
Brewing Deep Networks With Caffe 

ROHIT GIRDHAR 

CAFFE TUTORIAL 

Many slides from Xinlei Chen (16-824 tutorial), Caffe CVPR’15 tutorial 



Overview 

• Motivation and comparisons 

• Training/Finetuning a simple model 

• Deep dive into Caffe! 



! this->tutorial 
• What is Deep Learning? 
• Why Deep Learning? 

– The Unreasonable Effectiveness of Deep Features 

• History of Deep Learning. 

CNNs 1989 
 

CNNs 2012 

LeNet: a layered model composed of convolution and 
subsampling operations followed by a holistic representation 
and ultimately a classifier for handwritten digits. [ LeNet ] 

AlexNet: a layered model composed of convolution, 
subsampling, and further operations followed by a holistic 
representation and all-in-all a landmark classifier on 
ILSVRC12. [ AlexNet ] 
+ data, + gpu, + non-saturating nonlinearity, + regularization 



Other Frameworks 
• Torch7 

– NYU 
– scientific computing framework in Lua 
– supported by Facebook 

• TensorFlow 
– Google 
– Good for deploying  

• Theano/Pylearn2 
– U. Montreal 
– scientific computing framework in Python 
– symbolic computation and automatic differentiation 

• Cuda-Convnet2 
– Alex Krizhevsky 
– Very fast on state-of-the-art GPUs with Multi-GPU parallelism 
– C++ / CUDA library 

• MatConvNet 
– Oxford U. 
– Deep Learning in MATLAB 

• CXXNet 
• Marvin 



Framework Comparison 

• More alike than different 

– All express deep models 

– All are open-source (contributions differ) 

– Most include scripting for hacking and prototyping 

 

• No strict winners – experiment and choose the 
framework that best fits your work 

 



Torch vs Caffe vs TensorFlow? 
• Torch has more functionality built-in (more 

variety of layers etc.) and is in general more 
flexible 

• However, more flexibility => writing more code! If 
you have a million images and want to train a 
mostly standard architecture, go with caffe! 

• TensorFlow is best at deployment! Even works on 
mobile devices. 



What is Caffe? 
Open framework, models, and worked examples for deep learning 

- 600+ citations, 150+ contributors, 7,000+ stars, 4,700+ forks, >1 
pull request / day average 

- focus has been vision, but branching out: 
sequences, reinforcement learning, speech + text 



So what is Caffe? 

Prototype Training Deployment 

All with essentially the same code! 

● Pure C++ / CUDA architecture for deep learning 
o command line, Python, MATLAB interfaces 

● Fast, well-tested code 
● Tools, reference models, demos, and recipes 
● Seamless switch between CPU and GPU 

o Caffe::set_mode(Caffe::GPU); 



Brewing by the Numbers... 
• Speed with Krizhevsky's 2012 model: 

– 2 ms / image on K40 GPU 

– <1 ms inference with Caffe + cuDNN v2 on Titan X 

– 72 million images / day with batched IO 

– 8-core CPU: ~20 ms/image 

• 9k lines of C++ code (20k with tests) 

• https://github.com/soumith/convnet-benchmarks: A pretty reliable 

benchmark 

https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks
https://github.com/soumith/convnet-benchmarks


Why Caffe? In one sip…  

Expression: models + optimizations are plaintext schemas, not code. 

Speed: for state-of-the-art models and massive data. 

Modularity: to extend to new tasks and settings. 

Openness: common code and reference models for reproducibility. 

Community: joint discussion and development through BSD-2 licensing. 

 



Caffe Tutorial 
http:/caffe.berkeleyvision.org/tutorial/ 



Caffe offers the 
● model definitions 
● optimization settings 
● pre-trained weights 

so you can start right away. 
 
The BVLC models are licensed 
for unrestricted use. 

