
The Promise and Perils of Big Data

Some Slides from A. Efros and A. Torralba



Why do we need data?

  Most problems in vision are ambiguous and 
hard. 
• 2D -> 3D 
• Segmentation/Edges



So, how do we solve these problems?

• Magic of data ! 

• Use data to learn better likelihoods: how 
things look like. 

• Use data to learn priors of what is more 
likely than others.

But how much data do we need?



The extremes of learning

Number of 
training  
samples

1 10 102 103 104 106-7

Extrapolation problem 
Generalization 

Transfer learning

Interpolation problem 
Correspondence 

Finding the differences

∞
1010

Datasets before 2012

Current Datasets



So how much data does humans use?



What’s the Capacity of Visual Long Term Memory?

“Basically, my recollection is that we just 
separated the pictures into distinct thematic 
categories: e.g. cars, animals, single-person, 2-
people, plants, etc.) Only a few slides were 
selected which fell into each category, and they 
were visually distinct.”

According to Standing

Standing (1973) 

10,000 images 

83% Recognition

What we know… What we don’t know…

Sparse Details

Dogs 
Playing Cards

“Gist” Only Highly Detailed

… people can 
remember thousands 

of images

… what people are remembering for 
each item?

High Fidelity Visual 
Memory is possible 
(Hollingworth 2004)

Slide by Aude Oliva



Massive Memory I: Methods

... ......

Showed 14 observers 2500 categorically unique objects

1 at a time, 3 seconds each

800 ms blank between items

Study session lasted about 5.5 hours

Repeat Detection task to maintain focus

1-back

Followed by 300 2-alternative forced choice tests

1024-back

Slide by Aude Oliva



Slide by Aude Oliva



how far can we push the fidelity of visual LTM representation ?

Same object category, different instance

Slide by Aude Oliva



how far can we push the fidelity of visual LTM representation ?

Same object, different states

Slide by Aude Oliva



Visual Cognition 
Expert Predictions

92%

Massive Memory I: Recognition Memory Results

Replication of 
Standing (1973)

Slide by Aude Oliva



92% 88% 87%

Slide by Aude Oliva

Massive Memory I: Recognition Memory Results



Extrapolation of Repeat Detection Data

Human performances for n = 1024

Power law 
(r2=.988) 

Quadratic (r2=.988)

Brady, Konkle, Alvarez, Oliva (submitted) Slide by Aude Oliva



how much data does computer vision 
researchers use?



100

images

1972



101

images



101

images

Marr, 1976



102-4

images



102-4

images

In 1996 DARPA released 14000 images,  
from over 1000 individuals.

The faces and cars scale



The PASCAL Visual Object Classes 

M. Everingham, Luc van Gool , C. Williams, J. Winn, A. Zisserman 2007 

In 2007, the twenty object classes that have been selected are:  

Person: person  
Animal: bird, cat, cow, dog, horse, sheep  
Vehicle: aeroplane, bicycle, boat, bus, car, motorbike, train  
Indoor: bottle, chair, dining table, potted plant, sofa, tv/monitor  



102-4

images



105

images



Caltech 101 and 256

Griffin, Holub, Perona, 2007 
Fei-Fei, Fergus, Perona, 2004 

105

images



Lotus Hill Research Institute image 
corpus

Z.Y. Yao, X. Yang, and S.C. Zhu, 2007



B.C. Russell, A. Torralba, K.P. Murphy, W.T. Freeman, IJCV 2008
Labelme.csail.mit.edu

Tool went online July 1st, 2005 
530,000 object annotations collected

LabelMe 105

images



Quality of labeling

Person
7 12 21

Dog
16 28 52

Bird
13 37 168

Chair
7 10 15

Street
lamp

5 9 15
House

5 7 12

Motorbike
12 22 36

Boat
6 9 14

Tree
11 20 36

Mug
6 8 11

Bottle
7 8 11

Car
8 15 22

25% 50% 75% 25% 50% 75%

Average labeling quality



Extreme labeling



The other extreme of extreme labeling

… things do not always look good…



Creative testing



Object statistics

Scene statistics

How representative of the visual world is it?Scene and object biases



105

images



106-7

images

Things start getting out of hand



Collecting big datasets

• ESP game (CMU)  
Luis Von Ahn and Laura Dabbish 2004 

• LabelMe (MIT) 
Russell, Torralba, Freeman, 2005 
• StreetScenes (CBCL-MIT) 
Bileschi, Poggio, 2006 
• WhatWhere (Caltech) 
Perona et al, 2007 
• PASCAL challenge 
2006, 2007 
• Lotus Hill Institute 
Song-Chun Zhu et al, 2007 
• 80 million images 
Torralba, Fergus, Freeman, 2007

106-7

images



80.000.000 images
75.000 non-abstract nouns from WordNet 7 Online image search engines

Google: 80 million images

And after 1 year downloading images 

A. Torralba, R. Fergus, W.T. Freeman. PAMI 2008

106-7

images



• An ontology of images based on WordNet 
• ImageNet currently has 

– 22,000+ categories of visual concepts 
– 15 million human-cleaned images (~700im/

categ) 
– 1/3+ is released online @ www.image-net.org

~105+ nodes 
~108+ images

shepherd dog, sheep dog

German shepherdcollie
animal

Deng, Dong, Socher, Li & Fei-Fei, CVPR 2009

106-7

images





Alexander Sorokin, David Forsyth, "Utility data annotation with Amazon 
Mechanical Turk", First IEEE Workshop on Internet Vision at CVPR 08.

