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Deformable Objects

personTruncOcc







Intra-class Diversity

Example images for “Horse” from PASCAL VOC

Variation due to camera viewpoints, object poses, occlusions, etc.

Slide from Divvala et al.



State-of-the-art Detector

Deformable Part-based Model (DPM)

Image Root Filter Part Filters  Deformation
Models



Parts in Broad-strokes

Unicef@y e unicef&® E Unicef@:_’)

(a) Original (b) Foreshortening (c) Out-of-plane

Fig. 2: We show that 4 small, translating parts can
approximate non-affine (e.g., perspective) warps.

Fig. from Yang & Ramanan



State-of-the-art Detector

Deformable Part-based Model (DPM)

Image Root Filter Part Filters  Deformation
Models
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Is One Model Enough?




Mixture Models




State-of-the-art Detector

Deformable Part-based Model (DPM)

Part Filters  Deformation Mixture Models
Models



State-of-the-art Detector

Deformable Part-based Model (DPM)

Part Filters  Deformation Mixture Models

Models
Features, Data Mining & Classifier?

Papageorgiou & Poggio (2000)
Viola & Jones (2001)
Schneiderman et al. (2002, 03, 04 etc.)
Dalal & Triggs (2005), Freeman et al (1996), Lowe (1999)




State-of-the-art Detector

Deformable Part-based Model (DPM)

Deformation Mixture Models

Models
Parts?

Mohal et al. (2001)



State-of-the-art Detector

Deformable Part-based Model (DPM)

Mixture Models

Deformation
Models

Part Filters

Learning + Parts?
Felzenszwalb et al. (2000)
Mikolajczyk et al (2004)
loffe & Forsyth (1999)



State-of-the-art Detector

Deformable Part-based Model (DPM)

Part Filters  Deformation Mixture Models

Models

Reduced Intra-class variation?
Schneiderman et al. (2002, 03, 04 etc.)
Felzenszwalb et al. (2009)

Chum & Zisserman (2007), Harzallah and Schmid (2008)
Deng et al. (2009), Divvala et al. (2012) ....




State-of-the-art Detector

Deformable Part-based Model (DPM)

Part Filters  Deformation Mixture Models

Models

Reduced Intra-class variation?

Su b-catego ries Schneiderman et al. (2002, 03, 04 etc.)

Felzenszwalb et al. (2009)
Chum & Zisserman (2007), Harzallah and Schmid (2008)
Deng et al. (2009), Divvala et al. (2012) ....




Sub-categories in Computer Vision

Example and Images from Divvala et al. (2012)



Aspect Ratio

Felzenszwalb et al. (2009)

Portrait



Aspect Ratio

Landscape Portrait /
aspect-ratio aspect-ratio

Felzenszwalb et al. (2009)
etc.

Slide from Divvala et al. (2012)



View-point

L eft viéw Frontal vievu

Schneiderman et al. (2002, 03, 04 etc.)
Chum & Zisserman 2007
Harzallah and Schmid 2008

Image from Divvala et al. (2012)



View-point

Face :
Classifier #1

Face |
Classifier #2

Face |
Classifier #3 Balli

B O ™ = p) M e e o

Schneiderman et al. (2002, 03, 04 etc.)



3D Configuration

Bourdev & Malik, 2009

Slide from Divvala et al. (2012)



View-point + 3D Configuration

;‘Egiiiiﬁ;

-

Su et al., 2009



Semantic or Taxonomy

“ImageNet”, Deng et al., 2009

Slide from Divvala et al. (2012)



Semantic or Taxonomy

Racehorse

} V 47:‘
- o ol ' p
e

Palomino Gee- gee

Evidence in Neuro-science

Kriegeskorte et al., 2008 “ImageNet”, Deng et al., 2009
Kiani et al., 2007

Slide from Divvala et al. (2012)
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Landscape Portrait /

Slide from Divvala et al. (2012)



Visual Sub-categories

Evidence in Neuro-science Divvala et al. (2012)
DiCarlo et al., 2013 Chen et al. (2014)




Vlsual Sub- category




Visual Sub-categories

3 74 3




Visual Sub-categories
in very broad stokes



Visual Sub-categories

* |nitialize sub-categories



| K-means

feature-space
clustering

All ground-truth ‘horse’ instances



Visual Sub-categories

* |nitialize sub-categories
e Clustering (kmeans) on feature space (AR, HOG etc.)



