
Brewing Deep Networks With Caffe

ROHIT GIRDHAR

CAFFE TUTORIAL

Many slides from Xinlei Chen (16-824 tutorial), Caffe CVPR’15 tutorial

Overview

• Motivation and comparisons

• Training/Finetuning a simple model

• Deep dive into Caffe!

! this->tutorial
• What is Deep Learning?
• Why Deep Learning?

– The Unreasonable Effectiveness of Deep Features

• History of Deep Learning.

CNNs 1989

CNNs 2012

LeNet: a layered model composed of convolution and
subsampling operations followed by a holistic representation
and ultimately a classifier for handwritten digits. [LeNet]

AlexNet: a layered model composed of convolution,
subsampling, and further operations followed by a holistic
representation and all-in-all a landmark classifier on
ILSVRC12. [AlexNet]
+ data, + gpu, + non-saturating nonlinearity, + regularization

Other Frameworks
• Torch7

– NYU
– scientific computing framework in Lua
– supported by Facebook

• TensorFlow
– Google
– Good for deploying

• Theano/Pylearn2
– U. Montreal
– scientific computing framework in Python
– symbolic computation and automatic differentiation

• Cuda-Convnet2
– Alex Krizhevsky
– Very fast on state-of-the-art GPUs with Multi-GPU parallelism
– C++ / CUDA library

• MatConvNet
– Oxford U.
– Deep Learning in MATLAB

• CXXNet
• Marvin

Framework Comparison

• More alike than different

– All express deep models

– All are open-source (contributions differ)

– Most include scripting for hacking and prototyping

• No strict winners – experiment and choose the
framework that best fits your work

Torch vs Caffe vs TensorFlow?
• Torch has more functionality built-in (more

variety of layers etc.) and is in general more
flexible

• However, more flexibility => writing more code! If
you have a million images and want to train a
mostly standard architecture, go with caffe!

• TensorFlow is best at deployment! Even works on
mobile devices.

What is Caffe?
Open framework, models, and worked examples for deep learning

- 600+ citations, 150+ contributors, 7,000+ stars, 4,700+ forks, >1
pull request / day average

- focus has been vision, but branching out:
sequences, reinforcement learning, speech + text

So what is Caffe?

Prototype Training Deployment

All with essentially the same code!

● Pure C++ / CUDA architecture for deep learning
o command line, Python, MATLAB interfaces

● Fast, well-tested code
● Tools, reference models, demos, and recipes
● Seamless switch between CPU and GPU

o Caffe::set_mode(Caffe::GPU);

Brewing by the Numbers...
• Speed with Krizhevsky's 2012 model:

– 2 ms / image on K40 GPU

– <1 ms inference with Caffe + cuDNN v2 on Titan X

– 72 million images / day with batched IO

– 8-core CPU: ~20 ms/image

• 9k lines of C++ code (20k with tests)

• https://github.com/soumith/convnet-benchmarks: A pretty reliable

benchmark

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks

Why Caffe? In one sip…

Expression: models + optimizations are plaintext schemas, not code.

Speed: for state-of-the-art models and massive data.

Modularity: to extend to new tasks and settings.

Openness: common code and reference models for reproducibility.

Community: joint discussion and development through BSD-2 licensing.

Caffe Tutorial
http:/caffe.berkeleyvision.org/tutorial/

Caffe offers the
● model definitions
● optimization settings
● pre-trained weights

so you can start right away.

The BVLC models are licensed
for unrestricted use.

Reference Models

The Caffe Model Zoo
- open collection of deep models to share innovation
 - VGG ILSVRC14 + Devil models in the zoo
 - Network-in-Network / CCCP model in the zoo

- MIT Places scene recognition model in the zoo
- help disseminate and reproduce research
- bundled tools for loading and publishing models
Share Your Models! with your citation + license of course

Open Model Collection

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo

Architectures
Weight Sharing
Recurrent (RNNs)
Sequences

Define your own model from our catalogue
of layers types and start learning.