Labeling for money



106-7

images



108-11

images



Datasets in perspective
Number of images on my hard drive:    104 

Number of images seen during my first 10 years: 108  
(3 images/second * 60 * 60 * 16 * 365 * 10 = 630720000)

Number of images seen by all humanity:    1020 
106,456,367,669 humans1 * 100 years * 3 images/second * 60 * 60 * 16 * 365 =  
1 from http://www.prb.org/Articles/2002/HowManyPeopleHaveEverLivedonEarth.aspx 

Number of all 32x32 images:             107373 
256 32*32*3 ~ 107373

PASCAL

Number of 
samples



When do we need big data?









Unreasonable Effectiveness of Data

Simple Algorithms (Dumb) + Lot of Data  
are better than  Complicated algorithms 

Example: Machine Translation 
Example: Texture Generation 



Machine Translation



Step 1: Source Sentence Chunking
• Segment source sentence into overlapping n-grams via sliding 

window 
• Typical n-gram length 4 to 9 terms 
• Each term is a word or a known phrase 
• Any sentence length

S1 S2 S3 S4 S5 S6 S7 S8 S9

S1 S2 S3 S4 S5

S2 S3 S4 S5 S6

S3 S4 S5 S6 S7

S4 S5 S6 S7 S8

S5 S6 S7 S8 S9

Slide by Jaime Carbonell



Flooding Set

Step 2: Dictionary Lookup

T3-a
T3-b
T3-c

T4-a
T4-b
T4-c
T4-d
T4-e

T5-a T6-a
T6-b
T6-c

• Using bilingual dictionary, list all possible target translations for 
each source word or phrase

Source Word-String

T2-a
T2-b
T2-c
T2-d

Target Word Lists

S2 S3 S4 S5 S6

Inflected Bilingual Dictionary

Slide by Jaime Carbonell



Step 3: Search Target Text

•  
• Using the Flooding Set, search target text for word-strings containing one word from 

each group

• Find maximum number of words from Flooding Set in minimum length word-string
– Words or phrases can be in any order

– Ignore function words in initial step (T5 is a function word in this example)

T2-a
T2-b
T2-c
T2-d

T3-a
T3-b
T3-c

T4-a
T4-b
T4-c
T4-d
T4-e

T5-a T6-a
T6-b
T6-cFlooding Set

Slide by Jaime Carbonell



T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T3-b T(x) T2-d T(x) T(x) T6-c
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

Step 3: Search Target Text (Example)

T2-a
T2-b
T2-c
T2-d

T3-a
T3-b
T3-c

T4-a
T4-b
T4-c
T4-d
T4-e

T5-a T6-a
T6-b
T6-cFlooding Set

Target Corpus

T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T3-b T(x) T2-d T(x) T(x) T6-c
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

T3-b T(x) T2-d T(x) T(x) T6-c

Target 
Candidate 1

Slide by Jaime Carbonell



T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

Step 3: Search Target Text (Example)

T2-a
T2-b
T2-c
T2-d

T3-a
T3-b
T3-c

T4-a
T4-b
T4-c
T4-d
T4-e

T5-a T6-a
T6-b
T6-cFlooding Set

Target Corpus
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

T(x) T(x) T4-a T6-b T(x) T2-c T3-a 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

T4-a T6-b T(x) T2-c T3-a

Target 
Candidate 2

Slide by Jaime Carbonell



T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

Step 3: Search Target Text (Example)

T2-a
T2-b
T2-c
T2-d

T3-a
T3-b
T3-c

T4-a
T4-b
T4-c
T4-d
T4-e

T5-a T6-a
T6-b
T6-cFlooding Set

Target Corpus
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T(x) T(x) T(x) T(x) T(x) T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)
T(x) T(x) T(x) T(x) T(x) T(x) T(x) 
T3-c T2-b T4-e T5-a T6-a T(x) T(x)
T(x) T(x) T(x) T(x) T(x) T(x)  T(x)

T3-c T2-b T4-e T5-a T6-a

Target 
Candidate 3

Reintroduce function words after initial match (e.g. T5)
Slide by Jaime Carbonell