Reference Models 



The Caffe Model Zoo 
- open collection of deep models to share innovation 
 - VGG ILSVRC14 + Devil models in the zoo 
 - Network-in-Network / CCCP model in the zoo 

- MIT Places scene recognition model in the zoo 
- help disseminate and reproduce research 
- bundled tools for loading and publishing models 
Share Your Models! with your citation + license of course 

 

Open Model Collection 

https://github.com/BVLC/caffe/wiki/Model-Zoo
https://github.com/BVLC/caffe/wiki/Model-Zoo


Architectures 
Weight Sharing 
Recurrent (RNNs) 
Sequences 
 

Define your own model from our catalogue 
of layers types and start learning. 

DAGs 
multi-input 
multi-task 
 

 
Siamese Nets 
Distances 

[ Karpathy14 ] [ Sutskever13 ] [ Chopra05 ] 



Installation Hints 

• We have already compiled the latest version 
of caffe (as on 5 Feb’16) on LateDays! 

• However, you might want to customize and 
compile your own caffe (esp. if you want to 
create new layers) 



Installation 
• http://caffe.berkeleyvision.org/installation.html 
• CUDA, OPENCV 
• BLAS (Basic Linear Algebra Subprograms): operations like matrix 

multiplication, matrix addition, both implementation for CPU(cBLAS) and 
GPU(cuBLAS). provided by MKL(INTEL), ATLAS, openBLAS, etc. 

• Boost: a c++ library. > Use some of its math functions and shared_pointer. 
• glog,gflags provide logging & command line utilities. > Essential for 

debugging.  
• leveldb, lmdb: database io for your program. > Need to know this for 

preparing your own data.  
• protobuf: an efficient and flexible way to define data structure. > Need to 

know this for defining new layers. 

http://caffe.berkeleyvision.org/installation.html
http://caffe.berkeleyvision.org/installation.html


TRAINING AND FINE-TUNING 



Training: Step 1 
Create a lenet_train.prototxt 

 Data Layers Loss 



Training: Step 2 
Create a lenet_solver.prototxt 

 
 
train_net:    "lenet_train.prototxt" 
base_lr:    0.01 
momentum:    0.9 
weight_decay:   0.0005 
max_iter:    10000 
snapshot_prefix:  "lenet_snapshot" 
# … and some other options … 

 



Training: Step 2 

Some details on SGD parameters 

𝑉𝑡+1 = µ𝑉𝑡 − 𝜶(𝛻𝐿 𝑊𝑡 + 𝝀𝑊𝑡) 
𝑊𝑡+1 = 𝑊𝑡 + 𝑉𝑡+1 

Momentum LR Decay 



Training: Step 3 

Train! 

$ build/tools/caffe train \ 
 -solver lenet_solver.prototxt \ 
 -gpu 0 
 



Dogs vs. 
Cats 
top 10 in 
10 minutes 

Fine-tuning Transferring learned weights to kick-start models 

● Take a pre-trained model and fine-tune to new tasks [DeCAF] 

[Zeiler-Fergus] [OverFeat] 

© kaggle.com 

Your Task 

Style 
Recognition 



From ImageNet to Style 

● Simply change a few lines in the layer definition 

Input: A different source 

Last Layer: A different classifier 
  

layers { 

  name: "data" 

  type: DATA 

  data_param { 

    source: "ilsvrc12_train_leveldb" 

    mean_file: "../../data/ilsvrc12" 

    ... 

  } 

  ... 

} 

... 

layers { 

  name: "fc8" 

  type: INNER_PRODUCT 

  blobs_lr: 1 

  blobs_lr: 2   

  weight_decay: 1 

  weight_decay: 0 

  inner_product_param { 

    num_output: 1000 

    ... 

  } 

} 

layers { 

  name: "data" 

  type: DATA 

  data_param { 

    source: "style_leveldb" 

    mean_file: "../../data/ilsvrc12" 

    ... 

  } 

  ... 

} 

... 

layers { 

  name: "fc8-style" 

  type: INNER_PRODUCT 

  blobs_lr: 1 

  blobs_lr: 2   

  weight_decay: 1 

  weight_decay: 0 

  inner_product_param { 

    num_output: 20 

    ... 