DAGs
multi-input
multi-task

Siamese Nets
Distances

[Karpathy14] [Sutskever13] [Chopra05]

Installation Hints

• We have already compiled the latest version
of caffe (as on 5 Feb’16) on LateDays!

• However, you might want to customize and
compile your own caffe (esp. if you want to
create new layers)

Installation
• http://caffe.berkeleyvision.org/installation.html
• CUDA, OPENCV
• BLAS (Basic Linear Algebra Subprograms): operations like matrix

multiplication, matrix addition, both implementation for CPU(cBLAS) and
GPU(cuBLAS). provided by MKL(INTEL), ATLAS, openBLAS, etc.

• Boost: a c++ library. > Use some of its math functions and shared_pointer.
• glog,gflags provide logging & command line utilities. > Essential for

debugging.
• leveldb, lmdb: database io for your program. > Need to know this for

preparing your own data.
• protobuf: an efficient and flexible way to define data structure. > Need to

know this for defining new layers.

http://caffe.berkeleyvision.org/installation.html
http://caffe.berkeleyvision.org/installation.html

TRAINING AND FINE-TUNING

Training: Step 1
Create a lenet_train.prototxt

 Data Layers Loss

Training: Step 2
Create a lenet_solver.prototxt

train_net: "lenet_train.prototxt"
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
max_iter: 10000
snapshot_prefix: "lenet_snapshot"
… and some other options …

Training: Step 2

Some details on SGD parameters

𝑉𝑡+1 = µ𝑉𝑡 − 𝜶(𝛻𝐿 𝑊𝑡 + 𝝀𝑊𝑡)
𝑊𝑡+1 = 𝑊𝑡 + 𝑉𝑡+1

Momentum LR Decay

Training: Step 3

Train!

$ build/tools/caffe train \
 -solver lenet_solver.prototxt \
 -gpu 0

Dogs vs.
Cats
top 10 in
10 minutes

Fine-tuning Transferring learned weights to kick-start models

● Take a pre-trained model and fine-tune to new tasks [DeCAF]

[Zeiler-Fergus] [OverFeat]

© kaggle.com

Your Task

Style
Recognition

From ImageNet to Style

● Simply change a few lines in the layer definition

Input: A different source

Last Layer: A different classifier

layers {

 name: "data"

 type: DATA

 data_param {

 source: "ilsvrc12_train_leveldb"

 mean_file: "../../data/ilsvrc12"

 ...

 }

 ...

}

...

layers {

 name: "fc8"

 type: INNER_PRODUCT

 blobs_lr: 1

 blobs_lr: 2

 weight_decay: 1

 weight_decay: 0

 inner_product_param {

 num_output: 1000

 ...

 }

}

layers {

 name: "data"

 type: DATA

 data_param {

 source: "style_leveldb"

 mean_file: "../../data/ilsvrc12"

 ...

 }

 ...

}

...

layers {

 name: "fc8-style"

 type: INNER_PRODUCT

 blobs_lr: 1

 blobs_lr: 2

 weight_decay: 1

 weight_decay: 0

 inner_product_param {

 num_output: 20

 ...

 }

}

new name = new params

$ caffe train -solver models/finetune_flickr_style/solver.prototxt \

 -gpu 0 \

 -weights bvlc_reference_caffenet.caffemodel

Under the hood (loosely speaking):
 net = new Caffe::Net(
 "style_solver.prototxt");

 net.CopyTrainedNetFrom(

 pretrained_model);

 solver.Solve(net);

From ImageNet to Style

When to Fine-tune?
A good first step!
- More robust optimization – good initialization helps
- Needs less data
- Faster learning

State-of-the-art results in
- recognition
- detection
- segmentation

[Zeiler-Fergus]

Learn the last layer first
- Caffe layers have local learning rates: blobs_lr
- Freeze all but the last layer for fast optimization

and avoiding early divergence.
- Stop if good enough, or keep fine-tuning

Reduce the learning rate
- Drop the solver learning rate by 10x, 100x
- Preserve the initialization from pre-training and avoid thrashing

Fine-tuning Tricks

DEEPER INTO CAFFE

DAG

Many current deep models
have linear structure

but Caffe nets can have any directed
acyclic graph (DAG) structure.