Visual Sub-categories

* |nitialize sub-categories
e Clustering (kmeans) on feature space (AR, HOG etc.)
* Train Models

* Latent Update or Re-clustering

* Find cluster assignments again using learned models



Train Models Wj Wy,

Apply on training
Images

Reassigh members

argmax,, (score(w,), score(w,))



Visual Sub-categories

1. Initialize sub-categories
e Clustering (kmeans) on feature space (AR, HOG etc.)

* Train models

2. Latent Update or Re-clustering

* Find cluster assignments again using learned models

3. Re-train models.
e Backto 2



Some Caveats

* Number of Sub-categories (K)
— Large enough to capture all variation



Some Caveats

* Number of Sub-categories (K)
— Large enough to capture all variation
— But not too large

* If too large, sub-categories fight for instances
* Less training data for each sub-category



Some Caveats

* Number of Sub-categories (K)
— Large enough to capture all variation
— But not too large
— Different sweet-spot for every category
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Some Caveats

* Number of Sub-categories (K)
— Large enough to capture all variation
— But not too large
— Different sweet-spot for every category

* Tricky calibration
— Combining multiple clusters

— Removing noisy clusters



Evolution of HoG based
Object Detectors

[?] # of Mixtures CTJSI::r?:g # of Parts mAP on PASCAL
HOG’ 05 1 --NA-- --NA-- 0.17
DPM’08 1 --NA-- 6 0.21
DPM’10 2 Aspect Ratio 6 0.26
DPM’11 6 Aspect Ratio 8 0.32
SUB’12 15 Appearance++ 8 0.35
SUB’12 15 Appearance++ 0 0.24
SUB’12 15 Appearance++ “1” 0.31
ESVM’11 N --NA-- --NA-- 0.23




What does Neuroscience literature say
about Object Representation in IT




Object Representation in IT

Kiani et al., 2007 Logothetis et al., 1996
Kriegeskorte et al., 2008 DiCarlo et al., 2012
Bell et al., 2009 Brincat et al., 2006

Kourtzi et al., 2011
Brincat et al., 2004
Yamane et al., 2008
Kayaert et al., 2003/05
Op de Beeck et al., 2001



Infero-temporal Cortext (IT)
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Structure of Visual Object Representation in IT

Alternative Clustering Hypothesis

Semantic Shape Low-level
Pearson - ® ‘
Correlation
K-means ‘ ‘ ‘
D-MST - ‘ ‘
FLD - - -

Neural-level Similarity




Neural-activity Recording Setup

2 Monkeys

94 well-isolated single units from anterior IT
~5x4 mm area (SCS and AMTYS)

No attempt done to target preferential cells

Smaller AP and ML extent regions sampled as
opposed to [14]



sw, range of possible locations
** of face patch AL

sv, range of possible locations
** of face patch AF

s, range of possible locations
" of face patch AM

Figure 1. Recording locations.

The blue dots show the projections of the recording chamber grid-point locations from the
top of the skull to the ventral bank of the superior temporal sulcus (STS) and the ventral
surface lateral to the anterior middle temporal sulcus (AMTS).
The projections are shown over a sequence of MRI images (spanning a 13—-17
anteroposterior range; Horsley-Clarke coordinates) that were collected, for one of the
monkeys, before the chamber implant surgery. Only the grid locations in which the electrode
was inserted at least once are shown.
The red-shaded areas highlight the estimated cortical span that was likely sampled during
recording, given that:
* each electrode penetration usually spanned the whole depth of the targeted cortical
bank (either STS or AMTS); and
e the upper bound of the variability of each recording location along the mediolateral axis
(due to bending of the electrode during insertion) can be estimated as +/- 2 mm [80].
The figure also shows the range of possible locations of the three anterior face patches (AL,

AF and AM) according to [33], so as to highlight their potential overlap with the recording
locations.



Stimuli Setup

e 213 Gray-scale
* 5images/sec
* Simple object detection task (?)



Figure 2. The stimulus set. The full set of 213 objects used in our study.

i) 188 images of real-world objects belonging to 94 different categories (e.g., two hats, two
accordions, two monkey faces, etc.);

i) 5 cars, 5 human faces, and 5 abstract silhouettes;

iii) 5 patches oftexture (e.g., random dots and oriented bars);

iv) a blank frame;

v) 4 low contrast (10%, 3%, 2% and 1.5%) images of one of the objects (a camera).




