2. Overlapping between shape-based categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

#2 (round) 4 1.00 1.00 1.00 0.0000 ** 0.0000 **

#14 (star-like) 5 0.71 0.91 0.67 0.0007 *+ 0.0000 **

#8 (dim) 2 0.78 0.78 0.64 0.0097 ++ 0.0000 **

#13 (vertical thin) 3 0.52 0.68 0.42 0.0347 + 0.0002 **

#6 (horiz. thin) 3 0.41 1.00 0.41 0.0520 0.0003 **

#1 (bright) 2 0.57 0.66 0.44 0.0748 0.0004 **

#5 (horiz. thick) 1 0.44 0.87 0.41 0.0927 0.0008 *+

#12 (diagonal) 1 0.47 0.50 0.32 0.4299 0.0392 +

#15 1 0.50 0.50 0.33 0.4878 0.0368 +

#10 3 0.45 0.50 0.31 0.5313 0.0667

#11 3 0.31 1.00 0.30 0.5347 0.0582

#4 1 0.45 0.41 0.28 0.7109 0.1694

#7 (pointy) 5 0.27 0.60 0.23 0.9279 0.4949

#9 1 0.29 0.50 0.22 0.9451 0.5630

#3 2 0.33 0.40 0.22 0.9530 0.5768

The table reports the overlap (fifth column) between each shape-based category (first column) and the D-MST neuronal-based cluster (second column) containing the
best matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t002
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Read-out of object category membership from the IT
population activity

Unsupervised approaches, such as the clustering methods
described in the previous sections, have the main advantage of
discovering the ‘‘natural’’ internal structure of neuronal object
representations, but do not provide a direct assessment of how
much information a neuronal population conveys about a given
object set (e.g., a semantic or a visual similarity-based category). In
addition, since they are based on average firing rates computed in
a time epoch following stimulus presentation, they do not take into
account the trial-by-trial variability of neuronal responses [62,63].
As an alternative, a useful tool to directly estimate the
representational power of a neuronal population (and take into
account trial-by-trial response variability) is provided by supervised
decoding approaches, such as discriminant-based linear classifiers
[62,64–67]. These approaches are particularly appealing when
dealing with neuronal representations, since they are based on
linear read-out schemes that are plausibly implementable by the
neuronal machinery.

We estimated the power of the recorded IT population to
support classification of the objects belonging to the categories of
the clustering hypotheses, by building binary Fisher Linear
Discriminants (FLDs) [60]. The FLDs were trained to learn the
mapping between the neuronal population response vectors and
the labels that were assigned to each object according to a given
binary classification task (e.g., faces vs. all other objects in the set).
We then measured the performance of the classifiers at
generalizing to novel population responses (i.e., at correctly
labeling left-out population vectors that were not used during
training), using standard cross-validation procedures to establish
the variability and significance of the classification performance
(see Materials and Methods). Specifically, we tested the capability
of the FLDs to correctly classify visual objects that were not used to
build (i.e., train) the classifiers. That is, all the population vectors
obtained across different presentations of a given object in a given
category (e.g., a given face in the faces category) were excluded
from the training set, and one of such left-out population vectors
was used to test the classifier performance in the cross-validation
procedure.

The average classification performance of the FLDs was
significantly higher than what expected by randomly permuting
the object labels (p,0.05; see Materials and Methods for details)
for all the semantic categories, most of the shape-based categories
(13 out of 15), and all the low-level categories (see Fig. 6A). At first,
this result may seem surprising (and at odd with our previous

analyses; see Figs. 3–5), but it can be easily understood, by
considering the existence of multiple (very similar) exemplars of
the same objects (i.e., the twins) in our stimulus set (see Fig. 2).
Indeed, the large (and significant) classification performance
obtained for virtually all the FLDs in Figure 6A is fully consistent
with the large number of significant overlaps between D-MST
clusters and object categories reported in the last column of
Tables 1–3 (i.e., when the significance of the overlap was
computed without compensating for the existence of twins).

To understand how twins can explain the high performances of
the FLDs, it should be recalled that, as shown by the D-MST
clusters (see Fig. 5), twins typically lay nearby in the neuronal
representation space. Therefore, it is not surprising that an FLD,
trained to classify a given member in pair of twins, successfully
classifies the other member of the pair (when this member is used
as the left-out test object). The problem is that, for most twins, it is
impossible to know whether it is their shared semantic member-
ship or their visual similarity that drives their clustering in the
neuronal space (and, therefore, the high performance of the
FLDs). In fact, twins belong, by construction, to the same semantic
category (see Fig. S1A), but, in most cases, they also belong to the
same shape-based or low-level category (see Figs. S1B–C), being
twins, in general, very similar, in terms of shape, orientation, pose,
contrast, luminance, etc (compare adjacent objects in Fig. 2).

