Categories Versus Exemplars

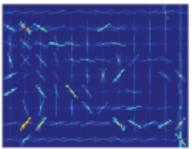
Ensemble of Exemplar-SVMs for Object Detection and Beyond

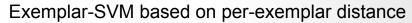
What is this about?

Categories => Over generalization of objects

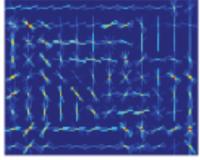
What is this about?

Exploit distinction

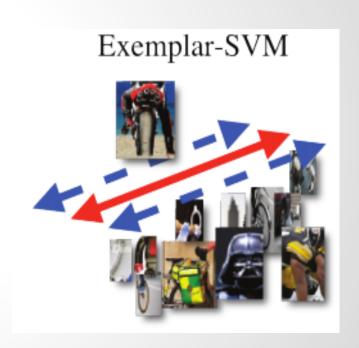


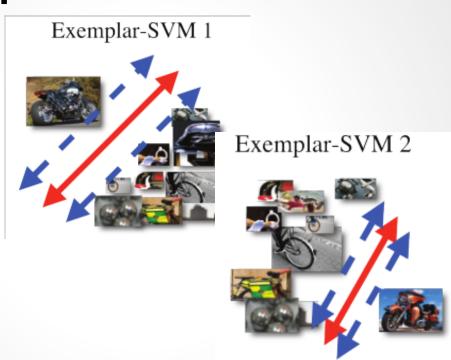

VS

IS versus IS NOT



Exemplar-SVM




How is it done?

- SVMs are trained for one against rest
- Huge data is represented as decision boundary

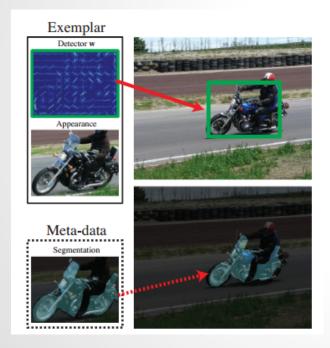
How is it done?

How is it done?

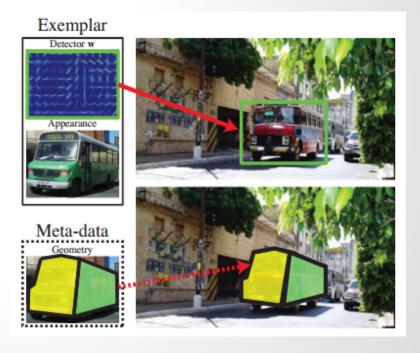
- To avoid overfitting, used regularized linear SVMs
- Calibration for comparable scores

Results




Results

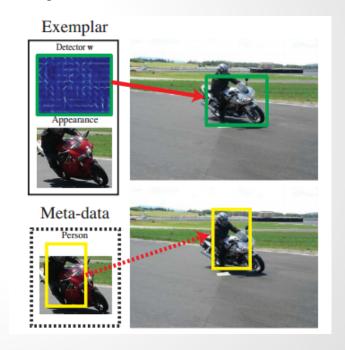
	Approach	aeroplane	bicycle	bird	boat	bottle	snq	car	cat	chair	cow	diningtable	dog	horse	motorbike	person	pottedplant	sheep	sofa	train	tvmonitor	mAP
	NN	.006	.094	.000	.005	.000	.006	.010	.092	.001	.092	.001	.004	.096	.094	.005	.018	.009	.008	.096	.144	.039
	NN+Cal	.056	.293	.012	.034	.009	.207	.261	.017	.094	.111	.004	.033	.243	.188	.114	.020	.129	.003	.183	.195	.110
	DFUN+Cal	.162	.364	.008	.096	.097	.316	.366	.092	.098	.107	.002	.093	.234	.223	.109	.037	.117	.016	.271	.293	.155
	E-SVM+Cal	.204	.407	.093	.100	.103	.310	.401	.096	.104	.147	.023	.097	.384	.320	.192	.096	.167	.110	.291	.315	.198
	E-SVM+Co-occ	.208	.480	.077	.143	.131	.397	.411	.052	.116	.186	.111	.031	.447	.394	.169	.112	.226	.170	.369	.300	.227
T	CZ [6]	.262	.409	-	-	_	.393	.432	-	-	-	-	-	-	.375	-	-	-	-	.334	-	-
	DT [7]	.127	.253	.005	.015	.107	.205	.230	.005	.021	.128	.014	.004	.122	.103	.101	.022	.056	.050	.120	.248	.097
Ĺ	LDPM [9]	.287	.510	.006	.145	.265	.397	.502	.163	.165	.166	.245	.050	.452	.383	.362	.090	.174	.228	.341	.384	.266