Image-level Clustering

e Semantic
* Shape-based
e Low-level



Semantic Categories

Four-limb P
Insects Animate
Sea
invertebrates
Tools
Inanimate
Music &8 o
instruments [P NS || Buildings




Shape-based Categories

#1(bright)

#2(round)

#3

#4

#5(horizantal thick)
#6(horizantal thin)

#7(pointy)
#8(dim)
#9

#10

#11

#12(diagonal)
#13(vertical thin)

#14(star like)

#15
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Shape-based Categories

#1(bright)

#2(round)

#3

#4

#5(horizantal thick)
#6(horizantal thin)

#7(pointy)
#8(dim)
#9

#10

#11

#12(diagonal)
#13(vertical thin)

#14(star like)

#15




Low luminance
High luminance
Low contrast

High contrast
Low aspect ratio

High aspect ratio
Low area

High area

Low-level Categories
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Pearson correlation coefficient
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Thin (elongated) vs. Thick (roundish)
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PCA on Neuronal population vectors

e Variance by 2 components ~15% (low).

* High-level IT neurons won’t capture all (highly
varied) visual properties

e Goalis not to find dimensions that account for
most variations

* Just check if any component could be associated
with some global property.



PCA on Neuronal population vectors
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first principal component
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Structure of Visual Object Representation in IT

Alternative Clustering Hypothesis

Semantic Shape Low-level
Pearson e ® ‘
Correlation
K-means
D-MST
FLD

Neural-level Similarity




K-means on Neuronal Population Vectors

A neuronal-based clusters
|
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#6 (horizontal thin)  birds [~ four-limbed #13 (vertical thin) |
fishesg_l_I animals

#8 (dim)
low contrast

high lumin.
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A neuronal-based clusters
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A neuronal-based clusters
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Animate vs. Inanimate

K=2 (100 runs)
|]animate C1 —animate C2| =~7%
Not significantly larger than chance (p=0.39)

Again similar to pearson coefficient.



K-Means Analysis

* Most clusters explainable

by visual similarity
* Both shape & low-level

* Few semantic categories
do exist:

Birds, four-limbed animals

A neuronal-based clusters
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Structure of Visual Object Representation in IT

Alternative Clustering Hypothesis

Semantic Shape Low-level
Pearson - ® ‘
Correlation
K-means ‘ ‘ ‘
D-MST
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D-MST Clustering

* Un-supervised Clustering

 Combines advantages of both:
K-means like partitions -- allow studying overlaps
Hierarchical approaches — fine-grained relationships b/w objects

* Allows non-spherical clusters

As opposed to kmeans

e Outputs a forest —richer information about
topology/structure of data



D-MST Clustering

CLUSTER 1

FOUR-LIMBED
ANIMALS

— significant semantic categories
—— significant shape-based categories

—— significant low-level categories

CLUSTER 4

CLUSTER 2
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D-MST Clustering

CLUSTER 1

FOUR-LIMBED
ANIMALS
* Xk

significant semantic categories
significant shape-based categories

significant low-level categories



D-MST Clustering

CLUSTER 2

HIGH + P X
LUMINANCE s

s

LOW

significant semantic categories
significant shape-based categories

significant low-level categories

CONTRAST




D-MST Clustering

CLUSTER 3 VERTICAL

— significant semantic categories

— significant shape-based categories

— significant low-level categories




D-MST Clustering

CLUSTER 4

significant semantic categories
significant shape-based categories

significant low-level categories

ROUND
* Xk




D-MST Clustering

STAR-LIKE

significant semantic categories
significant shape-based categories

significant low-level categories




Overlap (this paper vs. Kiani et a.)

 Compensating for existence of multiple (very
similar) exemplars of same objects (i.e., twins)

 When using ‘buggy’ Overlap
— Some more semantic overlaps

— Most of those overlaps explained by shape or low-
level overlaps



Table 1. Overlapping between semantic categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.
Four-limb. anim. 1 0.73 0.96 0.71 0.0000 ** 0.0000 **
Faces 4 0.78 1.00 0.78 0.0023 ++ 0.0000 **
Fishes 1 0.75 1.00 0.75 0.0742 0.0007 S
Sea invertebr. 5 0.50 0.86 0.46 0.0840 0.0004 **
Birds 1 1.00 0.48 0.48 0.1048 0.0003 **
Music instr. 3 0.50 0.75 0.43 0.1140 0.0012 *+
Vehicles 1 0.46 0.67 0.37 0.2617 0.0065 4=
Insects 3 0.58 0.47 0.35 0.3635 0.0192 +
Tools 3 0.58 0.44 0.33 0.4587 0.0365 3
Trees 5 0.30 1.00 0.30 0.6240 0.0979