The issue with twins brings up the more general issue of how to
fully disentangle the contributions of semantic membership and
shape similarity to the establishment of cortical visual object
representations, when sets of natural objects (containing many
similar members of the same semantic categories) are used to
probe such representations. To tackle this issue, and better
dissociate semantic information from visual information, we
subsampled/pruned the object categories, so as to obtain semantic
categories made only of dissimilar objects, and shape-based/low-
level categories made only of objects with different semantic
membership. This was achieved by imposing the constraints that:
1) no pair of objects in any given semantic category belonged to
the same shape-based or low-level category; 2) no pair of objects in
any given shape-based or low-level category belonged to the same
semantic category; and 3) only a single exemplar of any set of twins
(e.g., a single human face or a single hat) belonged to any given
category. Since many different ‘‘pruned’’ categories could be
obtained from any of the original object categories, the subsam-
pling procedure was repeated many times (once for each cross-
validation run; see Materials and Methods for details; examples of
pruned categories are shown Fig. 6B). We then measured the

Table 3. Overlapping between low-level categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.

High area 4 0.93 1.00 0.93 0.0000 ** 0.0000 **

Low contrast 2 0.60 0.82 0.53 0.0103 + 0.0000 **

Low area 3 0.60 0.69 0.47 0.0333 + 0.0001 **

High luminance 2 0.53 0.80 0.47 0.0352 + 0.0001 **

Low aspect ratio 2 0.40 0.86 0.37 0.1910 0.0049 ++

High aspect ratio 4 0.33 0.83 0.31 0.4760 0.0454 +

Low luminance 1 0.33 0.42 0.28 0.9240 0.5116

High contrast 1 0.33 0.36 0.21 0.9761 0.7167

The table reports the overlap (fifth column) between each low-level category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t003
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D-‐MST	  Clustering	  Analysis	  
The	  object	  clustering	  produced	  by	  the	  D-‐MST	  

algorithm	  suggests	  the	  existence	  of	  a	  rich	  mul>-‐
level	  object	  representa>on	  in	  IT,	  	  

	  
which	  is	  largely	  driven	  by	  the	  similarity	  of	  visual	  
objects	  across	  a	  spectrum	  of	  visual	  proper>es,	  

	  
ranging	  from	  low-‐level	  image	  alributes	  to	  complex	  
combina>ons	  of	  shape	  features	  that	  are	  oten	  hard	  

to	  model	  and	  quan>fy.	  	  



Structure	  of	  Visual	  Object	  Representa&on	  in	  IT	  
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Unsupervised	  to	  Supervised	  Analysis	  
•  Unsupervised	  approaches	  (K-‐means,	  D-‐MST)	  
•  Discover	  “natural”	  internal	  structure	  
•  No	  assessment	  of	  how	  much	  informa>on	  does	  it	  
convey	  about	  a	  given	  object	  set	  (?)	  

•  Based	  on	  average	  firing	  rates	  –	  do	  not	  take	  into	  
account	  trial-‐by-‐trial	  variability	  of	  neuronal	  responses	  

•  Supervised	  decoding	  approaches	  
•  Discriminant-‐based	  linear	  classifiers	  
•  Quiroga	  et	  al.	  2009,	  DiCarlo	  et	  al.	  2005/09/10	  etc.	  

•  Linear	  read-‐out	  schemes	  (?)	  



Fisher	  Linear	  Discriminants	  (FLDs)	  
•  Given	  neuronal	  response,	  perform	  a	  binary	  
classifica>on	  task	  for	  each	  object	  (e.g.,	  faces	  vs.	  
everything	  else,	  round	  vs.	  everything	  else	  etc.)	  

•  Capability	  of	  FLDs	  to	  classify	  objects	  not	  used	  in	  
training	  –	  popula>on	  vectors	  for	  different	  
presenta>on	  of	  a	  given	  object	  in	  a	  given	  
category	  were	  excluded	  from	  training	  set.	  
– A	  given	  face	  in	  faces	  category*****	  



FLDs	  Compared	  to	  Categories	  

performance of the FLDs at correctly classifying left-out objects
from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was
much reduced, as compared to what obtained with the original
categories (compare Figs. 6A and C). Only three of the
subordinate semantic categories (birds, four-limbed animals, and
insects; see Fig. 6C, first panel) were classified with a performance
that was higher than what expected by chance (p,0.05,
permutation test; see Materials and Methods for details). In
addition, the animate category (as a whole) was discriminated with
higher than chance performance from the inanimate category.
Among the categories defined by visual similarity, five shape-based
categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high
and low luminance and high and low aspect ratio objects), were all
classified with higher than chance performance by the FLDs (see
second and third panels in Figs. 6C). Among all tested categories,
the highest classification performance (.75% correct) was
obtained for the shape-based category of round objects (this was
the only performance to remain significantly higher than chance,
after that a Bonferroni correction for multiple comparisons was
applied).