  } 

} 

new name = new params 



$ caffe train -solver models/finetune_flickr_style/solver.prototxt \ 

     -gpu 0 \ 

              -weights bvlc_reference_caffenet.caffemodel 

 
Under the hood (loosely speaking): 
  net = new Caffe::Net( 
     "style_solver.prototxt"); 

 net.CopyTrainedNetFrom( 

     pretrained_model); 

 solver.Solve(net); 

From ImageNet to Style 



When to Fine-tune? 
A good first step! 
- More robust optimization – good initialization helps 
- Needs less data 
- Faster learning 

State-of-the-art results in 
- recognition 
- detection 
- segmentation 

[Zeiler-Fergus] 



Learn the last layer first 
- Caffe layers have local learning rates: blobs_lr 
- Freeze all but the last layer for fast optimization 

and avoiding early divergence. 
- Stop if good enough, or keep fine-tuning 

 

Reduce the learning rate 
- Drop the solver learning rate by 10x, 100x 
- Preserve the initialization from pre-training and avoid thrashing 

Fine-tuning Tricks 



DEEPER INTO CAFFE 



DAG 

Many current deep models 
have linear structure 

but Caffe nets can have any directed 
acyclic graph (DAG) structure. 
 
Define bottoms and tops 
and Caffe will connect the net. 

LRCN joint vision-sequence model 

GoogLeNet Inception Module 

SDS two-stream net 



Net 

name: "dummy-net" 

layers { name: "data" …} 

layers { name: "conv" …} 

layers { name: "pool" …} 

    … more layers … 

layers { name: "loss" …} 

● A network is a set of layers connected 
as a DAG: 

LogReg 
↑ 

LeNet → 

ImageNet, Krizhevsky 2012 → 

● Caffe creates and checks the net from the 
definition. 

● Data and derivatives flow through the net 
as blobs – a an array interface 



Forward / Backward the essential Net computations 

Caffe models are complete machine learning systems for inference and learning. 
The computation follows from the model definition. Define the model and run. 
 



Layer 
name: "conv1" 

type: "Convolution" 

bottom: "data" 

top: "conv1" 

convolution_param { 

    num_output: 20 

    kernel_size: 5 

    stride: 1 

    weight_filler { 

        type: "xavier" 

    } 

} 

name, type, and the 
connection 
structure 

(input blobs and 
output blobs) 

 
 
 
layer-specific 

parameters 

* Nets + Layers are defined by protobuf 
schema ● Every layer type defines 

 

- Setup 
- Forward 
- Backward 

https://developers.google.com/protocol-buffers/


Setup: run once for initialization. 
 
Forward: make output given input. 
 
Backward: make gradient of output 
- w.r.t. bottom 
- w.r.t. parameters (if needed) 
 

Layer Protocol 

Layer Development Checklist 

Model Composition 
The Net forward and backward passes are 
the composition the layers’. 

https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers
https://github.com/BVLC/caffe/wiki/Development-Hints#developing-new-layers


Data 
Number x K Channel x Height x Width 
256 x 3 x 227 x 227 for ImageNet train input 

Blobs are 4-D arrays for storing and 
communicating information. 
● hold data, derivatives, and parameters 
● lazily allocate memory 
● shuttle between CPU and GPU 

Blob name: "conv1" 

type: "Convolution" 

bottom: "data" 

top: "conv1" 

… definition … 

 

top  
blob 

bottom 
blob 

Parameter: Convolution Weight 
N Output x K Input x Height x Width 
96 x 3 x 11 x 11 for CaffeNet conv1 

Parameter: Convolution BIas 
96 x 1 x 1 x 1 for CaffeNet conv1 

N 



Blobs provide a unified memory interface. 

