Lecture 23:

Rendering Challenges of VR

Visual Computing Systems CMU 15-869, Fall 2014

Today

Basics of Oculus Rift implementation of VR

- **Rift is best documented of modern prototypes**
- Focus on rendering issues for these emerging platforms

Oculus Rift DK2

Sony Project Morpheus

Oculus Rift DK2 Headset

Image credit: ifixit.com

Oculus Rift DK2 Headset

Image credit: ifixit.com

Oculus Rift DK2 display

5.7" 1920 x 1080 OLED display 75 Hz refresh rate

(Same display as Galaxy Note 3)

Image credit: ifixit.com

Oculus DK2 IR camera and IR LEDs

Image credit: ifixit.com

Headset contains:

40 IR LEDs **Gyro** + accelerometer (1000Hz)

Latency

- The goal of a VR graphics system is to achieve "presence", tricking the brain into thinking what it is seeing is real.
- Achieving presence requires an exceptional low-latency system
 - What you see must change when you move your head!
 - End-to-end latency: time from moving your head to the time new photos hit your eyes
 - **Measure movement**
 - Update scene/camera position
 - **Render** image
 - Transfer image to headset, then to display in headset
 - **Display image on display**
 - VR latency goal: 10-25 ms
 - **Requires low-latency head tracking**
 - **Requires low-latency rendering and display**

Latency thought experiment

- Consider a 1,000 x 1,000 spanning 100° field of view
 - 10 pixels per degree
- Assume:
 - You move your head 90 degrees in 1 second (modest speed)
 - Latency of system is 50 ms
- **Therefore:**
 - Displayed pixels are off by 4.5° ~ 45 pixels

Requirement: high-resolution display

- Human: ~160 degree view of field per eye (~200 degrees overall)
 - **Does not count rotation in socket**

- **Oculus DK2**
 - **Resolution: 1920 x 1080, 960 x 1080 per eye**
 - **100 degree field of view (~10 pixels/degree)**
- **Compare to my Macbook Pro Retina display:**
 - **Resolution: 2880 x 1800**
 - Spans ~ 30 degrees at normal viewing distance at a desk (~100 pixels/degree)
- Retina resolution VR display filling 160 degree field of view: 16K x 16K display per eye
 - Wow.
 - Suggests need for eye tracking and foveated rendering (eye can only perceive detail in 5° region about gaze point)

Requirement: wide field of view

Lens introduces distortion

- **Pincushion distortion**
- Chromatic aberration (different wavelengths refract by different amount)

Eyes designed by SuperAtic LABS from the thenounproject.com Image credit: Cass Everitt

View through Oculus lens

Rendered output must compensate for expected lens distortion

Step 1: scene rendered using traditional graphics pipeline at full resolution for each eye Step 2: distortion pass warps image so that it is viewed properly after lens distortion Can apply different distortion to R, G, B to approximate correction to chromatic aberration Image credit: Oculus VR developer guide

Challenge: rendering via planar projection

Rasterization-based graphics is based on projection to plane

- **Reasonable for modest FOV, but distorts image under high FOV**
- **Recall: VR rendering spans wide FOV**

Pixels span larger angle in center of image

Possible improvements:

Consider curved displays, ray casting, rendering with piecewise linear projection plane (different plane per tile in a tiled renderer)

Image credit: Cass Everitt

Consider object position relative to eye

NOTE: THESE GRAPHS PLOT OBJECT POSITION RELATIVE TO EYE RAPID HEAD MOTION WITH EYES TRACKING AN OBJECT IS A FORM OF CASE 1!!!

Spacetime diagrams adopted from presentations by Michael Abrash Eyes designed by SuperAtic LABS from the thenounproject.com

Case 2: object moving relative to eye: (red object moving from left to right but eye stationary, i.e., it's focused on a different stationary point in world)

Effect of latency: judder

(image is updated each frame)

Note: since eye is moving, object's position is relatively constant relative to eye. (as it should be, eye is tracking it) But due discrete frame rate, object falls behind eye, causing a smearing/strobing effect ("choppy" motion blur) Recall from earlier slide: 90 degree motion, with 50ms latency results in 4.5 degree smear

Spacetime diagrams adopted from presentations by Michael Abrash

Case 1: object moving from left to right, eye moving continuously to track object (eye moving relative to display!)