Overall, the result of the FLD analysis, applied to the pruned
categories, was in good agreement with the result of the D-MST
clustering, when significance was computed by permuting twins’
sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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Again,	  ‘twins’	  problema&c	  



Pruned	  Sets	  
•  Isolate	  seman>cs	  from	  shape	  and	  low-‐level	  etc.	  

performance of the FLDs at correctly classifying left-out objects
from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was
much reduced, as compared to what obtained with the original
categories (compare Figs. 6A and C). Only three of the
subordinate semantic categories (birds, four-limbed animals, and
insects; see Fig. 6C, first panel) were classified with a performance
that was higher than what expected by chance (p,0.05,
permutation test; see Materials and Methods for details). In
addition, the animate category (as a whole) was discriminated with
higher than chance performance from the inanimate category.
Among the categories defined by visual similarity, five shape-based
categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high
and low luminance and high and low aspect ratio objects), were all
classified with higher than chance performance by the FLDs (see
second and third panels in Figs. 6C). Among all tested categories,
the highest classification performance (.75% correct) was
obtained for the shape-based category of round objects (this was
the only performance to remain significantly higher than chance,
after that a Bonferroni correction for multiple comparisons was
applied).

Overall, the result of the FLD analysis, applied to the pruned
categories, was in good agreement with the result of the D-MST
clustering, when significance was computed by permuting twins’
sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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Actual	  vs.	  Pruned	  

performance of the FLDs at correctly classifying left-out objects
from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was
much reduced, as compared to what obtained with the original
categories (compare Figs. 6A and C). Only three of the
subordinate semantic categories (birds, four-limbed animals, and
insects; see Fig. 6C, first panel) were classified with a performance
that was higher than what expected by chance (p,0.05,
permutation test; see Materials and Methods for details). In
addition, the animate category (as a whole) was discriminated with
higher than chance performance from the inanimate category.
Among the categories defined by visual similarity, five shape-based
categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high
and low luminance and high and low aspect ratio objects), were all
classified with higher than chance performance by the FLDs (see
second and third panels in Figs. 6C). Among all tested categories,
the highest classification performance (.75% correct) was
obtained for the shape-based category of round objects (this was
the only performance to remain significantly higher than chance,
after that a Bonferroni correction for multiple comparisons was
applied).

Overall, the result of the FLD analysis, applied to the pruned
categories, was in good agreement with the result of the D-MST
clustering, when significance was computed by permuting twins’
sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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performance of the FLDs at correctly classifying left-out objects
from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was
much reduced, as compared to what obtained with the original
categories (compare Figs. 6A and C). Only three of the
subordinate semantic categories (birds, four-limbed animals, and
insects; see Fig. 6C, first panel) were classified with a performance
that was higher than what expected by chance (p,0.05,
permutation test; see Materials and Methods for details). In
addition, the animate category (as a whole) was discriminated with
higher than chance performance from the inanimate category.
Among the categories defined by visual similarity, five shape-based
categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high
and low luminance and high and low aspect ratio objects), were all
classified with higher than chance performance by the FLDs (see
second and third panels in Figs. 6C). Among all tested categories,
the highest classification performance (.75% correct) was
obtained for the shape-based category of round objects (this was
the only performance to remain significantly higher than chance,
after that a Bonferroni correction for multiple comparisons was
applied).

Overall, the result of the FLD analysis, applied to the pruned
categories, was in good agreement with the result of the D-MST
clustering, when significance was computed by permuting twins’
sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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Animate	  vs.	  Inanimate	  

performance of the FLDs at correctly classifying left-out objects
from such pruned categories (see Fig. 6C).

As expected, the classification performance of the FLDs was
much reduced, as compared to what obtained with the original
categories (compare Figs. 6A and C). Only three of the
subordinate semantic categories (birds, four-limbed animals, and
insects; see Fig. 6C, first panel) were classified with a performance
that was higher than what expected by chance (p,0.05,
permutation test; see Materials and Methods for details). In
addition, the animate category (as a whole) was discriminated with
higher than chance performance from the inanimate category.
Among the categories defined by visual similarity, five shape-based
categories (round, star-like, horizontal thin, pointy and vertical thin

objects), as well as six low-level categories (high and low area, high
and low luminance and high and low aspect ratio objects), were all
classified with higher than chance performance by the FLDs (see
second and third panels in Figs. 6C). Among all tested categories,
the highest classification performance (.75% correct) was
obtained for the shape-based category of round objects (this was
the only performance to remain significantly higher than chance,
after that a Bonferroni correction for multiple comparisons was
applied).