Reshape(num, channel, height, width) 
- declare dimensions 
- make SyncedMem -- but only lazily allocate 

Blob 

cpu_data(), mutable_cpu_data() 
- host memory for CPU mode 
gpu_data(), mutable_gpu_data() 
- device memory for GPU mode 
 

{cpu,gpu}_diff(), mutable_{cpu,gpu}_diff() 
- derivative counterparts to data methods 
- easy access to data + diff in forward / backward 
 

SyncedMem  
allocation + communication 



• Earlier, CAFFE only supported 4-D blobs and 2-
D convolutions (NxCxHxW) 

• Since October’15, it supports  
– n-D blobs and  
– (n-2)-D convolutions 



A Caffe Net

Input Blob caffe::Net Output Blob

Blob: all your data, derivatives, and parameters. 

● example input blob (256 images, RGB, height, width) 

○ ImageNet training batches: 256 x 3 x 227 x 227 

● example convolutional parameter blob 

○ 96 filters with 3 input channels: 96 x 3 x 11 x 11







Can also have.. 

BLOB 

LAYER 

In-place 
updates 



Example: ReLU or PReLU 

θ 

(PReLU) He et al. ICCV’15 



How much memory would a PReLU require? 

• It does an in-place update, so say requires 𝐵 for blob 

• Say it requires 𝑃 for parameters (could be per-
channel, or just a single scalar) 

• Does it need any more? 

– Yes! Need to keep the original input around for computing 
the derivative for parameters => +𝐵 

• Q: Can parameterized layers do in-place updates? 



GPU/CPU Switch with Blob 

• Use synchronized memory 

• Mutable/non-mutable determines whether to 
copy. Use of mutable_* may lead to data 
copy 

• Rule of thumb:  

Use mutable_{cpu|gpu}_data whenever possible  



Layers 



More about Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 



Data Layers 
• Data enters through data layers -- they lie at the bottom of nets.  

 
• Data can come from efficient databases (LevelDB or LMDB), 

directly from memory, or, when efficiency is not critical, from files 
on disk in HDF5/.mat or common image formats. 
 

• Common input preprocessing (mean subtraction, scaling, random 
cropping, and mirroring) is available by specifying 

TransformationParameters. 



Data Layers 
• Data (Backend: LevelDB,LMDB) 

• MemoryData 

• HDF5Data 

• ImageData 

• WindowData 

• DummyData 

• Write your own! In Python! 



Data Layers 



Data Layers 



Data Layers 







Writing your own data layer in python 

• Compile CAFFE, uncommenting in 
Makefile.config 

# WITH_PYTHON_LAYER := 1 

• Example: See Fast-RCNN 



Python Prototxt 
import caffe 

  

class RoIDataLayer(caffe.Layer): 

    """Fast R-CNN data layer used for training.""" 

  

    def setup(self, bottom, top): 

        """Setup the RoIDataLayer.""" 

        # ... 

        pass 

  

    def forward(self, bottom, top): 

        # ... 

        pass 

  

    def backward(self, top, propagate_down, bottom): 

        """This layer does not propagate gradients.""" 

        pass 

  

    def reshape(self, bottom, top): 

        """Reshaping happens during the call to fwd.""" 

        pass 



Transformations 

Note that all layers do not support transformations, like HDF5 



More about Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 



Vision Layers 
• Images as input and produce other images as output.  
• Non-trivial height h>1 and width w>1.  
• 2D geometry naturally lends itself to certain decisions 

about how to process the input.  
– Since Oct’15, supports nD convolutions 

• In particular, most of the vision layers work by applying a 
particular operation to some region of the input to produce a 
corresponding region of the output. 

• In contrast, other layers (with few exceptions) ignore the spatial 
structure of the input, effectively treating it as “one big vector” 
with dimension “chw”. 



