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Goals and motivation
▪ Construct a detailed 3D model of the world from collections of photographs 

- Organize the world’s photographs by their position in 3D space 

▪ Leverage the organization to perform tasks 
- Allow navigation/browsing of 3D environments (better maps, “virtual tourism”) 
- Geolocation: given a picture, where was it taken? 
- Find canonical views of scenes 
- Differentiate transient objects in scene from stationary ones  
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009 
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Preliminaries and background

1. Image similarity / retrieval basics 
2. Nearest neighbor search and approximate nearest neighbor 

search (ANN) using a KD-tree 
3. RANSAC algorithm overview



 CMU 15-869, Fall 2014

Background part 1: 
image retrieval basics
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Are these images similar?

Photographs of same backyard, over six-month period.
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Pixel differences
Image 1
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Pixel differences
Image 2
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Pixel differences
diff(x,y) = image1(x,y) - image 2(x,y)
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Are these two web pages similar?

Another example: which web page is most similar to the search query...
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Are these two web pages similar?
Another example: which web page 
is most similar to the search query...
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One simple definition of similarity to query
Given query words: w1 and w2 
for each document d in database: 

score(d, w1, w2) = number of occurrences of w1 and w2 in d 
Return top 20 results in sorted order based on score

Ways to improve above approach: 
- Improve accuracy of score function (return better results *) 

- Improve query execution time: above solution is O(N) for database of N 
documents

* The quality of the returned results is referred to as the “performance” of the algorithm.  “An algorithm 
performs better if it returns better results”.  Clearly, using the term “performance” in this way going to 
cause problems in this class.
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Improving the solution: use an index

Document	
  0:	
  Kayvon	
  is	
  teaching	
  15-­‐869	
  today.	
  Yay	
  15-­‐869!	
  
Document	
  1:	
  15-­‐869	
  is	
  awesome,	
  Kayvon	
  claims.	
  
Document	
  2:	
  Kayvon	
  is	
  occasionally	
  awesome.	
  

Index: maps words to documents 
-­‐ Kayvon:	
  0,	
  1,	
  2	
  
-­‐ is:	
  0,	
  1,	
  2	
  
-­‐ teaching:	
  0	
  
-­‐ 15-­‐869:	
  0,	
  1	
  
-­‐ yay:	
  0	
  
-­‐ thinks:	
  1	
  
-­‐ today:	
  0	
  
-­‐ awesome:	
  1,	
  2	
  
-­‐ occasionally:	
  2

Query:    kayvon	
  awesome

Partial result set:  
kayvon:	
  	
  {0,	
  1,,2}	
  
awesome:	
  {1,	
  2}

Result:  
{0,1,2}	
  ∩	
  {1,	
  2}	
  =	
  {1,2}

To simplify, let: 
score(d,w1,w2)	
  =	
  1	
  if	
  d	
  contains	
  w1	
  and	
  w2,	
  0	
  otherwise
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Full inverted index

Document	
  0:	
  Kayvon	
  is	
  teaching	
  15-­‐869	
  today.	
  Yay	
  15-­‐869!	
  
Document	
  1:	
  15-­‐869	
  is	
  awesome,	
  Kayvon	
  claims.	
  
Document	
  2:	
  Kayvon	
  is	
  occasionally	
  awesome.	
  

Index: maps words to (document, position) 
-­‐ Kayvon:	
  (0,0),	
  (1,3)	
  (2,0)	
  
-­‐ is:	
  (0,1),	
  (1,1),	
  (2,1)	
  
-­‐ teaching:	
  (0,	
  2)	
  
-­‐ 15-­‐869:	
  (0,3),	
  (0,6),	
  (1,	
  0)	
  
-­‐ yay:	
  (0,	
  5)	
  
-­‐ claims:	
  (1,4)	
  
-­‐ today:	
  (0,	
  4)	
  
-­‐ awesome:	
  (1,2),	
  (2,3)	
  
-­‐ occasionally:	
  (2,2)