Overall, the result of the FLD analysis, applied to the pruned
categories, was in good agreement with the result of the D-MST
clustering, when significance was computed by permuting twins’
sets (see Fig. 5 and Tables 1–3, third-to-last column). Comparing

Figure 6. Fisher Linear Discriminant (FLD) analysis of IT population activity. (A) Each gray bar reports the average performance of a binary
FLD at correctly classifying members of a given object category (e.g., faces) from all other objects in the set. For each binary classification task, the
standard deviation of the performance (error bars), and the mean and standard deviation of the null distribution (gray circles and their error bars),
against which significant deviation of performance from chance was assessed (same significance level symbols as in Table 1), are also reported (see
Materials and Methods for a description of the cross-validation and permutation procedures yielding these summary statistics). (B) Examples of
‘‘pruned’’ semantic, shape-based and low-level categories that were obtained by subsampling the original object categories (shown in Fig. S1), so as
to minimize the overlap between semantic and visual information (see Materials and Methods for details). (C) Performance of the FLDs at correctly
classifying members of the pruned categories (same symbols as in A).
doi:10.1371/journal.pcbi.1003167.g006
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Animate	  vs.	  Inanimate	  
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Structure	  of	  Visual	  Object	  Representa&on	  in	  IT	  
N
eu

ra
l-‐l
ev
el
	  S
im

ila
rit
y	  

Seman&c	   Shape	   Low-‐level	  
Alterna&ve	  Clustering	  Hypothesis	  

Pearson	  
Correla&on	  

K-‐means	  

D-‐MST	  

FLD	  



Mul&ple	  Clustering	  hypothesis	  together	  

•  Supervised	  and	  Unsupervised	  have	  
complementary	  informa>on	  



the outcome of the two analyses (see Tables 4–6), only a few
differences emerged. For instance, the insects (among the semantic
categories) and the pointy objects (among the shape-based
categories) were significantly represented in the neuronal space
according to the FLD analysis, but not according to the D-MST.
Similarly, the animate and inanimate categories were linearly
separable according to the FLD analysis, although animate and
inanimate objects were not sharply segregated in different D-
MST clusters (as also shown by the hierarchical clustering and k-
means analysis; see Figs. 3A-B and 4). Such discrepancies are not
surprising, since, in general, supervised and unsupervised
multivariate approaches provide complementary information
about data representations – for instance, linear separability (as
measured by FLDs’ classification performance) is not bound to
perfectly match the clustering of data in a representational space
(see further comments in the Discussion). Hence, the importance
of combing both kinds of approaches when exploring a
multivariate data set. When this was done, and the outcomes of
the D-MST and FLD analyses were taken together, a very
conservative assessment of what object categories were repre-
sented by the recorded IT population was achieved (see last
column in Tables 4–6) – one semantic category (the four-limbed
animals), three shape-based categories (round, star-like and vertical
thin objects), and three low-level categories (high area, low area and
high luminance) turned out to be significantly represented according
to both approaches. Overall, this confirmed that visual similarity
(at the level of both shape and lower-order properties) accounted
for the neuronal representation of visual objects better than
semantic membership did.

Discussion

This study investigated what visual object properties were
represented in a neuronal population that was recorded from
monkey inferotemporal cortex. To this aim, we defined three
alternative hypotheses that could underlie the clustering of a
battery of visual objects within the IT neuronal representation
space: 1) shared semantic membership; 2) shared visual shape
features (i.e., shape similarity); and 3) shared low-level visual
properties. We then applied an array of unsupervised and
supervised machine learning approaches to understand whether
the object categories defined by these hypotheses were robustly
represented in the recorded IT neuronal population. Based on
these approaches, we concluded that the coarse clustering of visual
objects in the neuronal representation space was mainly driven by
low-level visual properties, while its finer-grain structure depended
on higher-level shape features, with little role played by semantic
membership (although our analyses cannot exclude that at least
one semantic category – the four-limbed animals – was also robustly
represented in the recorded IT population).