Define bottoms and tops
and Caffe will connect the net.

LRCN joint vision-sequence model

GoogLeNet Inception Module

SDS two-stream net

Net

name: "dummy-net"

layers { name: "data" …}

layers { name: "conv" …}

layers { name: "pool" …}

 … more layers …

layers { name: "loss" …}

● A network is a set of layers connected
as a DAG:

LogReg
↑

LeNet →

ImageNet, Krizhevsky 2012 →

● Caffe creates and checks the net from the
definition.

● Data and derivatives flow through the net
as blobs – a an array interface

Forward / Backward the essential Net computations

Caffe models are complete machine learning systems for inference and learning.
The computation follows from the model definition. Define the model and run.

Layer
name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

convolution_param {

 num_output: 20

 kernel_size: 5

 stride: 1

 weight_filler {

 type: "xavier"

 }

}

name, type, and the
connection
structure

(input blobs and
output blobs)

layer-specific

parameters

* Nets + Layers are defined by protobuf
schema ● Every layer type defines

- Setup
- Forward
- Backward

https://developers.google.com/protocol-buffers/

Setup: run once for initialization.

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Layer Protocol

Layer Development Checklist

Model Composition
The Net forward and backward passes are
the composition the layers’.

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers

Data
Number x K Channel x Height x Width
256 x 3 x 227 x 227 for ImageNet train input

Blobs are 4-D arrays for storing and
communicating information.
● hold data, derivatives, and parameters
● lazily allocate memory
● shuttle between CPU and GPU

Blob name: "conv1"

type: "Convolution"

bottom: "data"

top: "conv1"

… definition …

top
blob

bottom
blob

Parameter: Convolution Weight
N Output x K Input x Height x Width
96 x 3 x 11 x 11 for CaffeNet conv1

Parameter: Convolution BIas
96 x 1 x 1 x 1 for CaffeNet conv1

N

Blobs provide a unified memory interface.

Reshape(num, channel, height, width)
- declare dimensions
- make SyncedMem -- but only lazily allocate

Blob

cpu_data(), mutable_cpu_data()
- host memory for CPU mode
gpu_data(), mutable_gpu_data()
- device memory for GPU mode

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff()
- derivative counterparts to data methods
- easy access to data + diff in forward / backward

SyncedMem
allocation + communication

• Earlier, CAFFE only supported 4-D blobs and 2-
D convolutions (NxCxHxW)

• Since October’15, it supports
– n-D blobs and
– (n-2)-D convolutions

A Caffe Net

Input Blob caffe::Net Output Blob

Blob: all your data, derivatives, and parameters.

● example input blob (256 images, RGB, height, width)

○ ImageNet training batches: 256 x 3 x 227 x 227

● example convolutional parameter blob

○ 96 filters with 3 input channels: 96 x 3 x 11 x 11

Can also have..

BLOB

LAYER

In-place
updates

Example: ReLU or PReLU

θ

(PReLU) He et al. ICCV’15

How much memory would a PReLU require?

• It does an in-place update, so say requires 𝐵 for blob

• Say it requires 𝑃 for parameters (could be per-
channel, or just a single scalar)

• Does it need any more?

– Yes! Need to keep the original input around for computing
the derivative for parameters => +𝐵

• Q: Can parameterized layers do in-place updates?

GPU/CPU Switch with Blob

• Use synchronized memory

• Mutable/non-mutable determines whether to
copy. Use of mutable_* may lead to data
copy

• Rule of thumb:

Use mutable_{cpu|gpu}_data whenever possible

Layers

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Data Layers
• Data enters through data layers -- they lie at the bottom of nets.

