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Introduction



Random Forests

Y

Decision Tree

A decision tree f;(x) classifies a sample x € X by recursively branching
left or right down the tree until a leaf node is reached. Specifically, each
node j in the tree is associated with a binary split function:

h(x,6;) € {0,1}

with parameters 6;. If h(x,0;) = 0 node j sends x left, otherwise right.



Random Forests

Training Decision (Classification) Trees

Each tree is trained independently in a recursive manner. For a given node
J and training set §; C X' x Y, the goal is to find parameters 0; of the
split function h(x,0;) that maximizes Information Gain, or equivalently,

minimizing Entropy.
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Random Forests

=

Randomness and Optimality

Individual decision trees exhibit high variance and tend to overfit. Decision
forests ameliorate this by training multiple de-correlated trees and combin-
ing their output. In effect, accuracy of individual trees is sacrificed in
favor of high diversity ensemble.



Structured Learning

Original Ground Truth Random Forest Structured Random Forest

In traditional classification approaches, input data samples are assigned
to single, atomic class labels, acting as arbitrary identifiers without any
dependencies among them. For many computer vision problems however,
this model is limited because the label space of a classification task
exhibits an inherently topological structure. Therefore, we try to
address the problems by making the classifier aware of the local
topological structure of the output label space.

Kontschieder, Peter, et al. ICCV 11’ [2]



Structured Random Forests



We extend random forests to general structured output spaces ). Of
particular interest for computer vision is the case where x € X’ represents
an image patch and y € ) encodes the corresponding local image
annotation (e.g., a segmentation mask or set of semantic image labels).




Training random forests with structured labels is very challenging.
Therefore, we want to reduce this problem to a simpler one.

e We use the observation that approximate measures of
information gain suffice to train effective random forest
classifiers. 'Optimal’ splits are not necessary or even desired.
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Training random forests with structured labels is very challenging.
Therefore, we want to reduce this problem to a simpler one.

e We use the observation that approximate measures of
information gain suffice to train effective random forest
classifiers. 'Optimal’ splits are not necessary or even desired.

e Our core idea is to map all the structured labels y € ) at a given
node into a discrete set of labels ¢ € C, where C = {1, ..., k}, such
that similar structured labels y are assigned to the same discrete
label c.

e Given C, information gain calculated directly from C can serve as a
proxy for the information gain over the structured labels ). As a
result, at each node we can leverage existing random forest training
procedures to learn structured random forests effectively.
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Intermediate Mapping [1

For edge detection, the labels y € ) are 16 x 16 segmentation masks.
We first transform the output label patch to another space:

n:y—2z

We define z = I(y) to be a long binary vector that encodes whether
every pair of pixels in y belong to the same or different segments.

We therefore utilize a broadly applicable two-stage approach of first
mapping )V — Z followed by a straightforward mapping of Z — C.
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Information Gain Criterion

We map a set of structured labels y € ) into a discrete set of labels
c € C, where C = {1,..., k}, such that labels with similar z are assigned
tothe same discrete label c.

Get C from Z

1. Cluster z into k clusters using K-means

2. Quantize z based on the top log,(k) PCA dimensions

Both approaches perform similarly but the latter is slightly faster.

Now, the Structured Random Forest training problem is reduced to a
ordinary random forest training problem.
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Training a Node in Action
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Training a Node in Action
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Training a Node in Action
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Ensemble Model

To combine a set of n labels y1, yo, ..., yn, we select the label yx whose
2y is the medoid, i.e. the z, that minimizes the distances to all other z;.
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Edge Detection
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Experiment Results




The experiments are performed on Berkeley Segmentation Dataset and
Benchmark (BSDS500) and NYU Depth (NYUD) dataset.