These conclusions are mostly in disagreement with those of two
recent studies [14,15] that also investigated the nature of object
representations in monkey IT (and its human homologous). In
these studies, the authors found a sharp segregation between
animate and inanimate objects, and a finer-grain clustering within
the animate category that matched closely several subordinates
semantic categories (named ‘‘intuitive’’ or ‘‘human-conventional’’
categories by the authors), such as faces, body parts, four-limbed
animals, fishes, reptiles, butterflies, etc. Most remarkably, these

Table 4. Semantic categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

Four-limb. anim. ** + 3

Faces ++

Birds +

Insects +

The second and third columns report what semantic categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 1) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what semantic categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t004

Table 5. Shape-based categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

#2 (round) ** *+ 3

#14 (star-like) *+ ++ 3

#8 (dim) ++

#13 (vertical thin) + + 3

#6 (horiz. thin) ++

#7 (pointy) +

The second and third columns report what shape-based categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 2) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what shape-based categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t005
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the outcome of the two analyses (see Tables 4–6), only a few
differences emerged. For instance, the insects (among the semantic
categories) and the pointy objects (among the shape-based
categories) were significantly represented in the neuronal space
according to the FLD analysis, but not according to the D-MST.
Similarly, the animate and inanimate categories were linearly
separable according to the FLD analysis, although animate and
inanimate objects were not sharply segregated in different D-
MST clusters (as also shown by the hierarchical clustering and k-
means analysis; see Figs. 3A-B and 4). Such discrepancies are not
surprising, since, in general, supervised and unsupervised
multivariate approaches provide complementary information
about data representations – for instance, linear separability (as
measured by FLDs’ classification performance) is not bound to
perfectly match the clustering of data in a representational space
(see further comments in the Discussion). Hence, the importance
of combing both kinds of approaches when exploring a
multivariate data set. When this was done, and the outcomes of
the D-MST and FLD analyses were taken together, a very
conservative assessment of what object categories were repre-
sented by the recorded IT population was achieved (see last
column in Tables 4–6) – one semantic category (the four-limbed
animals), three shape-based categories (round, star-like and vertical
thin objects), and three low-level categories (high area, low area and
high luminance) turned out to be significantly represented according
to both approaches. Overall, this confirmed that visual similarity
(at the level of both shape and lower-order properties) accounted
for the neuronal representation of visual objects better than
semantic membership did.

Discussion

This study investigated what visual object properties were
represented in a neuronal population that was recorded from
monkey inferotemporal cortex. To this aim, we defined three
alternative hypotheses that could underlie the clustering of a
battery of visual objects within the IT neuronal representation
space: 1) shared semantic membership; 2) shared visual shape
features (i.e., shape similarity); and 3) shared low-level visual
properties. We then applied an array of unsupervised and
supervised machine learning approaches to understand whether
the object categories defined by these hypotheses were robustly
represented in the recorded IT neuronal population. Based on
these approaches, we concluded that the coarse clustering of visual
objects in the neuronal representation space was mainly driven by
low-level visual properties, while its finer-grain structure depended
on higher-level shape features, with little role played by semantic
membership (although our analyses cannot exclude that at least
one semantic category – the four-limbed animals – was also robustly
represented in the recorded IT population).

These conclusions are mostly in disagreement with those of two
recent studies [14,15] that also investigated the nature of object
representations in monkey IT (and its human homologous). In
these studies, the authors found a sharp segregation between
animate and inanimate objects, and a finer-grain clustering within
the animate category that matched closely several subordinates
semantic categories (named ‘‘intuitive’’ or ‘‘human-conventional’’
categories by the authors), such as faces, body parts, four-limbed
animals, fishes, reptiles, butterflies, etc. Most remarkably, these

Table 4. Semantic categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

Four-limb. anim. ** + 3

Faces ++

Birds +

Insects +

The second and third columns report what semantic categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 1) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what semantic categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t004

Table 5. Shape-based categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

#2 (round) ** *+ 3

#14 (star-like) *+ ++ 3

#8 (dim) ++

#13 (vertical thin) + + 3

#6 (horiz. thin) ++

#7 (pointy) +

The second and third columns report what shape-based categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 2) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what shape-based categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t005
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studies were unable to find any visual-similarity metric that could
produce object clusters matching those found in the neuronal
representation.

The conclusions reached by our study are consistent with [14],
only as far as the representation of a few animate categories is
concerned: the four-limbed animals (see Figs. 4, 5 and 6C, and
Tables 1 and 4) and, to a lesser extent, the birds (see Figs. 4 and 6C,
and Table 4). However, we did not find any other semantic
category that was significantly represented in the recorded IT
population according to all (as in the case of four-limbed animals) or
most (as in the case of birds) the multivariate approaches we
applied. For instance, the insects were found to be linearly
discriminable by the FLDs (see Fig. 6C), but no compact clusters
of insects were found by the k-means and the D-MST clustering
algorithms. In the case of faces, their clustering in the neuronal
representation space was accounted for by their visual similarity,
rather than their shared semantic membership (as shown by the
fact that faces were part of a larger cluster of objects with round
shape and large area; see Figs. 4 and 5) – when pruned face
categories made only of dissimilar faces were built, the FLDs were
no longer able to correctly classify them (compare Fig. 6A and C).
Finally, no sharp segregation between animate and inanimate
objects was observed (but see further discussion below). On the
other hand, we found several shape features and lower-level visual
properties that successfully accounted for the clustering of some
visual objects in the IT neuronal representation. Among others,
the more prominent are: 1) object area, which determined the
gross topology of object clustering in the IT representation (see
Figs. 3C–E); 2) other low-level image properties, such as object
luminance and aspect ratio (see Figs. 4–6 and Tables 3 and 6); 3)
shape features, such as specific arrangements of edges and
boundaries that defined round, horizontally elongated, vertically
elongated and star-like objects (see Figs. 4–6 and Tables 2 and 5).