Light from display (image is updated each frame)

Reducing judder: increase frame rate

Case 1: continuous ground truth

Light from display (image is updated each frame)

red object moving left-to-right and eye moving to track object OR red object stationary but head moving and eye moving to track object X frame 0 frame 1 frame 2 frame 3 frame 3 frame 5 frame 6

Light from display (image is updated each frame)

Higher frame rate results in closer approximation to ground truth

Reducing judder: low persistence display

Case 1: continuous ground truth

Light from full-persistence display

red object moving left-to-right and eye moving to track object OR red object stationary but head moving and eye moving to track object

Full-persistence display: pixels emit light for entire frame **Oculus DK2 OLED low-persistence display**

- 75 Hz frame rate (~13 ms per frame)
- **Pixel persistence** = **2-3ms**

Light from low-persistence display

Low-persistence display: pixels emit light for small fraction of frame

Artifacts due to rolling OLED backlight

- **Image rendered based on scene state at time t**₀
- Image sent to display, ready for output at time $t_0 + \Delta t$
- "Rolling backlight" OLED display lights up rows of pixels in sequence
 - Let r be amount of time to "scan out" a row
 - Row 0 photons hit eye at $t_0 + \Delta t$
 - Row 1 photos hit eye at $t_0 + \Delta t + r$
 - Row 1 photos hit eye at $t_0 + \Delta t + 2r$
- Implication: photos from bottom of display are "more stale" than photos from top!
- Consider eye moving horizontally relative to display (e.g., due to head movement while tracking square object that is stationary in world)

Result: perceived shear!

Recall rolling shutter effects on modern digital cameras.

X

Compensating for rolling backlight

Perform post-process shear on rendered image

- Similar to barrel distortion and chromatic warps
- Predict head motion, assume fixation on static object in scene
 - Only compensates for shear due to head motion, not object motion
- Render each row of image at the predicted different time photos will hit eye
 - Suggests exploration of different rendering engines that are more amenable to fine-grained temporal sampling, e.g., ray caster?

Increasing frame rate using reprojection Goal: maintain as high a frame rate as possible under

- challenging rendering conditions:
 - **Stereo rendering: both left and right eye views**
 - **Render to high resolution outputs**
 - **Render extra pixels due to barrel distortion warp**
 - Cost saving "rendering hacks" (bump mapping, billboards, etc.) are less effective

Researchers experimenting with reprojection-based approaches to improve frame rate (e.g., Oculus' "Time Warp")

- Render traditionally at 30 fps, reproject images based on predicted head movement to synthesize frames at 75 fps
- Potential for image processing hardware on future VR headsets to perform high frame-rate retroject based on gyro/accelerometer

Potential future VR system components

wide-field of view display Low-latency image processing for subject tracking **Computation for high-resolution rendering Exceptionally high bandwidth connection between** renderer and display: 4K x 4K per eye at 75-90 fps!

High-resolution, high-frame rate,

In headset motion/accel sensors + eye tracker

On headset graphics processor for sensor processing and reprojection

Summary

Virtual reality presents many new challenges for graphics systems

- Primary challenge = minimize latency of head movement to photons *
 - **Requires low latency tracking**
 - Combination of external camera image processing (vision) and high rate headset sensors
 - Heavy use of prediction
 - **Requires high-performance rendering**
 - High-resolution, wide field-of-view output
 - High frame-rate: considering image-based (reprojection) techniques
 - **Rendering must compensate for constraints of display system:**
 - **Optical distortion (geometric, chromatic)**
 - **Temporal offsets in pixel**
- Not discussed today:
 - Alternative display technologies to flat screens with lenses in front of them: e.g., light field displays

* = "primary" in the context of this class: other very-hard challenges include: tracking full-bodies, determining what applications VR is a preferred medium for, etc.