Object Recognition – Functional Categories

By: Gaurav Singh

Objects don't exist in a static world

Objects move sometimes on their own Some are manipulated by humans

Living Beings - Differentiation

Motion of Living beings enable differentiation.

Visual Attributes to Functions

Used for Shearing Function!

Non-living object Functionality is known to experts

Tool Recognition - Tough Using only Attributes

Metallic?

Has Jaws?

Tools Recognition - Functionality

Attributes and Functions for Tools

Attributes could define functions.

We need to know how tools can be manipulated by actually using them.

Formal Neuroscience Representation of Tools

How Tools are Represented

Mirror Neuron

Response of F5 mirror neuron in premotor cortex over 6 trials.

Embodied Cognition Hypothesis

Sensorimotor representations (in Dorsal stream) are activated in course of object analysis.

Studies found overlap between motor cortex activation for foot movements and for words describing actions.

Figure from Hauk et al. (2004)

Another FOR Embodied Cognition Hypothesis

Boulenger et al. (2008) look for differences in word recognition ability

AGAINST Embodied Cognition Hypothesis

Trends in Cognitive Sciences by Elena Daprati and Angela Sirigu looks at object use and object recognition in patients with lesions in motor cortex.

Object Recognition

Actions

Action Related Properties Shape Object Representations in Ventral Stream

Hypotheses:

• Tool presentation will trigger responses in ventral stream (represented in medial fusiform gyrus) and dorsal stream areas.

• Perturbation in dorsal stream will affect ventral stream.

Object Recognition Experiments

• fMRI to:

- Find brain areas that respond to tools.
- study modulations in RS as function of motor relevant properties.

• Lesion study to converge with fMRI results.

Tools

Animals

Manipulable objects

Non-Manipulable objects

Tools distinction : Behavioural study

Controls for Object Recognition

Distinctions in :

• Concept familiarity - Maybe we are just more familiar with tools. This taints object recognition neural study.

• Visual complexity and shape

fMRI stimulus characteristics

Object Recognition Experiments

• fMRI to:

• Find brain areas that respond to tools.

 study modulations in RS as function of motor relevant properties.

• Lesion study to converge with fMRI results.

Tool areas - Ventral Stream

Dorsal Stream I

Dorsal Stream II

А

Object Recognition Experiments

• fMRI to:

- Find brain areas that respond to tools.
- study correlation of dorsal and ventral stream when exposed to tools.

• Lesion study to confirm fMRI results.

Correlation in response to Tools in Dorsal and Ventral streams

Ventral stream

Object Recognition Experiments

• fMRI to:

- Find brain areas that respond to tools.
- study correlation of dorsal and ventral stream when exposed to tools.

• Lesion study to confirm fMRI results.

Aim of Lesion Overlap Study

Whether lesions in Dorsal stream affect Object Recognition

Parietal Cortex Lesions affect Object Identifications

Lesions associated with impairments for identifying objects

Lesions associated with impairments for using objects

Overlap between lesions associated with impairments for using object and identifying objects

Discussion

Human hallucinate actions when looking at tools? Actions help identify tools ?

Discussion

Other Brain regions' specificity (FFA, PPA) driven by connectivity ?

eg. Emotions with FFA

CV Application

Actions as a clue for Objects in scene.

Occluded object recognition through Action recognition.

Human-Object Interactions Leveraged

From: Observing Human-Object Interactions: Using Spatial and Functional Compatibility for Recognition Abhinav Gupta et al.

First order predictors

After applying constraints sing Action and scene understanding

CV Application

Human Centric Scene Understanding *Gibsonian View of Affordances*

Human Centric Interpretation of Scenes

From 3D Scene Geometry to Human Workspace

Representation of scene

Representation of ourselves in 3D world

Results

Challenges

Actions to determine 3D

People Watching.. by David Fouhey et al.

Another Challenge

In Summary

Object functionality is a useful clue for object recognition.

Neural studies show we simulate tool use when viewing them.

CV looks to explore object functionality and actions.

Twins Study

Innate component to face recognition.

Brain areas in twins with similar responses to faces and places.

Genes matter !

Blind Subject study

Cogenitally blind patients show activation in ventral stream for objects in same areas as sighted individuals.

Lesson: Some basic scaffolding holds how information is organized.

What Humans Learn?

Humans learn appearances and the actions of tools but does knowledge of appearance and knowledge of action interact ?

Eliminitivist - theory

Semantic deficits explained because items varied in

- lexical frequency
- concept familiarity
- or visual complexity.

Some categories might be easier !

Eliminitivist theory - experiments

Experiment 1

Do dissociations remain when obejcts are matched across lexical frequency, image complexity etc.

Experiment 2

Double dissociations can be observed over same material in different patients.

Answer is YES. Category specific semantic deficits are not spurious.

Non eliminitivist

Sensory Functional Theory

Semantic system organized by modality of information.

- Visual/perceptual knowledge (Animals) and Functional knowledge (tools, man-made objects)
- Features like color, form, surface properties.

Non eliminitivist

Why it fails?

Patients with impairments for animals do not have a impairment for visual/perception knowledge.

Non-reductionist theory

Brain areas divided by semantic domains.

Evidence:

1. Category specific semantic deficits doubly dissociate across patients.

2. Affect all types of knowledge that have been tested.

Non-reductionist

Semantic domain constrains object knowledge organization.

Connectivity determines domain-specificity. eg. Dorsal and Ventral.

Evidence ?

Category Specific Semantic Deficits

Some categories of object conception impaired.

Prosopagnosia - Can't distinguish faces.

Theories to explain how knowledge is organized in brains to explain such impairments.

Monkey and Human study

Face preferring voxels comparable in monkeys and humans.

Overlay of Lesion Overlap and fMRI

* = .001 < p < .01

Computer Vision Perspective

Some tools have many functions.

VS.

Interactive scenes

A scene is a collection of objects. A scene is interactive and represents a 3-D space with many possibilities for manipulation and use. Application dependent functionality

Computer vision assisted driving

Camera Image

Actual Disparity

Stereo disparity

Inferred Disparity

Monocular depth prediction

Where the tree lies is important.

In the end we care about driving

Non-living Objects - Tools

Could be just pieces of metal

But they have a specific functionality depending on how we manipulate them