ODS Fixed contour threshold
OIS Per-image best threshold
AP Average Precision
R50 Recall at 50% precision

Examples from BSDS Examples from NYUD
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ground truth

optimal thresh high precision

high recall

Fig. 4. Visualizations of matches and errors of SE+MS+SH compared to BSDS ground truth edges. Edges are thickened to two

pixels for better visibility; the color coding is green=true positive, blue=false positive, red=false negative. Results are shown at three
thresholds: high precision (T~.26, P~:0.88, R=.50), ODS threshold (T~.14, P=R~.75), and high recall (T~.05, P=.50, R~0.93).
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ODS OIS AP RS0 FPS
Human .80 .80 - - -
Canny .60 63 58 75 15
Felz-Hutt [16] .61 64 56 .78 10
Normalized Cuts [10] .64 68 45 81 -
Mean Shift [9] .64 68 56 .79 -
Hidayat-Green [23] 621 - - - 20
BEL [13] 667 - - - 1/10
Gb [30] .69 g2 72 85 1/6
gPb + GPU [8] 701 - - - 124
ISCRA [42] J2I5 46 .89 | 17301
gPb-owt-ucm [1] 73 Je6 .73 .89 17240
Sketch Tokens [31] 73 a5 78 91 1
DeepNet [27] 74 76 6 - 1/5%
SCG [41] 74 g6 77 91 17280
SE+multi-ucm [2] 75 78 76 91 1715
SE 73 s 77 90 30
SE+SH 74 g6 .79 .93 12.5
SE+MS 74 J6 .78 .90 6
SE+MS+SH .75 77 .80 .93 2.5
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ground truth
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NYUD

ODS OIS AP R50 FPS
gPb-owt-ucm [1] .63 66 .56 .79 1/360
Silberman [44] .65 .66 29 84 1/360+
gPb+NG [21] .68 71 .63 .86 1/375
SE+NG+ [22 71 72 .74 90 1/15
SE-D .64 .65 .66 .80 7.5
SE-RGB .65 67 65 .84 7.5
SE-RGBD .69 aro 72 89 5

25



Cross Dataset Generalization

ODS OIS AP RS0 FPS

NYUD / NYUD .65 67 65 .84 7.5

BSDS / NYUD .64 .66 .63 .83 7.5

BSDS / BSDS 75 77 .80 .93 2.5

NYUD / BSDS 73 74 77 91 2.5
Train/Test

Across all performance measure, scores degrade by about 1 point when
using the BSDS dataset. These experiments provide strong evidence that
our approach could serve as a general purpose edge detector without the
necessity of retraining.
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Conclusion




Conclusion

1. Use structured learning to predict the labels for a patch a time,
taking into consideration the spatial layout of the output label space

2. Generalized random forest training method using approximation
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Questions?
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Supplementary




Intermediate Mapping [1

Z may be high dimensional. For example, for edge detection there are
(10%1%) = 32640 unique pixel pairs in a 16 x 16 segmentation mask, so
computing z for every y would be expensive.

e We sample m dimensions of Z, resulting in a reduced mapping
Mg : Y — Z parametrized by ¢. During training, a distinct mapping
Iy is randomly generated and applied to training labels )); at each
node j.

e PCA to further reduce the dimensionality of Z.

In practice, we use [, with m = 256 dimensions followed by PCA
projection to at most 5 dimensions.
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Edge Detection Overview

Our learning approach predicts a structured 16 x 16 segmentation mask
from a larger 32 x 32 image patch. Given an image, we predict a
segmentation mask indicating segment membership for each pixel and a
binary edge map.

Input Feature We construct a 7228 dimensional feature vector by
considering color, scale, gradient and etc.

Mapping Function Let y € ) be a 256 dimensional vector and z be a
(236) vector of the pairwise difference between every dimension of y. We
reduce dimension of z to 256 and cluster to 2 clusters.

Ensemble Model The predictions are merged by simply averaging.

Efficiency Structured output is computed densely with a stride of 2
pixels, and we use a forest consists of 4 trees. Thus 162 x 4/4 = 256
votes per pixel.
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Multiscale Detection (SE+MS) & Edge Sharpening (SE+SH)

Multiscale Detection (SE+MS)

Given an input image, we run our edge detection algorithm on original,
half and double resolution version of the image and average the results.

Edge Sharpening (SE+SH)

We observed that predicted edge maps from our structured edge detector
are somewhat diffuse. Therefore, we introduce a new sharpening proce-
dure.

1. For each segment s, we compute its mean color

2. lteratively update the assigned segment for each pixel by assigning it
to the segment which minimizes ||s — x(5)||2
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