Holistically-Nested Edge Detection (HED) Saining Xie, Zhuowen Tu

Presented by Yuxin Wu

February 10, 2016

What is an Edge?

- **Local** intensity change? Used in traditional methods: Canny, Sobel, etc.
- Learn it!

What is an Edge?

- **Local** intensity change? Used in traditional methods: Canny, Sobel, etc.
- Learn it!

Fully Convolutional Network (FCN)

- Concept originally brought out for semantic segmentation
- No fully-connected layers (can be converted)
- Allow inputs of any sizes

Holistically-Nested architecture

Multiple Supervision Signals

- Single output, multiple cost
- Learn earlier, learn better
- Alleviate gradient vanishing

Convolutional Layers

Fine-tuning from VGG16:

- Lots of people do fine-tuning on top of VGG16.
- 5 stage. 3x3 convolution only.
- HED adds a side output (conv1x1) after each stage.

Upsampling by Deconvolution

Upsampling by a factor of $k \in \mathbb{N}^+$ is implemented by a **deconvolution** with a $2k \times 2k$ kernel and output stride k.

An mathematically equivalent explanation (assume k = 2):

- Input image with shape n
- ② Zero-filled upsample as above, by a factor of 2. Shape becomes 2n-1
- **3** Convolve with a filter $\begin{bmatrix} \frac{10}{3} & \frac{10}{16} & \frac{10}{16} & \frac{10}{36} \\ \frac{3}{16} & \frac{9}{16} & \frac{9}{16} & \frac{3}{16} \\ \frac{1}{12} & \frac{3}{22} & \frac{3}{22} & \frac{1}{12} \end{bmatrix}$ with padding = 3, shape

becomes (2n-1)+3=2n+2. Then center-crop to 2n

Upsampling by Deconvolution

Upsampling by a factor of $k \in \mathbb{N}^+$ is implemented by a **deconvolution** with a $2k \times 2k$ kernel and output stride k.

An mathematically equivalent explanation (assume k = 2):

- 1 Input image with shape n
- ② Zero-filled upsample as above, by a factor of 2. Shape becomes 2n-1

becomes (2n-1)+3=2n+2. Then center-crop to 2n

Class-Balanced Sigmoid Cross Entropy Loss

Sigmoid Cross Entropy Loss

For each pixel, loss
$$L=-[y^\star\log(y)+(1-y^\star)\log(1-y)]$$
 where ground truth label $y^\star\in\{0,1\},y=\frac{1}{1+e^{-z}}$

In images, 90% pixels are not edge, cost function is dominated by negative labels.

To avoid this, re-weight the terms:

Class-Balanced Sigmoid Cross Entropy Loss

$$L = -[\beta y^* \log(y) + (1 - \beta)(1 - y^*) \log(1 - y)]$$
 where β is the ratio of **negative** ground truth labels in this batch of data

This loss function is computed for $\ell_{1..5}$ as well as $\ell_{\mathit{fuse}} = \sum_{i=1}^{5} \alpha_i \ell_i$

Class-Balanced Sigmoid Cross Entropy Loss

Sigmoid Cross Entropy Loss

For each pixel, loss $L=-[y^\star\log(y)+(1-y^\star)\log(1-y)]$ where ground truth label $y^\star\in\{0,1\}, y=\frac{1}{1+e^{-z}}$

In images, 90% pixels are not edge, cost function is dominated by negative labels.

To avoid this, re-weight the terms:

Class-Balanced Sigmoid Cross Entropy Loss

$$L = -[\beta y^* \log(y) + (1 - \beta)(1 - y^*) \log(1 - y)]$$

where β is the ratio of **negative** ground truth labels in this batch of data

This loss function is computed for $\ell_{1..5}$ as well as $\ell_{\textit{fuse}} = \sum_{i=1}^{5} \alpha_i \ell_i$

Holistically-Nested architecture

Outputs

Qualitative Results

Figure: Results on BSD500 (a small dataset)

Effect of Supervision

Effect of Supervision

Figure: Output of 2nd stage with(left) and without(right) extra supervision

Misc.

- Rotation/flip/scaling as data augmentation
- Using depth information (in NYUD dataset) gives better performance
- Pure FCN / HED without multiple supervision don't work as good
- 2.5 fps on K40 for 320×480 input

CMU Pano

15 / 15

Thanks!

Yuxin Wu