• Data can come from efficient databases (LevelDB or LMDB),

directly from memory, or, when efficiency is not critical, from files
on disk in HDF5/.mat or common image formats.

• Common input preprocessing (mean subtraction, scaling, random
cropping, and mirroring) is available by specifying

TransformationParameters.

Data Layers
• Data (Backend: LevelDB,LMDB)

• MemoryData

• HDF5Data

• ImageData

• WindowData

• DummyData

• Write your own! In Python!

Data Layers

Data Layers

Data Layers

Writing your own data layer in python

• Compile CAFFE, uncommenting in
Makefile.config

WITH_PYTHON_LAYER := 1

• Example: See Fast-RCNN

Python Prototxt
import caffe

class RoIDataLayer(caffe.Layer):

 """Fast R-CNN data layer used for training."""

 def setup(self, bottom, top):

 """Setup the RoIDataLayer."""

 # ...

 pass

 def forward(self, bottom, top):

 # ...

 pass

 def backward(self, top, propagate_down, bottom):

 """This layer does not propagate gradients."""

 pass

 def reshape(self, bottom, top):

 """Reshaping happens during the call to fwd."""

 pass

Transformations

Note that all layers do not support transformations, like HDF5

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Vision Layers
• Images as input and produce other images as output.
• Non-trivial height h>1 and width w>1.
• 2D geometry naturally lends itself to certain decisions

about how to process the input.
– Since Oct’15, supports nD convolutions

• In particular, most of the vision layers work by applying a
particular operation to some region of the input to produce a
corresponding region of the output.

• In contrast, other layers (with few exceptions) ignore the spatial
structure of the input, effectively treating it as “one big vector”
with dimension “chw”.

Convolution
Layer

Pooling
Layer

Vision Layers

• Convolution

• Pooling

• Local Response Normalization (LRN)

• Im2col -- helper

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Common Layers
• INNER_PRODUCT WTx+b (fully connected)
• SPLIT

• FLATTEN

• CONCAT

• SLICE

• ELTWISE (element wise operations)
• ARGMAX

• SOFTMAX

• MVN (mean-variance normalization)

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Activation/Neuron layers

• One Input Blob

• One Output Blob

– Both same size

• Or a single blob – in-place updates

Activation/Neuron layers

• ReLU / PReLU

• Sigmoid

• Tanh

• Absval

• Power

• BNLL (binomial normal log likelihood)

More about Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Loss

What kind of model is this?

Classification
SOFTMAX_LOSS

HINGE_LOSS

Linear Regression
EUCLIDEAN_LOSS

Attributes / Multiclassification
SIGMOID_CROSS_ENTROPY_LOSS

Others…

New Task
NEW_LOSS

Loss

What kind of model is this?

Who knows! Need a loss function.

loss (LOSS_TYPE)

● Loss function determines the learning task.
● Given data D, a Net typically minimizes:

Loss

Data term: error
averaged over instances

Regularization
term: penalize
large weights

to improve
generalization

Loss

● The data error term is computed by
Net::Forward

● Loss is computed as the output of Layers
● Pick the loss to suit the task – many different

losses for different needs

Loss Layers
• SOFTMAX_LOSS

• HINGE_LOSS

• EUCLIDEAN_LOSS

• SIGMOID_CROSS_ENTROYPY_LOSS

• INFOGAIN_LOSS

• ACCURACY

• TOPK

Loss Layers
• SOFTMAX_LOSS

• HINGE_LOSS

• EUCLIDEAN_LOSS

• SIGMOID_..._LOSS

• INFOGAIN_LOSS

• ACCURACY

• TOPK

• **NEW_LOSS**

Classification

Linear Regression
Attributes /

Multiclassification
Other losses

Not a loss

Softmax Loss Layer

● Multinomial logistic regression: used for
predicting a single class of K mutually
exclusive classes

layers {

 name: "loss"

 type: "SoftmaxWithLoss"

 bottom: "pred"

 bottom: "label"

 top: "loss"