Animate and inanimate objects are not sharply
segregated in the IT representation

In our study, animate and inanimate objects were found to be
equally distributed among the first two nodes of the dendrogram
produced by hierarchical clustering (see Figs. 3A, B) and in the two
clusters obtained by running the k-means algorithm with k = 2. In
addition, most of the clusters produced by the k-means (Fig. 4) and
D-MST (Fig. 5) algorithms contained a mixture of animate and
inanimate objects. However, the FLDs were able to distinguish
animate from inanimate objects with higher than chance
performance, even after that visual similarity among members

within each category was minimized (see Fig. 6C). The latter
finding is not contradictory with the results of the cluster analyses,
since it is indicative of the compactness of some subordinate
semantic categories (such as the four-limbed animals and the faces; see
Figs. 4 and 5), rather than of the superordinate animate category
as a whole. In particular, FLDs, being supervised approaches, do
not need to follow the ‘‘natural’’ object segregation in the IT
representation (as revealed by the unsupervised clustering meth-
ods). Rather, given the high dimensionality of the representation
space, FLDs could find a hyperplane segregating the two main
animate groups (i.e., four-limbed animals and the faces) from the
inanimate objects, even if those groups belong to different
‘‘natural’’ clusters.

In conclusion, our analysis strongly suggests that animate and
inanimate objects are not sharply segregated within the IT
representation, at least as we have sampled it here. At the same
time, however, they are not randomly scattered across the IT
neuronal space. Instead, some subordinate animate categories
form compact clusters in the IT representation (although, in some
cases, simply because of the visual similarity of their members).
This conclusion, while being at odd with [14,15], is in agreement
with a recent fMRI study showing that, in the body-selective
regions of monkey inferotemporal cortex, objects do not primarily
segregate according to whether they belong to the animate or the
inanimate categories [34].

Comparison with other studies
The discrepancy between our and previous results [14,15] is not

easily explained. The stimulus presentation protocols (monkeys
viewing images presented in rapid sequence) and the region from
which the neuronal responses were recorded (anterior IT) are
comparable (although not fully overlapping; see further discussion
below). The analytical approaches are at least partially overlap-
ping, although in our study more advanced tools derived from
statistical mechanics were used.

One potentially important difference is the way in which
statistical significance of the overlap between the object categories
and the neuronal-based clusters was evaluated. We took into
account the effect of having sets of very similar exemplars of the
same objects (i.e., twin objects) on the outcome of the statistical
tests (see Fig. 5 and the third-to-last row in Tables 1–3). We also
tried to fully dissociate the representation of visual similarity and
semantic membership by building semantic categories that
contained only very dissimilar objects, and shape-based categories
that contained only objects with different semantic membership

Table 6. Low-level categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD

High area ** + 3

Low contrast +

Low area + ++ 3

High luminance + ++ 3

Low aspect ratio +

High aspect ratio +

Low luminance +

The second and third columns report what low-level categories were found to be significantly represented in IT according, respectively, to the D-MST analysis (when
significance was computed by permuting twins’ sets; i.e., same data as in Fig. 5 and in the third-to-last column of Table 3) and to the FLD analysis (when classifiers were
applied to the pruned object categories; i.e., same data as in Fig. 6C). Same significance level symbols as in Table 1. The last column shows what low-level categories
were found to be significantly represented in IT according to both the D-MST and the FLD analyses.
doi:10.1371/journal.pcbi.1003167.t006
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Conclusions	  
•  Used	  array	  of	  Supervised	  and	  Unsupervised	  
approaches	  

•  Visual	  objects	  in	  neuronal	  representa>on	  space	  
•  Coarse	  clustering	  –	  low-‐level	  visual	  proper>es	  
•  Finer-‐grain	  structure	  –	  higher-‐level	  shape	  features	  
•  Lille	  role	  played	  by	  seman>cs	  	  
•  four-‐limbed	  animals	  robustly	  recorded	  everywhere	  
•  (may	  be	  evolu>on?)	  