Convolution 
Layer 





Pooling  
Layer 



Vision Layers 

• Convolution 

• Pooling 

• Local Response Normalization (LRN) 

• Im2col -- helper 

 

 

 



More about Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 



Common Layers 
• INNER_PRODUCT WTx+b (fully connected) 
• SPLIT 

• FLATTEN 

• CONCAT 

• SLICE 

• ELTWISE (element wise operations) 
• ARGMAX 

• SOFTMAX 

• MVN (mean-variance normalization) 
 





More about Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 



Activation/Neuron layers 

• One Input Blob 

• One Output Blob 

– Both same size 

• Or a single blob – in-place updates 



Activation/Neuron layers 

• ReLU / PReLU 

• Sigmoid 

• Tanh 

• Absval 

• Power 

• BNLL (binomial normal log likelihood) 

 





More about Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 



Loss 

What kind of model is this? 



Classification 
SOFTMAX_LOSS 

HINGE_LOSS 

 
Linear Regression 
EUCLIDEAN_LOSS 

 
Attributes / Multiclassification 
SIGMOID_CROSS_ENTROPY_LOSS 

 
Others… 
 
New Task 
NEW_LOSS 

Loss 

What kind of model is this? 

Who knows! Need a loss function. 

loss (LOSS_TYPE) 



● Loss function determines the learning task. 
● Given data D, a Net typically minimizes: 
 
 
 
 

Loss 

Data term: error 
averaged over instances 

Regularization 
term: penalize 
large weights 

to improve 
generalization 



Loss 

● The data error term                   is computed by 
Net::Forward 

● Loss is computed as the output of Layers 
● Pick the loss to suit the task – many different 

losses for different needs 



Loss Layers 
• SOFTMAX_LOSS 

• HINGE_LOSS 

• EUCLIDEAN_LOSS 

• SIGMOID_CROSS_ENTROYPY_LOSS 

• INFOGAIN_LOSS 

 

• ACCURACY 

• TOPK 

 



Loss Layers 
• SOFTMAX_LOSS 

• HINGE_LOSS 

• EUCLIDEAN_LOSS 

• SIGMOID_..._LOSS 

• INFOGAIN_LOSS 

• ACCURACY 

• TOPK 

• **NEW_LOSS** 

 

 

Classification 
 

Linear Regression 
Attributes / 

Multiclassification 
Other losses 

Not a loss 



Softmax Loss Layer 

● Multinomial logistic regression: used for 
predicting a single class of K mutually 
exclusive classes 

layers { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "loss" 

} 



Sigmoid Cross-Entropy Loss 

● Binary logistic regression: used for predicting 
K independent probability values in [0, 1] 

layers { 

  name: "loss" 

  type: "SigmoidCrossEntropyLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "loss" 

} 



Euclidean Loss 

● A loss for regressing to real-valued labels [-inf, 
inf] 

layers { 

  name: "loss" 

  type: "EuclideanLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "loss" 

} 



Multiple loss layers 

● Your network can contain as 
many loss functions as you 
want, as long as it is a DAG! 

● Reconstruction and 
Classification: 

 

layers { 

  name: "recon-loss" 

  type: "EuclideanLoss" 

  bottom: "reconstructions" 

  bottom: "data" 

  top: "recon-loss" 

} 

layers { 

  name: "class-loss" 

  type: "SoftmaxWithLoss" 

  bottom: "class-preds" 

  bottom: "class-labels" 

  top: "class-loss" 

} 



Multiple loss layers 

“*Loss” layers have a default loss weight of 1 

layers { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "loss" 

} 

layers { 

  name: "loss" 

  type: "SoftmaxWithLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "loss" 

  loss_weight: 1.0 

} 

== 



 

layers { 

  name: "recon-loss" 

  type: "EuclideanLoss" 

  bottom: "reconstructions" 

  bottom: "data" 

  top: "recon-loss" 

} 

layers { 

  name: "class-loss" 

  type: "SoftmaxWithLoss" 

  bottom: "class-preds" 

  bottom: "class-labels" 

  top: "class-loss" 

  loss_weight: 100.0 

} 

 