}

Sigmoid Cross-Entropy Loss

● Binary logistic regression: used for predicting
K independent probability values in [0, 1]

layers {

 name: "loss"

 type: "SigmoidCrossEntropyLoss"

 bottom: "pred"

 bottom: "label"

 top: "loss"

}

Euclidean Loss

● A loss for regressing to real-valued labels [-inf,
inf]

layers {

 name: "loss"

 type: "EuclideanLoss"

 bottom: "pred"

 bottom: "label"

 top: "loss"

}

Multiple loss layers

● Your network can contain as
many loss functions as you
want, as long as it is a DAG!

● Reconstruction and
Classification:

layers {

 name: "recon-loss"

 type: "EuclideanLoss"

 bottom: "reconstructions"

 bottom: "data"

 top: "recon-loss"

}

layers {

 name: "class-loss"

 type: "SoftmaxWithLoss"

 bottom: "class-preds"

 bottom: "class-labels"

 top: "class-loss"

}

Multiple loss layers

“*Loss” layers have a default loss weight of 1

layers {

 name: "loss"

 type: "SoftmaxWithLoss"

 bottom: "pred"

 bottom: "label"

 top: "loss"

}

layers {

 name: "loss"

 type: "SoftmaxWithLoss"

 bottom: "pred"

 bottom: "label"

 top: "loss"

 loss_weight: 1.0

}

==

layers {

 name: "recon-loss"

 type: "EuclideanLoss"

 bottom: "reconstructions"

 bottom: "data"

 top: "recon-loss"

}

layers {

 name: "class-loss"

 type: "SoftmaxWithLoss"

 bottom: "class-preds"

 bottom: "class-labels"

 top: "class-loss"

 loss_weight: 100.0

}

Multiple loss layers

● Give each loss its own weight
● E.g. give higher priority to

classification error
● Or, to balance the values of

different loss functions

100*

layers {

 name: "diff"

 type: "Eltwise"

 bottom: "pred"

 bottom: "label"

 top: "diff"

 eltwise_param {

 op: SUM

 coeff: 1

 coeff: -1

 }

}

layers {

 name: "loss"

 type: "EuclideanLoss"

 bottom: "pred"

 bottom: "label"

 top: "euclidean_loss"

 loss_weight: 1.0

}

Any layer can produce a loss!
● Just add loss_weight: 1.0 to have a

layer’s output be incorporated into the loss

layers {

 name: "loss"

 type: "Power"

 bottom: "diff"

 top: "euclidean_loss"

 power_param {

 power: 2
 }

 # = 1/(2N)

 loss_weight: 0.0078125
}

==

E = || pred - label ||^2 / (2N) diff = pred - label E = || diff ||^2 / (2N)

+

Layers

• Data layers

• Vision layers

• Common layers

• Activation/Neuron layers

• Loss layers

Initialization

• Gaussian [most commonly used]

• Xavier

• Constant [default]

• Goal: keep the variance roughly fixed

Solving: Training a Net
Optimization like model definition is configuration.
train_net: "lenet_train.prototxt"

base_lr: 0.01

momentum: 0.9

weight_decay: 0.0005

max_iter: 10000

snapshot_prefix: "lenet_snapshot"
All you need to run things
on the GPU.

> caffe train -solver lenet_solver.prototxt -gpu 0

Stochastic Gradient Descent (SGD) + momentum ·
Adaptive Gradient (ADAGRAD) · Nesterov’s Accelerated Gradient (NAG)

● Coordinates forward / backward, weight
updates, and scoring.

