
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 22:

Additional notes on image
matching and retrieval

 CMU 15-869, Fall 2014

Solutions to the descriptor matching problem
(“find nearest neighbor”) discussed so far
▪ Baseline: brute-force linear scan

- Work inefficient: O(N) cost
- Bandwidth intensive: either high memory footprint (if “in core”) or must stream off disk

▪ Inverted-index based acceleration:
- Quickly find candidate images that may contain good matches for the query image
- Initial filter: reduce problem to finding matches in only these images
- Good: compact index representation: 8 bytes per visual word occurrence (tf, document id)
- Bad: loss of information in quantization of descriptor to visual words

▪ KD-tree-based methods (single KD-tree or random forest)
- Good: like brute force, uses a full database representation (store full descriptors, not visual word vocal

index)
- Bad: high storage cost

- Example: 1M images, 1K SIFT descriptors per image, 128 floats per descriptor = 128GB
- Must also store tree node structures (can be expensive if using a forest for ANN)

▪ No acceleration structure for DB, but prioritize order of linear scan of database
- Assumption: likely to terminate early once a good enough match is found

 CMU 15-869, Fall 2014

Common set of trade-offs
▪ Compute cost

- Amount of work to perform search
▪ Storage / memory footprint

- For database elements
- For storing index structures (overhead)

▪ Result quality
- Quality of results (visual words more compact than descriptors, forest likely

to give better ANN results than a single random K-D tree)

 CMU 15-869, Fall 2014

Thought experiment
▪ Consider database of millions of images
▪ What if a search tree does not fit in memory on a single node? *

* Yes, ray tracing of complex scenes poses a similar problem

 CMU 15-869, Fall 2014

Distributing a search tree
▪ Simple solution:

- Partition dataset into chunks of data points that fit in memory on a node
- Build K-D trees independently and in parallel on all nodes
- For each query:

- Broadcast query to all N nodes
- Run N independent k-NN searches in parallel
- Broadcast results to a master node
- Master sorts results to produce overall k-NN

Node 1 Node N...

▪ Problems:
- Lack of parallelism in the combine results stage
- Less efficient structure
- N independent K-D tree lookups
- Search through single, large K-D tree

would visit fewer nodes

[Figure credit: Aly et al. VISAPP 2011]

 CMU 15-869, Fall 2014

Distributing a search tree
▪ Idea: store top part of tree in master, bottom parts of tree are distributed across nodes
▪ Tree construction:

- Build top subtree using sparse sampling of entire dataset that fits in memory
- Top subtree height must be at least lg(N) (to generate N leaf trees for N machines)
- For each remaining datapoint:

- Determine which subtree data belongs inside
- Build leaf trees in parallel on respective nodes

Node 1 Node N...Node 2

[Figure credit: Aly et al. VISAPP 2011]

 CMU 15-869, Fall 2014

Distributing a search tree
▪ For each query image:

- Compute features, for each feature:
- Search top of tree, find all leaf nodes within distance d to query
- Send query to these leaf nodes
- All leaf nodes carry out search in parallel

- Send k-NN results back to master for combination

Node 1 Node N...Node 2

▪ Good:
- Efficacy similar to single big tree (each node

contains an actual subtree, not a subsampling
of data points)

▪ Bad: serialization of work at root

▪ Optimizations:
- Replicate root tree to increase over system

throughput (but not individual query latency)

 CMU 15-869, Fall 2014

Locality sensitive hashing
▪ Accelerate search with a hash table lookup

▪ Challenge: want similar points to end up in similar hash bins

▪ Basic intuition:
- Hash points into buckets, such that points nearby in space are likely to fall

into the same (or nearby) buckets

▪ Given x1 and x2 and distance r in feature space
- If d(x1,x2) < r, then P(h(x1) = h(x2)) is high
- If d(x1,x2) > αr, then P(h(x1) = h(x2) is low

 CMU 15-869, Fall 2014

Locality sensitive hashing
▪ Example hash function: pick m random projections in N-D space

- For each input query, hash query into m different hash keys (associated with m
different hash tables)

- Union of data points from matching bins is candidate nearest neighbor set
- Compute full distance function on these points

 CMU 15-869, Fall 2014

Locality sensitive hashing (as an embedding)
▪ Example: pick m random projections (hyperplanes in N-D space)

- For each input query, compute 1 bit per projection
- Query descriptor is now represented as an m-bit string
- 1 hash table containing (m-bit keys)
- Check all hash bins with hamming distance similar to query!