Multiple loss layers 

● Give each loss its own weight 
● E.g. give higher priority to 

classification error 
● Or, to balance the values of 

different loss functions 

100* 



layers { 

  name: "diff" 

  type: "Eltwise"   

  bottom: "pred" 

  bottom: "label" 

  top: "diff" 

  eltwise_param { 

    op: SUM 

    coeff: 1 

    coeff: -1 

  } 

} 

 
layers { 

  name: "loss" 

  type: "EuclideanLoss" 

  bottom: "pred" 

  bottom: "label" 

  top: "euclidean_loss" 

  loss_weight: 1.0 

} 

Any layer can produce a loss! 
● Just add loss_weight: 1.0 to have a 

layer’s output be incorporated into the loss 

 

layers { 

  name: "loss" 

  type: "Power" 

  bottom: "diff" 

  top: "euclidean_loss" 

  power_param { 

    power: 2 
  } 

  # = 1/(2N) 

  loss_weight: 0.0078125 
} 

== 

E = || pred - label ||^2 / (2N) diff = pred - label E = || diff ||^2 / (2N) 

+ 



Layers 

• Data layers 

• Vision layers 

• Common layers 

• Activation/Neuron layers 

• Loss layers 

 



Initialization 

• Gaussian [most commonly used] 

• Xavier 

• Constant [default] 

 

• Goal: keep the variance roughly fixed 



Solving: Training a Net 
Optimization like model definition is configuration. 
train_net: "lenet_train.prototxt" 

base_lr: 0.01 

momentum: 0.9 

weight_decay: 0.0005 

max_iter: 10000 

snapshot_prefix: "lenet_snapshot" 
All you need to run things 
on the GPU. 

> caffe train -solver lenet_solver.prototxt -gpu 0 

 
Stochastic Gradient Descent (SGD) + momentum · 
Adaptive Gradient (ADAGRAD) · Nesterov’s Accelerated Gradient (NAG) 
 





● Coordinates forward / backward, weight 
updates, and scoring. 

 
 
 
 
 

● Solver optimizes the network weights W 
to minimize the loss L(W) over the data D 

 
 
 
 
 

Solver 



● Computes parameter update         , formed 
from 
o The stochastic error gradient 
o The regularization gradient 
o Particulars to each solving method 

 
 
 
 

Solver 



● Stochastic gradient descent, with momentum 

● solver_type: SGD 

 

 
 
 
 

SGD Solver 



● “AlexNet” [1] training strategy: 

o Use momentum 0.9 

o Initialize learning rate at 0.01 

o Periodically drop learning rate by a factor of 10 

● Just a few lines of Caffe solver specification: 

 

 
 
 
 

SGD Solver 

base_lr: 0.01 

lr_policy: "step" 

gamma: 0.1           

stepsize: 100000 

max_iter: 350000 

momentum: 0.9 



● Nesterov’s accelerated gradient [1] 

● solver_type: NESTEROV 

● Proven to have optimal convergence rate          
for convex problems   

 

 
 
 
 

[1] Y. Nesterov. A Method of Solving a Convex Programming Problem with Convergence Rate (1/sqrt(k)). Soviet Mathematics Doklady, 1983. 

NAG Solver 



● Adaptive gradient (Duchi et al. [1]) 

● solver_type: ADAGRAD 

● Attempts to automatically scale gradients 
based on historical gradients 

 

 
 
 
 

AdaGrad Solver 

[1] J. Duchi, E. Hazan, and Y. Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. The Journal of Machine 
Learning Research, 2011. 

http://www.magicbroom.info/Papers/DuchiHaSi10.pdf


I0901 13:36:30.007884 24952 solver.cpp:232] Iteration 65000, loss = 64.1627 

I0901 13:36:30.007922 24952 solver.cpp:251] Iteration 65000, Testing net (#0) # train set 

I0901 13:36:33.019305 24952 solver.cpp:289] Test loss: 63.217 

I0901 13:36:33.019356 24952 solver.cpp:302]     Test net output #0: cross_entropy_loss = 63.217 (* 1 = 63.217 loss) 

I0901 13:36:33.019773 24952 solver.cpp:302]     Test net output #1: l2_error = 2.40951 

