Holistically-Nested Edge Detection (HED)
Saining Xie, Zhuowen Tu

Presented by Yuxin Wu

February 10, 2016
What is an Edge?

- **Local** intensity change? Used in traditional methods: Canny, Sobel, etc.
- Learn it!
What is an Edge?

- **Local** intensity change? Used in traditional methods: Canny, Sobel, etc.
- **Learn it!**
Fully Convolutional Network (FCN)

- Concept originally brought out for semantic segmentation
- No fully-connected layers (can be converted)
- Allow inputs of any sizes
Holistically-Nested architecture
Multiple Supervision Signals

- Single output, multiple cost
- Learn earlier, learn better
- Alleviate gradient vanishing
Convolutional Layers

Fine-tuning from VGG16:

- Lots of people do fine-tuning on top of VGG16.
- 5 stage. 3x3 convolution only.
- HED adds a side output (conv1x1) after each stage.
Upsampling by Deconvolution

Upsampling by a factor of $k \in \mathbb{N}^+$ is implemented by a deconvolution with a $2k \times 2k$ kernel and output stride k.

An mathematically equivalent explanation (assume $k = 2$):

1. Input image with shape n
2. Zero-filled upsample as above, by a factor of 2. Shape becomes $2n - 1$
3. Convolve with a filter with padding = 3, shape becomes $(2n - 1) + 3 = 2n + 2$. Then center-crop to $2n$
Upsampling by Deconvolution

Upsampling by a factor of $k \in \mathbb{N}^+$ is implemented by a deconvolution with a $2k \times 2k$ kernel and output stride k.

An mathematically equivalent explanation (assume $k = 2$):

1. Input image with shape n

2. Zero-filled upsample as above, by a factor of 2. Shape becomes $2n - 1$

3. Convolve with a filter with padding = 3, shape

\[
\begin{bmatrix}
\frac{1}{16} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16} \\
\frac{3}{16} & \frac{9}{16} & \frac{9}{16} & \frac{3}{16} \\
\frac{16}{9} & \frac{16}{9} & \frac{16}{9} & \frac{9}{16} \\
\frac{1}{16} & \frac{3}{16} & \frac{3}{16} & \frac{1}{16}
\end{bmatrix}
\]

becomes $(2n - 1) + 3 = 2n + 2$. Then center-crop to $2n$
Class-Balanced Sigmoid Cross Entropy Loss

Sigmoid Cross Entropy Loss

For each pixel, loss \(L = -[y^* \log(y) + (1 - y^*) \log(1 - y)] \)

where ground truth label \(y^* \in \{0, 1\}, y = \frac{1}{1 + e^{-z}} \)

In images, 90% pixels are not edge, cost function is dominated by negative labels.
To avoid this, re-weight the terms:

Class-Balanced Sigmoid Cross Entropy Loss

\[
L = -[\beta y^* \log(y) + (1 - \beta)(1 - y^*) \log(1 - y)]
\]

where \(\beta \) is the ratio of negative ground truth labels in this batch of data.

This loss function is computed for \(l_{1..5} \) as well as \(l_{\text{fuse}} = \sum_{i=1}^{5} \alpha_i l_i \)
Class-Balanced Sigmoid Cross Entropy Loss

Sigmoid Cross Entropy Loss

For each pixel, loss \(L = -[y^* \log(y) + (1 - y^*) \log(1 - y)] \)

where ground truth label \(y^* \in \{0, 1\} \), \(y = \frac{1}{1 + e^{-z}} \)

In images, 90% pixels are not edge, cost function is dominated by negative labels.
To avoid this, re-weight the terms:

Class-Balanced Sigmoid Cross Entropy Loss

\[
L = -[\beta y^* \log(y) + (1 - \beta)(1 - y^*) \log(1 - y)]
\]

where \(\beta \) is the ratio of negative ground truth labels in this batch of data

This loss function is computed for \(\ell_{1..5} \) as well as \(\ell_{\text{fuse}} = \sum_{i=1}^{5} \alpha_i \ell_i \)
Holistically-Nested architecture
Outputs

(a) original image
(b) ground truth
(c) HED: output

(d) HED: side output 2
(e) HED: side output 3
(f) HED: side output 4

(g) Canny: $\sigma = 2$
(h) Canny: $\sigma = 4$
(i) Canny: $\sigma = 8$
Figure: Results on BSD500 (a small dataset)
Effect of Supervision

![Comparison of edge detection with and without deep supervision](image)

Presented by Yuxin Wu

Holistically-Nested Edge Detection (HED)
Effect of Supervision

Figure: Output of 2nd stage with (left) and without (right) extra supervision
Rotation/flip/scaling as data augmentation
Using depth information (in NYUD dataset) gives better performance
Pure FCN / HED without multiple supervision don’t work as good
2.5 fps on K40 for 320×480 input
CMU Pano

Presented by Yuxin Wu

Holistically-Nested Edge Detection (HED)

February 10, 2016
Thanks!

Yuxin Wu