Note: in practice, techniques seek to learn good hash functions from the dataset
(rather than use random projections)

 CMU 15-869, Fall 2014

Benefits of NN search in hamming space
1. Efficient distance computation:

- Hamming distance: number of bits that differ between
two b-bit codes

2. Compact database representation:
- bn bits to store bitcodes for n images in database
- Recall SIFT descriptor: 512 bits per keypoint, hundreds/

thousands of keypoints per image!

int	 hamming_distance(bitstring	 x,	 bitstring	 y)	 {	

	 	 	 	 return	 count_bits(xor(x,	 y));	

}

 CMU 15-869, Fall 2014

Example: K-NN search (K=5) in hamming space:

▪ 12.9M elements in database
- Each element corresponds to full-image descriptor (384-element vector)

- Full database size = 19.8 GB

▪ Brute-force search for top 5 nearest neighbors:
- 30-bit codes: 400 MB of memory, 74 ms
- 256-bit codes: 3.2 GB of memory, 0.23 sec

▪ Two orders of magnitude faster than brute force search (or K-D
tree search) on database containing full-representation GIST
(384-float-element) descriptors *

[Torralba et al. 2008]

* Unfair comparison: should have compared to approximate k-NN implementation to be more fair since bitcode search results
are not the same (see next slide)

 CMU 15-869, Fall 2014

Bitcode search “performance” [Torralba et al. 2008]

▪ Baseline: GIST full image descriptor (384 floats)

▪ Experiment (left): compute top 50 NN in GIST-space, then measure how many of
these NN appeared in the NN results in hamming space

▪ Experiment (right): object detection by transferring class label (person) from NN’s
to query image (does query picture contain a person?)

 CMU 15-869, Fall 2014

Benefits of NN search in hamming space
1. Efficient distance metric computation:

- Hamming distance: number of bits that differ between two b-bit codes

2. Compact database representation:
- bn bits to store bitcodes for n images in database

3. Potential for using binary code directly as hash table index
for O(1) search

 CMU 15-869, Fall 2014

Simple problem formulation
▪ Find all images within hamming distance r from query
▪ Search process: (assume 2b indices in hash table)

Compute	 b-‐bit	 key	 for	 query	
For	 all	 indices	 within	 distance	 r	 from	 query:	

	 	 	 	 Add	 images	 in	 hashtable[index]	 to	 result	 set	

▪ Simple example: r=0, just check one bucket

 CMU 15-869, Fall 2014

Problem
▪ Number of buckets to check increases rapidly with r

- Volume of the “hamming ball” of radius r

▪ Number of candidate buckets:

[Norouzi et al. 2012]

▪ Example: b=64, then about 1B
buckets for r=7
- If database is smaller than 1B elements,

most of these indices will be empty
- Consider database of millions of elements:

faster to just run brute-force linear search
through database!

 CMU 15-869, Fall 2014

Multi-index hashing: to improve k-NN
search in hamming space
▪ Basic intuition:

- Divide query bit string into m disjoint b/m-bit substrings
- Bit strings that are close in one of the substrings might be close overall

▪ Key idea:
- If binary codes x and y differ by at most r bits, then in one of their m substrings

they must differ by at most floor(r/m) bits.
- Proof by pigeon-hole principle (if they differed by more than r/m bits in each

substring, then overall x and y must differ by more than r bits

[Norouzi et al. 2012]

 CMU 15-869, Fall 2014

Efficient k-NN using multi-index hashing
▪ For each set of length-m substrings, find substrings of within

Hamming radius of floor(r/m)
- These are candidate strings within Hamming radius r of full query string

▪ Finding candidates is a much easier problem!
- Previously: search needed to examine hash buckets
- Now need to examine only buckets in m different hash tables

(one table for each substring)
- E.g., r=7, m=4, then only need to search with radius 1 in each of the substrings

 CMU 15-869, Fall 2014

Full algorithm
▪ Construct m hashtables using the length b/m substrings of elements in the

original database (hashtable i contains all i th all substrings)

▪ Given b-bit query:
- For each of the m substrings of the query:

- Find radius floor(r/m) neighbors (in hashtable corresponding to current substring)
and add them to candidate set

- The candidate set is a superset of the true set of elements within hamming
distance r, so compute actual set by performing full Hamming distance
computation for all elements in candidate set (brute force linear scan)

▪ Storage cost:
- bn bits to represent all descriptors in hash table
- m hash tables referring to these descriptors (mnlg2n)
- In practice, optimal m=b/lg2n so overall storage cost near linear in n (see next slide)

 CMU 15-869, Fall 2014

How to choose m?
▪ Trade-off between having large substrings (tight candidate set, but many bucket lookups

in substring searches) and having small substrings (cheap substring search, but very
loose candidate set)
- Consider m=b, substrings are of length 1, but all descriptors are in candidate set!

Figure at right:
- Database size: 1B descriptors
- 128-bit codes (b=128)

b/m

 CMU 15-869, Fall 2014

How to determine r from k?
▪ Algorithm finds all database elements within Hamming distance r, but we often want k

nearest neighbors to a query (not all elements within a fixed distance)

▪ Problem: binary codes not uniformly distributed across Hamming space, so cannot just
pick an r corresponding to k (r required to contain k-nn depends on query)

▪ Solution: progressively increase r until k-NN are found.

 CMU 15-869, Fall 2014

Summary
▪ Finding matches (between descriptors, between images) involves high-dimensional

nearest neighbor search

▪ Wide range of techniques, approximations used heavily
- Approximate k-NN retrieval
- Approximate to descriptor values (compact features, visual words, bitcodes, etc.)

▪ Note: search was a common problem in rendering in the find half of the course as well
- Rasterization: find the samples covered by a triangle
- Ray casting: find [closest] triangle hit by ray
- Lower dimensional problems lead to different acceleration structures and

techniques