● Solver optimizes the network weights W
to minimize the loss L(W) over the data D

Solver

● Computes parameter update , formed
from
o The stochastic error gradient
o The regularization gradient
o Particulars to each solving method

Solver

● Stochastic gradient descent, with momentum

● solver_type: SGD

SGD Solver

● “AlexNet” [1] training strategy:

o Use momentum 0.9

o Initialize learning rate at 0.01

o Periodically drop learning rate by a factor of 10

● Just a few lines of Caffe solver specification:

SGD Solver

base_lr: 0.01

lr_policy: "step"

gamma: 0.1

stepsize: 100000

max_iter: 350000

momentum: 0.9

● Nesterov’s accelerated gradient [1]

● solver_type: NESTEROV

● Proven to have optimal convergence rate
for convex problems

[1] Y. Nesterov. A Method of Solving a Convex Programming Problem with Convergence Rate (1/sqrt(k)). Soviet Mathematics Doklady, 1983.

NAG Solver

● Adaptive gradient (Duchi et al. [1])

● solver_type: ADAGRAD

● Attempts to automatically scale gradients
based on historical gradients

AdaGrad Solver

[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The Journal of Machine
Learning Research, 2011.

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf

I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627

I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217

I0901 13:36:33.019356 24952 solver.cpp:302] Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss)

I0901 13:36:33.019773 24952 solver.cpp:302] Test net output #1: l2_error = 2.40951

AdaGrad

SGD

Nesterov

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301

I0901 13:35:22.780138 20072 solver.cpp:302] Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss)

I0901 13:35:22.780146 20072 solver.cpp:302] Test net output #1: l2_error = 2.02321

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389

I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set

I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663

I0901 13:36:55.068410 22488 solver.cpp:302] Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss)

I0901 13:36:55.068418 22488 solver.cpp:302] Test net output #1: l2_error = 1.79998

Solver Showdown: MNIST Autoencoder

Weight sharing

● Parameters can be shared and reused across
Layers throughout the Net

● Applications:

o Convolution at multiple scales / pyramids
o Recurrent Neural Networks (RNNs)
o Siamese nets for distance learning

Weight sharing

● Just give the parameter
blobs explicit names
using the param field

● Layers specifying the
same param name will
share that parameter,
accumulating gradients
accordingly

layers: {

 name: 'innerproduct1'

 type: "InnerProduct"

 inner_product_param {

 num_output: 10

 bias_term: false

 weight_filler {

 type: 'gaussian'

 std: 10

 }

 }

 param: 'sharedweights'

 bottom: 'data'

 top: 'innerproduct1'

}

layers: {

 name: 'innerproduct2'

 type: "InnerProduct"

 inner_product_param {

 num_output: 10

 bias_term: false

 }

 param: 'sharedweights'

 bottom: 'data'

 top: 'innerproduct2'

}

Interfaces

• Command Line

• Python

• Matlab

CMD

$> Caffe --params

CMD

CMD

Python $> make pycaffe

python> import caffe

caffe.Net: is the central interface for loading, configuring, and

 running models.

caffe.Classsifier & caffe.Detector for convenience

caffe.SGDSolver exposes the solving interface.

caffe.io handles I/O with preprocessing and protocol buffers.

caffe.draw visualizes network architectures.

Caffe blobs are exposed as numpy ndarrays for ease-of-use and

 efficiency**

Python

GOTO: IPython Filter Visualization Notebook

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb

MATLAB

- Network-in-Network (NIN)
- GoogLeNet
- VGG

RECENT MODELS

THAT’S ALL! THANKS!
Questions?

Network-in-Network

- filter with a nonlinear
composition instead of a
linear filter

- 1x1 convolution +
nonlinearity

- reduce dimensionality,
deepen the representation

Linear Filter
CONV

NIN / MLP filter
1x1 CONV

GoogLeNet

- composition of multi-scale dimension-
reduced “Inception” modules

- 1x1 conv for dimensionality reduction
- concatenation across filter scales
- multiple losses for training to depth

“Inception” module

VGG

- 3x3 convolution all the way down...
- fine-tuned progression of deeper models
- 16 and 19 parameter layer variations

in the model zoo

Blob Data Management