Table 1. PASCAL VOC 2007 object detection results. We compare our full system (ESVM+Co-occ) to four different exemplar based baselines including NN (Nearest Neighbor), NN+Cal (Nearest Neighbor with calibration), DFUN+Cal (learned distance function with calibration) and ESVM+Cal (Exemplar-SVM with calibration). We also compare our approach against global methods including our implementation of Dalal-Triggs (learning a single global template), LDPM [9] (Latent deformable part model), and Chum et al. [6]'s exemplar-based method. [The NN, NN+Cal and DFUN+Cal results for person category are obtained using 1250 exemplars]

Deliverables

Segmentation Transfer

Geometry Transfer

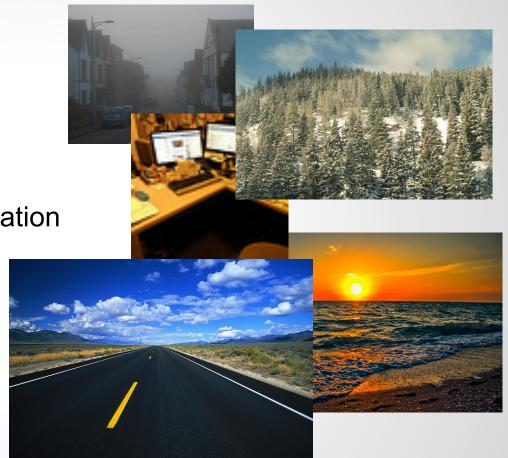


Deliverables

3D Model Transfer

Priming

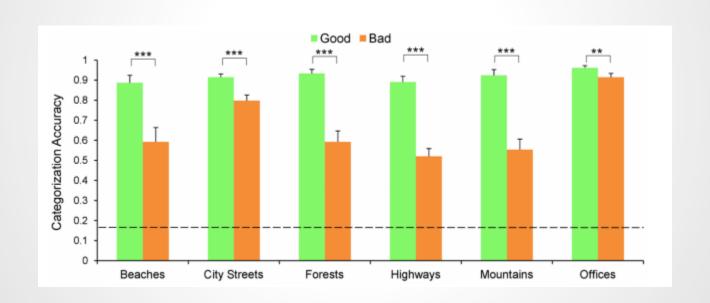
Relationship Between Category and **Exemplars: A Neuroscientific Analysis**


What?

Behavioral Experiment

Forced-choice categorization

fMRI Experiment


Passive viewing

Where?

- 5 ROIs:
 - a. V1
 - b. Parahippocampal Place Area
 - c. Retrosplenial Cortex
 - d. Lateral Occipital Complex
 - e. Fusiform Face Area

Results: Behavioral Experiment

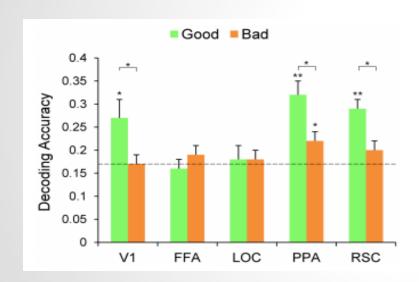


Image Analysis

Figure 6. Average images. Pixel-wise RGB average images of good (first row) and bad (second row) exemplars across the categories (columns).

Results: fMRI Multivariate

Decoder prediction

V1							V1	
	b	С	f	h	m	0	b	С
beaches	.32	.09	.10	.17	.19	.13	.06	.2
city streets	.08	.38	.15	.10	.13	.15	.10	.2
forests	.10	.32	.23	.10	.02	.21	.15	.2
highways	.23	.13	.10	.21	.17	.15	.12	.2
mountains	.15	.10	.13	.15	.28	.19	.20	.1
offices	.17	.21	.20	.06	.15	.21	.17	.1

V1					
b	С	f	h	m	0
.06	.23	.18	.12	.28	.12
.10	.23	.21	.17	.13	.15
.15	.23	.10	.04	.30	.17
.12	.25	.13	.08	.21	.21
.20	.15	.08	.23	.27	.07
.17	.17	.08	.17	.17	.23

117				
	b	_	f	
beaches	.34	.13	.08	.10
city streets				
forests	.19	.05	.32	.08
highways	.15	.27	.13	.17
mountains	.15	.00	.17	.13
offices	.10	.28	.11	.30