Comparisons	  with	  [14,	  15]	  
•  [14,	  15]	  couldn’t	  find	  any	  visual-‐similarity	  metric	  
that	  could	  reproduce	  object	  clusters…	  

•  Apart	  from	  four-‐limbed	  animals	  (and	  birds),	  no	  
other	  seman>c	  segrega>on	  
•  Insects	  discriminable	  by	  FLDs,	  but	  not	  in	  kmeans	  or	  
DMST	  

•  Faces	  discriminable,	  but	  explained	  by	  round	  (pruned	  
sets)	  



Comparisons	  with	  [14,	  15]	  
Animate	  vs.	  Inanimate	  
•  Not	  in	  kmeans	  and	  DMST	  
•  FLDs	  could	  segregate	  	  
•  high-‐dimensionality	  might	  be	  a	  reason	  

	  
Strongly	  suggests	  no	  sharp	  segrega>on	  within	  IT	  (at	  least	  
in	  the	  ones	  sampled	  here).	  But	  not	  randomly	  scalered..	  
	  
[34]	  -‐-‐	  in	  the	  body-‐selec>ve	  regions	  of	  monkey	  IT,	  objects	  
do	  not	  primarily	  segregate	  according	  to	  whether	  they	  
belong	  to	  the	  animate	  or	  the	  inanimate	  categories	  
	  



Comparisons	  with	  [14,	  15]	  
•  Protocols	  and	  regions	  are	  comparable	  (not	  
exactly	  same)	  

•  Analysis	  with	  ‘twins’	  compensated	  for!	  

•  Lower	  #	  of	  objects	  (213	  vs.	  1084	  in	  Kiani	  et	  al.)	  
•  Smaller	  popula>on	  recorded	  (94	  vs.	  674	  IT	  neurons)	  
•  See	  paper	  for	  more	  detailed	  discussions	  on	  affect	  of	  these	  

•  Different	  extent	  of	  IT	  sampled	  
•  Theirs	  is	  much	  smaller	  extent	  as	  opposed	  to	  Kiani	  et	  al.	  
•  Possibility	  of	  picking	  up	  on	  face-‐selec>ve	  cells	  



Conclusion	  of	  Comparisons	  

(see Fig. 6B–C). As far as we understand, the effect of twins on the
overlap score was not taken into account by Kiani and colleagues
[14], in spite of the many different exemplars of the same objects
contained in their object set. As shown by our results, shuffling
objects rather than twins’ sets in the statistical analysis, dramat-
ically increased the number of significant overlaps between D-
MST neuronal-based clusters and object categories (compare the
third-to-last and last columns in Tables 1–3). The impact of shape
similarity on the representation of semantic categories was shown
to be even more dramatic in the case of the FLD analysis –
minimizing shape similarity within semantic categories dramati-
cally reduced the number of categories, whose elements were
classified with higher than chance performance by FLDs (compare
the first panels in Fig. 6A and Fig. 6C).

The failure of the visual similarity metrics used by [14,15] to
account for object clustering in IT could be explained by the
different metrics used in their studies and ours. In particular,
although we used the same object recognition model [43,68] to
quantify shape similarity, our implementation of the model
included a much larger number of output units (24,451) as
compared to [14] (674). In fact, we did not try to match the
number of model output units to the number of recorded neurons
(as done by [14]), since our goal was not to model IT, but, rather,
to find a metric that was as powerful as possible in capturing the
visual shape similarity among the objects in our set.

Another substantial difference is represented by the stimulus set.
The objects used in our experiments were grayscale pictures of
natural objects, while, in the studies of [14,15], color pictures were
used. Color is obviously a very salient object feature that could
have strongly influenced the object clustering reported in those
studies. For instance, human faces, hands, body parts and, to a
lesser extent, monkey faces, as well as the fur of many animals, all
have a pink/brownish hue that could have driven their clustering
in the superordinate category of animate objects. Noticeably, in
the above-mentioned fMRI study that found no segregation
between animate and inanimate objects, grayscale pictures were
used [34]. In conclusion, the use of colorful images in [14,15]
represents a major confounding factor, since IT color tuning may
interact with IT shape tuning in ways that are hard to quantify/
model.

Yet another difference is the lower number of visual objects we
tested (213), the smaller population of IT neurons we recorded
(94), and the smaller extent of IT cortex we sampled, as compared
to Kiani and colleagues (who tested 1,084 objects and recorded the
responses of 674 IT neurons). These are three separate, but
related, issues, each deserving a specific discussion.