Buildings 5 0.33 1.00 0.33 0.8883 0.1471

The table reports the overlap (fifth column) between each semantic category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects, according to a score defined as the ratio between the intersection of the sub-tree with the category and their union (fifth
column). Significance of the overlap was computed by permuting (1,000,000 times) either sets of twin objects (forth- and third-to-last columns) or individual objects
(second-to-last and last columns) across the categories of a given clustering hypotheses: Holm-Bonferroni corrected p<<0.01 (**) and p<<0.05 (* and *+); and uncorrected
p<<0.01 (++ and *+) and p<<0.05 (+). For comparison with [14], two other overlap metrics (Ratio 1 =the fraction of objects in the category overlapping with the cluster;
and Ratio 2 =the fraction of objects in the cluster overlapping with the category) are also reported.



Table 2. Overlapping between shape-based categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.
#2 (round) 4 1.00 1.00 1.00 0.0000 ** 0.0000 **
#14 (star-like) 5 0.71 0.91 0.67 0.0007 *+ 0.0000 **
#8 (dim) 2 0.78 0.78 0.64 0.0097 A 0.0000 **
#13 (vertical thin) 3 0.52 0.68 0.42 0.0347 + 0.0002 **
#6 (horiz. thin) 3 0.41 1.00 0.41 0.0520 0.0003 **
#1 (bright) 2 0.57 0.66 0.44 0.0748 0.0004 **
#5 (horiz. thick) 1 0.44 0.87 0.41 0.0927 0.0008 *+
#12 (diagonal) 1 0.47 0.50 0.32 0.4299 0.0392 +
#15 1 0.50 0.50 0.33 0.4878 0.0368 +
#10 3 0.45 0.50 0.31 0.5313 0.0667

#11 3 0.31 1.00 0.30 0.5347 0.0582

#4 1 0.45 0.41 0.28 0.7109 0.1694

#7 (pointy) 5 0.27 0.60 0.23 0.9279 0.4949

#9 1 0.29 0.50 0.22 0.9451 0.5630

#3 2 0.33 0.40 0.22 0.9530 0.5768

The table reports the overlap (fifth column) between each shape-based category (first column) and the D-MST neuronal-based cluster (second column) containing the
best matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.
doi:10.1371/journal.pcbi.1003167.t002



Table 3. Overlapping between low-level categories and D-MST neuronal-based clusters.

Category D-MST Cluster Ratio 1 Ratio 2 Overlap p (twins) Signif. p (obj.) Signif.
High area 4 0.93 1.00 0.93 0.0000 ** 0.0000 **

Low contrast 2 0.60 0.82 0.53 0.0103 + 0.0000 **

Low area 3 0.60 0.69 0.47 0.0333 I 0.0001 **
High luminance 2 0.53 0.80 0.47 0.0352 + 0.0001 **

Low aspect ratio 2 0.40 0.86 0.37 0.1910 0.0049 AH=F
High aspect ratio 4 0.33 0.83 0.31 0.4760 0.0454 +

Low luminance 1 0.33 0.42 0.28 0.9240 0.5116

High contrast 1 0.33 0.36 0.21 0.9761 0.7167

The table reports the overlap (fifth column) between each low-level category (first column) and the D-MST neuronal-based cluster (second column) containing the best
matching sub-tree of contiguous objects. Same table structure and symbols as in Table 1.



D-MST Clustering Analysis

The object clustering produced by the D-MST
algorithm suggests the existence of a rich multi-
level object representation in IT,

which is largely driven by the similarity of visual
objects across a spectrum of visual properties,

ranging from low-level image attributes to complex

combinations of shape features that are often hard
to model and quantify.



Structure of Visual Object Representation in IT
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Unsupervised to Supervised Analysis

* Unsupervised approaches (K-means, D-MST)
* Discover “natural” internal structure

e No assessment of how much information does it
convey about a given object set (?)

* Based on average firing rates — do not take into
account trial-by-trial variability of neuronal responses

* Supervised decoding approaches

* Discriminant-based linear classifiers
* Quiroga et al. 2009, DiCarlo et al. 2005/09/10 etc.

* Linear read-out schemes (?)



Fisher Linear Discriminants (FLDs)

* Given neuronal response, perform a binary
classification task for each object (e.g., faces vs.
everything else, round vs. everything else etc.)

e Capability of FLDs to classify objects not used in
training — population vectors for different
presentation of a given object in a given
category were excluded from training set.