PPA

Category presented

PP	4				
b	С	f	h	m	0
.17	.10	.15	.10	.31	.16
.08	.21	.21	.16	.17	.17
.19	.2	.22	.18	.23	.06
.08	.24	.11	.17	.23	.17
.27	.13	.17	.11	.25	.06
.10	.21	.06	.17	.13	.32

DDA

DCC

RSC						
	b	С	f	h	m	0
beaches	.19	.17	.04	.21	.22	.17
city streets						
forests	.17	.10	.23	.07	.34	.08
highways	.15	.30	.28	.17	.04	.07
mountains	.15	.05	.23	.11	.34	.12
offices	.08	.30	.17	.11	.04	.29

RS	0				
b	С	f	h	m	0
.19	.21	.19	.07	.20	.15
.15	.30	.08	.15	.04	.27
.21	.15	.23	.08	.15	.18
.15	.19	.17	.15	.19	.15
.12	.19	.22	.15	.15	.17
.12	.20	.15	.13	.21	.19

Good

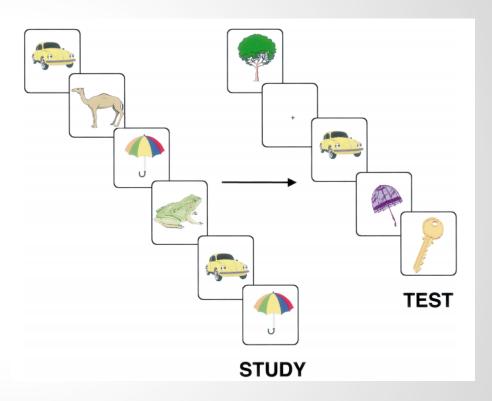
Bad

Classical VS Prototypical Approach

While training models in CV, why are all training examples considered equal?

Does a Trade-off Exist?

What?



What?

- Categorical pair of tokens
- Visually different
- Shoeboxing Experiment

Results

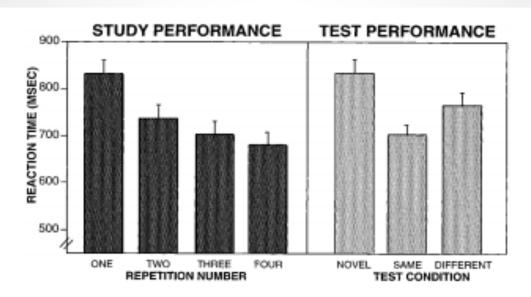
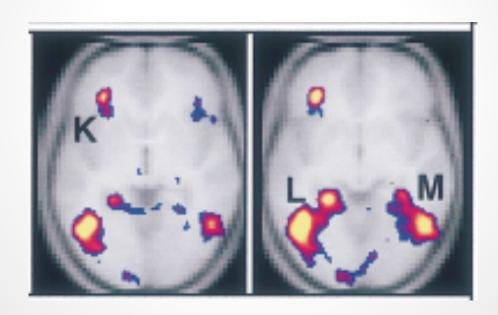
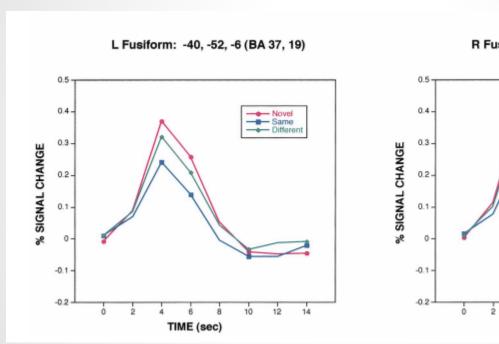
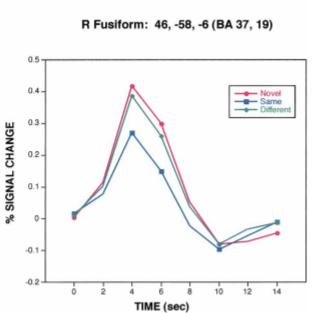



Fig. 2. Mean response latencies for the object classification task across the four repeated presentations of objects during the study phase (left panel) and for novel, repeated same, and repeated different objects in the test phase (right panel). Error bars indicate standard errors of the mean.

No Symmetry

Novel > All repeated




No Symmetry

Repeated Different > Repeated Same

Results

The overview

- Tokens from one category vary largely
- Not all represent the idea
- Brain uses the two systems in unison
- Can we?