Selective Search for Object Recognition

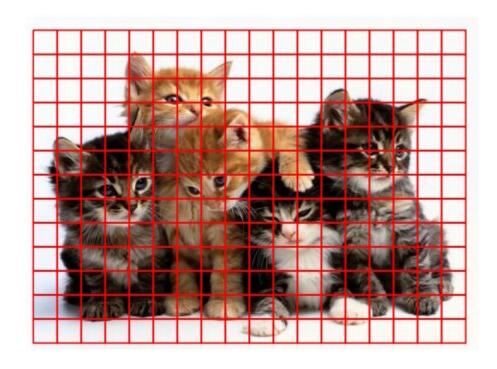
Uijlings et al. (IJCV 2013)

Object Recognition

Find Object and Recognize it

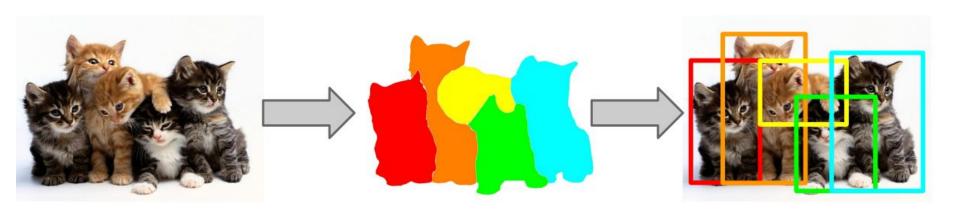
Exhaustive Search

- Exhaustively grid search all possible locations
- Very Slow!! (Imagine you need to process many images)



Segmentation

- Run detection before recognition
- Many existing segmentation algorithms



Difficulties of Segmentation

No single golden criteria for segmentation

- Scale
- Color
- Texture
- Enclosure

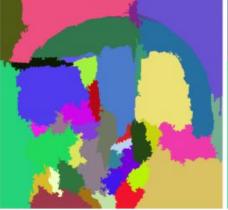
Selective Search

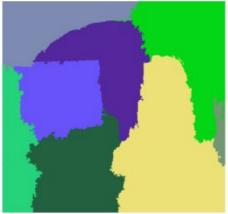
Goals:

- Capture all scales How could we know the size of object?
- **Diversifications** Different criteria for segmentation
- Fast to compute

Hierarchical Segmentation

- Apply existing algorithms to find sub-segmentations
 - Small segmentations
- Recursively combine small segmentations into big segmentations
 - Big segmentations





Algorithms

Algorithm 1: Hierarchical Grouping Algorithm **Input**: (colour) image Output: Set of object location hypotheses L Obtain initial regions $R = \{r_1, \dots, r_n\}$ using [13] Initialise similarity set $S = \emptyset$ **foreach** Neighbouring region pair (r_i, r_i) do Calculate similarity $s(r_i, r_j)$ $S = S \cup s(r_i, r_i)$ while $S \neq \emptyset$ do Get highest similarity $s(r_i, r_i) = \max(S)$ Merge corresponding regions $r_t = r_i \cup r_i$ Remove similarities regarding $r_i: S = S \setminus s(r_i, r_*)$ Remove similarities regarding r_i : $S = S \setminus s(r_*, r_i)$ Calculate similarity set S_t between r_t and its neighbours $S = S \cup S_t$ $R = R \cup r_t$

Extract object location boxes L from all regions in R

Diversification

- We already capture the scale, how to model different criteria into the algorithm?
- What criteria for combining the segmentations?

Colour Similarity

Normalized and Histogram Intersection

$$s_{colour}(r_i, r_j) = \sum_{k=1}^{n} \min(c_i^k, c_j^k)$$



Texture Similarity

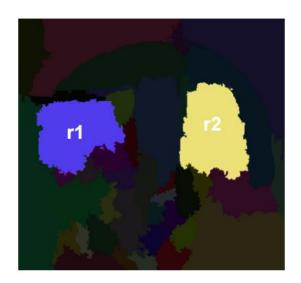
- Extract derivatives in 8 directions for 3 channels
- 10 bins for each, 240 bins in total
- Normalized and Histogram Intersection

$$s_{texture}(r_i, r_j) = \sum_{k=1}^{n} \min(t_i^k, t_j^k).$$

Size Similarity

We hope to merge two small region into a large segmentation

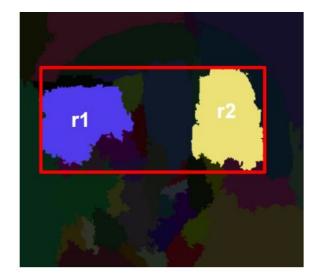
$$s_{size}(r_i, r_j) = 1 - \frac{\operatorname{size}(r_i) + \operatorname{size}(r_j)}{\operatorname{size}(im)}$$