— A given face in faces category™****



FLDs Compared to Categories

Low-level categories

Shape-based categories
5

Semantic categories
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Again, ‘twins’ problematic




Pruned Sets

Isolate semantics from shape and low-level etc.

Examples of pruned Examples of pruned Examples of pruned
semantic categories shape-based categories low-level categories

birds round high luminance




Actual vs. Pruned
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Animate vs. Inanimate

* FLDs, being supervised approaches, do not need
to follow the ““natural” object segregation in the

IT representation

* Given the high dimensionality of the
representation space, FLDs could find a
hyperplane segregating the two main animate
groups (i.e., four-limbed animals and the faces)
from the inanimate objects, even if those groups
belong to different ““natural” clusters.



Structure of Visual Object Representation in IT

Alternative Clustering Hypothesis

Semantic Shape Low-level
Pearson - ® ‘
Correlation
K-means ‘ ‘ ‘
D-MST - ‘ ‘
FLD - - -

Neural-level Similarity




Multiple Clustering hypothesis together

e Supervised and Unsupervised have
complementary information



Table 4. Semantic categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD
Four-limb. anim. ** + 4

Faces ++

Birds +

Insects +

Table 5. Shape-based categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD
#2 (round) *% *y v

#14 (star-like) *y +—+ 4

#8 (dim) ++

#13 (vertical thin) + + v

#6 (horiz. thin) ++

#7 (pointy) +

Table 6. Low-level categories significantly represented in IT according to the D-MST and the FLD analyses.

Category Signif. D-MST (twins’ sets perm.) Signif. FLD (pruned cat.) Signif. D-MST & FLD
High area ** + v

Low contrast +

Low area < AHE v

High luminance + ++ v

Low aspect ratio +

High aspect ratio +

Low luminance +




Structure of Visual Object Representation in IT

Alternative Clustering Hypothesis

Semantic Shape Low-level
Pearson - ® ‘
Correlation
K-means ‘ ‘ ‘
D-MST - ‘ ‘
FLD - - -

Neural-level Similarity




Conclusions

e Used array of Supervised and Unsupervised
approaches

* Visual objects in neuronal representation space
* Coarse clustering — low-level visual properties
* Finer-grain structure — higher-level shape features

* Little role played by semantics
* four-limbed animals robustly recorded everywhere
* (may be evolution?)



Comparisons with [14, 15]

* [14, 15] couldn’t find any visual-similarity metric
that could reproduce object clusters...

e Apart from four-limbed animals (and birds), no
other semantic segregation

* Insects discriminable by FLDs, but not in kmeans or

DMST
* Faces discriminable, but explained by round (pruned
sets)



Comparisons with [14, 15]

Animate vs. Inanimate
* Notin kmeans and DMST
* FLDs could segregate

* high-dimensionality might be a reason

Strongly suggests no sharp segregation within IT (at least
in the ones sampled here). But not randomly scattered..

[34] -- in the body-selective regions of monkey IT, objects
do not primarily segregate according to whether they
belong to the animate or the inanimate categories



Comparisons with [14, 15]

Protocols and regions are comparable (not
exactly same)

Analysis with ‘twins’ compensated for!

Lower # of objects (213 vs. 1084 in Kiani et al.)
Smaller population recorded (94 vs. 674 IT neurons)

* See paper for more detailed discussions on affect of these
Different extent of IT sampled

* Theirs is much smaller extent as opposed to Kiani et al.
* Possibility of picking up on face-selective cells



Conclusion of Comparisons

To conclude, it 1s hard to infer what methodological differences
may be at the root of the discrepancies between our study and
[14,15]. Above, we have listed some of the differences that could
be crucial. Ultimately, however, only a re-analysis of Kiani and
colleagues’ data with our analytical/statistical approaches, or,
better, a full new set of recordings (e.g., with grayscale versions of
the images used by Kiani and colleagues) could shed more light on
the causes of these discrepancies. Both approaches are clearly
beyond the scope of this study, but could be an interesting target of
future 1investigations by ours or other groups.



Disclaimer

* Validity and implications of findings
* Please read.. ©



My (biased) Conclusion

Excellent paper (both Vision and Neuroscience)

Learning Visual Models
* Visual sub-category will make its task easier

But don’t throw away semantics all together

Enough evidence for both semantic and visual in lot
of studies — but take everything with a grain of salt

Find some combined hierarchy?
e Animals, Vehicles (semantic)
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