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Introduction



Random Forests

Decision Tree

A decision tree ft(x) classifies a sample x ∈ X by recursively branching

left or right down the tree until a leaf node is reached. Specifically, each

node j in the tree is associated with a binary split function:

h(x , θj) ∈ {0, 1}

with parameters θj . If h(x , θj) = 0 node j sends x left, otherwise right.
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Random Forests

Training Decision (Classification) Trees

Each tree is trained independently in a recursive manner. For a given node

j and training set Sj ⊂ X × Y, the goal is to find parameters θj of the

split function h(x , θj) that maximizes Information Gain, or equivalently,

minimizing Entropy.

High Entropy Low Entropy
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Random Forests

…

Randomness and Optimality

Individual decision trees exhibit high variance and tend to overfit. Decision

forests ameliorate this by training multiple de-correlated trees and combin-

ing their output. In effect, accuracy of individual trees is sacrificed in

favor of high diversity ensemble.
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Structured Learning

In traditional classification approaches, input data samples are assigned

to single, atomic class labels, acting as arbitrary identifiers without any

dependencies among them. For many computer vision problems however,

this model is limited because the label space of a classification task

exhibits an inherently topological structure. Therefore, we try to

address the problems by making the classifier aware of the local

topological structure of the output label space.

Kontschieder, Peter, et al. ICCV 11’ [2]
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Structured Random Forests



Overview

We extend random forests to general structured output spaces Y. Of

particular interest for computer vision is the case where x ∈ X represents

an image patch and y ∈ Y encodes the corresponding local image

annotation (e.g., a segmentation mask or set of semantic image labels).
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Overview

Training random forests with structured labels is very challenging.

Therefore, we want to reduce this problem to a simpler one.

• We use the observation that approximate measures of

information gain suffice to train effective random forest

classifiers. ’Optimal’ splits are not necessary or even desired.

• Our core idea is to map all the structured labels y ∈ Y at a given

node into a discrete set of labels c ∈ C, where C = {1, ..., k}, such

that similar structured labels y are assigned to the same discrete

label c .

• Given C, information gain calculated directly from C can serve as a

proxy for the information gain over the structured labels Y. As a

result, at each node we can leverage existing random forest training

procedures to learn structured random forests effectively.
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Intermediate Mapping Π

For edge detection, the labels y ∈ Y are 16× 16 segmentation masks.

We first transform the output label patch to another space:

Π : Y → Z

We define z = Π(y) to be a long binary vector that encodes whether

every pair of pixels in y belong to the same or different segments.

We therefore utilize a broadly applicable two-stage approach of first

mapping Y → Z followed by a straightforward mapping of Z → C.
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Information Gain Criterion

We map a set of structured labels y ∈ Y into a discrete set of labels

c ∈ C, where C = {1, ..., k}, such that labels with similar z are assigned

tothe same discrete label c .

Get C from Z

1. Cluster z into k clusters using K-means

2. Quantize z based on the top log2(k) PCA dimensions

Both approaches perform similarly but the latter is slightly faster.

Now, the Structured Random Forest training problem is reduced to a

ordinary random forest training problem.

12



Training a Node in Action
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Training a Node in Action
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Training a Node in Action
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Ensemble Model

To combine a set of n labels y1, y2, . . . , yn, we select the label yk whose

zk is the medoid, i.e. the zk that minimizes the distances to all other zj .
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Edge Detection



DEMO
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Experiment Results



Overview

The experiments are performed on Berkeley Segmentation Dataset and

Benchmark (BSDS500) and NYU Depth (NYUD) dataset.

ODS Fixed contour threshold

OIS Per-image best threshold

AP Average Precision

R50 Recall at 50% precision

Examples from BSDS Examples from NYUD
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BSDS
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BSDS
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NYUD
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NYUD
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NYUD
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Cross Dataset Generalization

Train/Test

Across all performance measure, scores degrade by about 1 point when

using the BSDS dataset. These experiments provide strong evidence that

our approach could serve as a general purpose edge detector without the

necessity of retraining.
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Conclusion



Conclusion

1. Use structured learning to predict the labels for a patch a time,

taking into consideration the spatial layout of the output label space

2. Generalized random forest training method using approximation

28



Questions?
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Supplementary



Intermediate Mapping Π

Z may be high dimensional. For example, for edge detection there are(
16×16

2

)
= 32640 unique pixel pairs in a 16× 16 segmentation mask, so

computing z for every y would be expensive.

• We sample m dimensions of Z, resulting in a reduced mapping

Πφ : Y → Z parametrized by φ. During training, a distinct mapping

Πφ is randomly generated and applied to training labels Yj at each

node j .

• PCA to further reduce the dimensionality of Z.

In practice, we use Πφ with m = 256 dimensions followed by PCA

projection to at most 5 dimensions.
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Edge Detection Overview

Our learning approach predicts a structured 16× 16 segmentation mask

from a larger 32× 32 image patch. Given an image, we predict a

segmentation mask indicating segment membership for each pixel and a

binary edge map.

Input Feature We construct a 7228 dimensional feature vector by

considering color, scale, gradient and etc.

Mapping Function Let y ∈ Y be a 256 dimensional vector and z be a(
256
2

)
vector of the pairwise difference between every dimension of y . We

reduce dimension of z to 256 and cluster to 2 clusters.

Ensemble Model The predictions are merged by simply averaging.

Efficiency Structured output is computed densely with a stride of 2

pixels, and we use a forest consists of 4 trees. Thus 162 × 4/4 = 256

votes per pixel.
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Multiscale Detection (SE+MS) & Edge Sharpening (SE+SH)

Multiscale Detection (SE+MS)

Given an input image, we run our edge detection algorithm on original,

half and double resolution version of the image and average the results.

Edge Sharpening (SE+SH)

We observed that predicted edge maps from our structured edge detector

are somewhat diffuse. Therefore, we introduce a new sharpening proce-

dure.

1. For each segment s, we compute its mean color µs

2. Iteratively update the assigned segment for each pixel by assigning it

to the segment which minimizes ‖µs − x(j)‖2
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