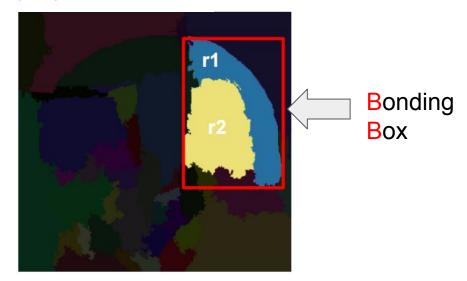


Shape Compatibility

Whether two segmentations fit each other?

$$fill(r_i, r_j) = 1 - \frac{\operatorname{size}(BB_{ij}) - \operatorname{size}(r_i) - \operatorname{size}(r_i)}{\operatorname{size}(im)}$$





A mixture Approach

Final Score:

$$s(r_i, r_j) = a_1 s_{colour}(r_i, r_j) + a_2 s_{texture}(r_i, r_j) + a_3 s_{size}(r_i, r_j) + a_4 s_{fill}(r_i, r_j),$$

Evaluation I - Object Detection

Average Best Overlap (ABO)

$$\operatorname{ABO} = \frac{1}{|G^c|} \sum_{\substack{g_i^c \in G^c \\ \text{Overlap between ground truth} \\ \text{and best selected box.}}} \operatorname{max}_{l_j \in L} \operatorname{Overlap}_{g_i^c, l_j})$$

Average of "best overlaps" across all images.

Evaluation I - Object Detection

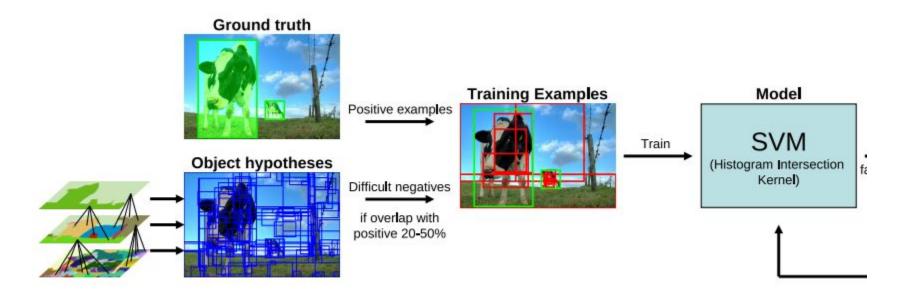
Similarities	MABO	# box	Colours	MABO	# box	
C	0.635	356	HSV	0.693	463	
T	0.581	303	I	0.670	399	
S	0.640	466	RGB	0.676	395	
F	0.634	449	rgI	0.693	362	
C+T	0.635	346	Lab	0.690	328	
C+S	0.660	383	Н	0.644	322	
C+F	0.660	389	rgb	0.647	207	
T+S	0.650	406	C	0.615	125	
T+F	0.638	400	Thresholds	MABO	# box	
S+F	0.638	449	50	0.676	395	
C+T+S	0.662	377	100	0.671	239	
C+T+F	0.659	381	150	0.668	168	
C+S+F	0.674	401	250	0.647	102	
T+S+F	0.655	427	500	0.585	46	
C+T+S+F	0.676	395	1000	0.477	19	

Efficiency or Effectiveness?

	Diversification						
Version	Strategies	MABO	# win	# strategies	time (s)		
Single	HSV						
Strategy	C+T+S+F	0.693	362	1	0.71		
	k = 100						
Selective	HSV, Lab						
Search	C+T+S+F, T+S+F	0.799	2147	8	3.79		
Fast	k = 50,100						
Selective	HSV, Lab, rgI, H, I						
Search	C+T+S+F, T+S+F, F, S	0.878	10,108	80	17.15		
Quality	k = 50, 100, 150, 300						

Evaluation II - Object Recognition

Approach: Selective Search + SIFT + SVM



Evaluation II - Object Recognition

PASCAL VOC 2010

System	plane	bike	bird	boat	bottle	bus	car	cat	chair	cow	table	dog	horse	motor	person	plant	sheep	sofa	train	tv
NLPR	.533	.553	.192	.210	.300	.544	.467	.412	.200	.315	.207	.303	.486	.553	.465	.102	.344	.265	.503	.403
MIT UCLA [38]	.542	.485	.157	.192	.292	.555	.435	.417	.169	.285	.267	.309	.483	.550	.417	.097	.358	.308	.472	.408
NUS	.491	.524	.178	.120	.306	.535	.328	.373	.177	.306	.277	.295	.519	.563	.442	.096	.148	.279	.495	.384
UoCTTI [12]	.524	.543	.130	.156	.351	.542	.491	.318	.155	.262	.135	.215	.454	.516	.475	.091	.351	.194	.466	.380
This paper					.218						.300	.365	.435	.529	.329		.411	.318	.470	.448

Conclusion

- Hierarchical Segmentation woks
- State-of-the-art algorithm before 2015
- Still many decisions to be made