Scoring

---

---

---

Step 4: Score Word-String Candidates
• Scoring of candidates based on: 

– Proximity (minimize extraneous words in target n-gram ≈ precision) 
– Number of word matches (maximize coverage ≈ recall)) 
– Regular words given more weight than function words 
– Combine results (e.g., optimize F1 or p-norm or …)

T3-b T(x) T2-d T(x) T(x) T6-c

T4-a T6-b T(x) T2-c T3-a

T3-c T2-b T4-e T5-a T6-a

Proximity

3rd

1st

1st

Word Matches

3rd

2st

1st

“Regular” Words

3rd

1st

1st

Total Scoring

3rd

2nd

1st

Target Word-String Candidates

Slide by Jaime Carbonell



T3-b T(x3) T2-d T(x5) T(x6) T6-c

T4-a T6-b T(x3) T2-c T3-a

T3-c T2-b T4-e T5-a T6-a

T(x2) T4-a T6-b T(x3) T2-c

T(x1) T2-d T3-c T(x2) T4-b

T(x1) T3-c T2-b T4-e

T6-b T(x11) T2-c T3-a T(x9)

T2-b T4-e T5-a T6-a T(x8)

T6-b T(x3) T2-c T3-a T(x8)

Step 5: Select Candidates Using Overlap 
(Propagate context over entire sentence)

Word-String 1
Candidates

Word-String 2
Candidates

Word-String 3
Candidates

T(x2) T4-a T6-b T(x3) T2-c

T4-a T6-b T(x3) T2-c T3-a

T6-b T(x3) T2-c T3-a T(x8)

T3-c T2-b T4-e T5-a T6-a

T3-b T(x3) T2-d T(x5) T(x6) T6-cT3-b T(x3) T2-d T(x5) T(x6) T6-c

T4-a T6-b T(x3) T2-c T3-a

T(x1) T3-c T2-b T4-e

T3-c T2-b T4-e T5-a T6-a

T2-b T4-e T5-a T6-a T(x8)

Slide by Jaime Carbonell



Step 5: Select Candidates Using Overlap

T(x1) T3-c T2-b T4-e

T3-c T2-b T4-e T5-a T6-a

T2-b T4-e T5-a T6-a T(x8)

T(x2) T4-a T6-b T(x3) T2-c

T4-a T6-b T(x3) T2-c T3-a

T6-b T(x3) T2-c T3-a T(x8)

T(x2) T4-a T6-b T(x3) T2-c T3-a T(x8)

T(x1) T3-c T2-b T4-e T5-a T6-a T(x8)

Best translations selected via maximal overlap

Alternative 1

Alternative 2

Slide by Jaime Carbonell



A (Simple) Real Example of Overlap 

a United States soldier died and two others were injured Monday

a United States soldier

United States soldier died

soldier died and two others

died and two others were injured

two others were injured Monday

N-grams 
generated 

from 
Flooding

Flooding ! N-gram fidelity
Overlap ! Long range fidelity

N-grams connected via 
Overlap

Slide by Jaime Carbonell



Texture Synthesis















So, how do we use big data?



Two ways to use Lots of Data

Brute Force Vision: Find 
that needle in the 
haystack and disregard the 
rest (a.k.a. kNN)

See what different subsets 
of data think of you



kNN matching is great…
• because we live in a (mostly) boring 

world!



Lots  

Of  

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



Lots  

Of  

Images

A. Torralba, R. Fergus, W.T.Freeman. PAMI 2008



Lots  

Of  

Images



Automatic Colorization Result
Grayscale input High resolution

Colorization of input using average

A. Torralba, R. Fergus, W.T.Freeman. 2008



im2gps
Instead of using objects labels, the web provides other kinds of metadata associate 
to large collections of images

Hays & Efros. CVPR 2008

20 million geotagged and geographic text-labeled images



Hays & Efros. CVPR 2008im2gps



Image completion

Instead, generate proposals using millions of images

Hays, Efros, 2007

Input 16 nearest neighbors 
(gist+color matching)

output



With a good image similarity 
and a lot of data…

Input image
Nearest neighbors

22,000 LabelMe scenes

Hays, Efros, Siggraph 2006 
Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



With a good image similarity 
and a lot of data…

Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



With a good image similarity 
and a lot of data…

Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



With a good image similarity 
and a lot of data…

Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



With a good image similarity 
and a lot of data…

Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



Outputs

Russell, Liu, Torralba, Fergus, Freeman. NIPS 2007



While many scenes are boring…

Slide by Antonio Torralba



Some scenes are unique

Slide by Antonio Torralba



Dealing with sparse data (rare scenes)

• better similarity



83

Medici Fountain, Paris



84



85



86

Medici Fountain, Paris (winter)



87



88



89



90



91



OUR GOAL

92



93



94
Top Matches

Input Query



95
Top Matches

Input Query



96
Top Matches

Input Query



IMPORTANT PARTS?