AdaGrad 
 
 
 
 
 
SGD 
 
 
 
 
Nesterov 

I0901 13:35:20.426187 20072 solver.cpp:232] Iteration 65000, loss = 61.5498 

I0901 13:35:20.426218 20072 solver.cpp:251] Iteration 65000, Testing net (#0) # train set 

I0901 13:35:22.780092 20072 solver.cpp:289] Test loss: 60.8301 

I0901 13:35:22.780138 20072 solver.cpp:302]     Test net output #0: cross_entropy_loss = 60.8301 (* 1 = 60.8301 loss) 

I0901 13:35:22.780146 20072 solver.cpp:302]     Test net output #1: l2_error = 2.02321 

I0901 13:36:52.466069 22488 solver.cpp:232] Iteration 65000, loss = 59.9389 

I0901 13:36:52.466099 22488 solver.cpp:251] Iteration 65000, Testing net (#0) # train set 

I0901 13:36:55.068370 22488 solver.cpp:289] Test loss: 59.3663 

I0901 13:36:55.068410 22488 solver.cpp:302]     Test net output #0: cross_entropy_loss = 59.3663 (* 1 = 59.3663 loss) 

I0901 13:36:55.068418 22488 solver.cpp:302]     Test net output #1: l2_error = 1.79998 

Solver Showdown: MNIST Autoencoder 



Weight sharing 

● Parameters can be shared and reused across 
Layers throughout the Net 

 
● Applications: 

o Convolution at multiple scales / pyramids 
o Recurrent Neural Networks (RNNs) 
o Siamese nets for distance learning 



Weight sharing 

● Just give the parameter 
blobs explicit names 
using the param field 

● Layers specifying the 
same param name will 
share that parameter, 
accumulating gradients 
accordingly 

layers: { 

  name: 'innerproduct1' 

  type: "InnerProduct" 

  inner_product_param { 

    num_output: 10 

    bias_term: false 

    weight_filler { 

      type: 'gaussian' 

      std: 10 

    } 

  } 

  param: 'sharedweights' 

  bottom: 'data' 

  top: 'innerproduct1' 

} 

layers: { 

  name: 'innerproduct2' 

  type: "InnerProduct" 

  inner_product_param { 

    num_output: 10 

    bias_term: false 

  } 

  param: 'sharedweights' 

  bottom: 'data' 

  top: 'innerproduct2' 

} 

 



Interfaces 

• Command Line 

• Python 

• Matlab 



CMD 

$> Caffe --params 



CMD 



CMD 



Python $> make pycaffe 

python> import caffe 

caffe.Net: is the central interface for loading, configuring, and  

  running models.  

caffe.Classsifier & caffe.Detector for convenience 

caffe.SGDSolver exposes the solving interface. 

caffe.io handles I/O with preprocessing and protocol buffers. 

caffe.draw visualizes network architectures. 

Caffe blobs are exposed as numpy ndarrays for ease-of-use and 

  efficiency** 



Python 

GOTO: IPython Filter Visualization Notebook 

http://nbviewer.ipython.org/github/BVLC/caffe/blob/master/examples/filter_visualization.ipynb


MATLAB 



- Network-in-Network (NIN) 
- GoogLeNet 
- VGG 

RECENT MODELS 



THAT’S ALL! THANKS! 
Questions? 



Network-in-Network 

- filter with a nonlinear 
composition instead of a 
linear filter 

- 1x1 convolution + 
nonlinearity 

- reduce dimensionality, 
deepen the representation 

Linear Filter 
CONV 

NIN / MLP filter 
1x1 CONV 



GoogLeNet 

- composition of multi-scale dimension-
reduced “Inception” modules 

- 1x1 conv for dimensionality reduction 
- concatenation across filter scales 
- multiple losses for training to depth 

“Inception” module 



VGG 

- 3x3 convolution all the way down... 
- fine-tuned progression of deeper models 
- 16 and 19 parameter layer variations  

in the model zoo 



Blob Data Management 