While, in general, recording from a wider IT neuronal sample
would lead to a more refined assessment of IT neuronal
population coding, it is unclear whether major qualitative
differences in the structure of visual object representations would
emerge as a function of the size of the recorded neuronal pool.
Previous investigations of population coding in IT have shown a
gradual increase of the amount of information conveyed by a pool
of IT neurons about object identity or category as a function of the
pool size, but they have not reported any dramatic qualitative shift
in what the neuronal pool would code depending on its size
[30,64,66]. In addition, these studies have revealed that small
pools of IT neurons can be as effective (or more effective) than
much larger populations, as long as their selectivity for object
identity or category is very strong. In this regard, it should be
noted that Kiani and colleagues recorded every neuron they could
isolate regardless of its stimulus responsiveness or selectivity, which
could potentially have resulted in a neuronal pool with many
unresponsive or non-selective cells (they report that 38% of their

neurons were category selective). By contrast, we recorded only
cells with a statistically reliable response to at least one of the
objects in our stimulus set, thus obtaining a population of neurons
with robust tuning across the tested objects (see [38]). Based on the
above-mentioned population coding studies, this suggests that
Kiani and colleagues’ larger IT sample could only be marginally
better than our smaller (but more selective) neuronal pool at
estimating IT neuronal representations of visual objects (the large
performances achieved by the FLDs in Fig. 6 confirm the
effectiveness of the sampled IT population at conveying informa-
tion about features/properties of our object set).

As far as the size of the stimulus set is concerned, it should be
noted that a larger stimulus set does not necessarily mean a better
stimulus set, when it comes to disentangling alternative clustering
hypotheses. First, as pointed out above, a large number of very
similar exemplars per category could lead to an overestimation of
the significance of the overlap between neuronal-based clusters
and, for instance, semantic categories, if not properly taken into
account in the statistical analysis. Second, although our semantic
categories typically contained less exemplars than those used by
Kiani and colleagues, the superordinate categories of animate and
animate objects used in our study contained a large number of
exemplars. Nevertheless, as pointed out above, we did not found
any sharp segregation of these two categories in the IT
representation.

Finally, one factor that could explain some of the discrepancies
between our conclusions and those of Kiani and colleagues is the
different extent of IT cortex that was sampled in the two studies.
Our recordings targeted the most medial part of the ventral bank
of STS and of the ventral surface lateral to AMTS (see blue dots
and red-shaded areas in Fig. 1) and spanned a 13–17 mm
anteroposterior range, while Kiani and colleagues sampled a
larger portion of IT, both mediolaterally (i.e., including the gyrus
between STS and AMTS), and anteroposteriorly (i.e., a 13/15–
20 mm span; see Fig. 1 in [14]). This suggests that recordings in
[14] may have sampled sub-regions in IT that are known to
contain enriched populations of face-selective cells (i.e., the
anterior face patches AL and AM [33]; see Fig. 1), while, in our
study, only a minimal overlap between recording sites and face
patch AM could, in principle, be expected (in practice, our IT
sample did not contain any cell that was sharply tuned for faces;
see Fig. S3 and further discussion in the next Section). This could
explain why in [14], differently from our study, a sharp clustering
of human, monkey, and animal faces was found in the IT
representation.

To conclude, it is hard to infer what methodological differences
may be at the root of the discrepancies between our study and
[14,15]. Above, we have listed some of the differences that could
be crucial. Ultimately, however, only a re-analysis of Kiani and
colleagues’ data with our analytical/statistical approaches, or,
better, a full new set of recordings (e.g., with grayscale versions of
the images used by Kiani and colleagues) could shed more light on
the causes of these discrepancies. Both approaches are clearly
beyond the scope of this study, but could be an interesting target of
future investigations by ours or other groups.

Validity and implications of our findings
As pointed out in a recent review [13], two main competing

ideas exist about what kind of object information is coded by the
ventral stream, and, in particular, by its highest stage – anterior
IT. On the one hand, many single-unit studies in monkeys support
the notion of structural (or shape-based) representations along the
ventral stream – i.e., combinations of object-defining visual
features of increasing complexity are coded along the ventral
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Disclaimer	  
•  Validity	  and	  implica>ons	  of	  findings	  
•  Please	  read..	  J	  



My	  (biased)	  Conclusion	  
•  Excellent	  paper	  (both	  Vision	  and	  Neuroscience)	  

•  Learning	  Visual	  Models	  
•  Visual	  sub-‐category	  will	  make	  its	  task	  easier	  

•  But	  don’t	  throw	  away	  seman>cs	  all	  together	  

•  Enough	  evidence	  for	  both	  seman>c	  and	  visual	  in	  lot	  
of	  studies	  –	  but	  take	  everything	  with	  a	  grain	  of	  salt	  

•  Find	  some	  combined	  hierarchy?	  
•  Animals,	  Vehicles	  (seman>c)	  



Thank	  You!	  