97

Input Query Important Parts



98

Top Matches

Input Query



99

“Data-driven Uniqueness”



Search using Images

100Top Matches

Input Query



Search using Sketches

101



Search using Paintings

102

Input Painting Top Matches



Search using Paintings

103

Input Painting Top Matches



Dealing with sparse data (rare scenes)

• better similarity 
• better alignment 

– e.g. reduce resolution, sifting, warping, etc.



Matching scenes
Two images taken from the same scene 

category, but different instances 
• Contain different objects with different 

scales, perspectives and spatial location

Liu, Yuen, Torralba, Sivic, Freeman. ECCV 08



Image representation
128 dimensions/pixel

SIFT Visualization: map 128 
dimensions in 3D color space





Scene parsing results

Query Best match Annotation of 
best match

Warped best 
match to query

Parsing result Ground truth



Liu, Yuen, Torralba. CVPR 2009; Yuen, Torralba. ECCV 2010

Prediction



Dealing with sparse data (rare scenes)

• better similarity 
• better alignment 

• e.g. reduce resolution, sifting, warping, etc. 

• Use sub-images (primitives) to match 
• Allows matching from multiple images



Predicting Surface Normals



Matching 
Parts



Matching 
Parts



Sparse DetectionsInput Image

Matching 
Parts



Dealing with sparse data (rare scenes)

• better similarity 
• better alignment 
• Use sub-images (primitives) to match 
• Understand the simple stuff first  

– e.g. tracking via recognition, background 
subtraction, “object pop-out”, etc.



Recognize when it’s easy!

Ramanan, Forsyth, Zisserman, 2004



Guess structure

David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09



David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09

Guess structure



Subtracting away structure

Structure Objects

Wall appearance modeling

David C. Lee, Martial Hebert, Takeo Kanade, CVPR’09



Dealing with sparse data (rare scenes)
• better similarity 
• better alignment 

– e.g. reduce resolution, sifting, warping, etc. 
• segment into chunks 

– e.g. segmentation for recognition approaches  
• get rid of simple stuff first  

– e.g. background subtraction, “object pop-out”, 
etc. 

• Moving away from kNN methodology… 
• use data to make connections 

– e..g The Memex, manifold learning, data 
association, subpopulation means, etc.



Memex – Knowledge Graph



Manifolds

• Images are high dimensional: A 64x64 
image is 4096 dimensional vector. 

• But the possible images are much less! 

• Is there a subspace where the set of 
images lie? 



appearance variation 

manifolds in vision   

images from hormel corp.
Slide by Dave Thompson



manifolds in vision   

images from www.golfswingphotos.com
Slide by Dave Thompson



reasonable distance metrics   

?

Slide by Dave Thompson



reasonable distance metrics   

?

linear interpolation 

Slide by Dave Thompson



reasonable distance metrics   

?

manifold interpolation 

Slide by Dave Thompson



reasonable distance metrics   



reasonable distance metrics   



Some observations about data collection



Object distributions



Classes sorted by frequency

SUN database

The first 9 objects account for 50% of all training examples 
17 classes with more than 300 examples 
109 classes with less than 50 examples

200 categories

~ Zipf’s law 



Classes sorted by frequency

Rare objects are similar to  
frequent objects

chair

Swivel chair

armchair

Deck chair

Salakhutdinov, Torralba, and Tenenbaum, CVPR, 2011



Rare objects are similar to  
frequent objects

bus
van

truck

car

Classes sorted by frequency

Salakhutdinov, Torralba, and Tenenbaum, CVPR, 2011



Some bias comes from the way the data is collected



Google mugs

Mugs from LabelMe





“Name That Dataset!” game

__  Caltech 101 
__  Caltech 256 
__  MSRC  
__  UIUC cars 
__  Tiny Images 
__  Corel 
__  PASCAL 2007 
__  LabelMe 
__  COIL-100 
__  ImageNet 
__  15 Scenes 
__  SUN’09 



SVM plays “Name that dataset!”



SVM plays “Name that dataset!”

• 12 1-vs-all 
classifiers 

• Standard full-
image features 

• 39% performance 
(chance is 8%)



SVM plays “Name that dataset!”



Datasets have different goals…

• Some are object-centric (e.g. Caltech, 
ImageNet) 

• Otherwise are scene-centric (e.g. 
LabelMe, SUN’09) 

• What about playing “name that dataset” 
on bounding boxes?



Cross-Dataset Generalization

Classifier trained on MSRC cars

MSRC

Caltech101

ImageNet

PASCAL

LabelMe

SUN



AP

Number training examples

Training on 
PASCAL

Adding more 
PASCAL Adding more 

from LabelMe

Adding more 
from Caltech 101

Mixing datasets
Test on PASCAL