Query:    kayvon	
  15-­‐869

Partial result set:  
kayvon:	
  {(0,0),	
  (1,3),	
  (2,0)}	
  
15-­‐869:	
  {(0,3),	
  (0,6),	
  (1,0)}

Result:  
{0	
  (1),	
  1	
  (1),	
  2	
  (1)}	
  ∩	
  
{0	
  (2),	
  1	
  (0)}	
  
=	
  {0	
  (3),	
  1	
  (2)}

Inverted index contains one entry per word occurrence: 
score(d,w1,w2)	
  =	
  
	
  	
  	
  	
  	
  if	
  d	
  contains	
  w1	
  and	
  w2,	
  number	
  of	
  occurrences	
  of	
  w1	
  or	
  w2	
  
	
  	
  	
  	
  	
  0	
  otherwise

Ranking:  
0,	
  1
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TF-IDF weighting
▪ Term frequency: 

- TF(w,d) = the number of occurrences of word w in document d 
- Measure of how relevant a document is for a given query word 

▪ Inverse document frequency: 

- IDF(w, D) =                                                           

- Measure of how discriminative a word is (idf is small for common words) 
- Depends on number of occurrences in entire document collection 
- Idea: words that appear in most documents should influence score less 

▪ tfidf_score(w, d, D) =  TF(w,d) x IDF(w, D) 

▪ Many variants on how to compute TF(w,d) 
- Binary: 1 of 0, depending on whether word is in document 
- Normalized frequency: number of occurrences normalized by document size

Number of documents in database D
Number of documents containing w
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Searching for images (via text query)
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Content-based image retrieval
▪ Search for images, based on a query images 

- Take a photo, find similar looking photos 
- Take a photo, find information about (objects, people, etc.) in photo
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Text-based document retrieval
▪ Key idea was the breakdown of document into words 

- Documents that have the same words are likely to be similar 
- Words are a meaningful granularity of text to latch on to
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Content-based image retrieval

▪ If we wanted to follow the text analogy, what are the words? 
- Pixels? 
- Blocks of pixels? 
- Descriptors/features computed from images?
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Correspondence
▪ Defining similarity requires us to quantify the notion of 

correspondence 
- Example: pictures of the same place are similar 
- Example: pictures containing the same/similar objects are similar 

▪ Seek image representations (“descriptors”) such that numerically 
similar descriptors correspond to meaningful correspondences 

- Example: similar descriptor value corresponds to same object in the 
scene: descriptor’s value is invariant to noise, lighting, affine object 
transformation (rotation, translation, scale) 

- Of course, good descriptors should also be distinctive... shouldn’t take on 
same value for every image!
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Histogram of oriented gradients (HOG)
▪ Idea: local object appearance/shape is well characterized by distribution of local intensity gradients 

▪ Gradient orientation is less sensitive to illumination change than gradient magnitude 

[Dalal and Triggs 05]

[Image credit: Vondrick et al. ICCV 13] 

For each pixel p in block: 

Compute local gradient 

Add vote to histogram cell based on 
gradient orientation 

(vote is weighted based on gradient 
magnitude and distance between p and 
block center)
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HOG visualization close up

Visualizing magnitude of each histogram cell as a line 

(Direction of line is at a right angle to the corresponding gradient orientation)
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Sparse SIFT descriptors 
▪ Interest-point-based, orientation of gradients descriptor 
▪ Find interest points (locations in image, with support region scale and orientation) 
▪ Compute 128-element descriptor for interest points

Pool gradient samples from 4x4 window into 8-bin histogram 
Concatenate 4x4 grid of histograms to get full descriptor (8 x 16 = 128)

Figure credits: 
R. Bandara, Codeproject 
Chen, Kong, Oh, Sanan, Wohlberk 09

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
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State-of-the-art: learn good features
Obtain feature representations by training deep neural networks

Krizhevsky 2012 classifier (“AlexNet”): trained to recognize objects in 1000 categories
First seven layers compute 4096-dimensional descriptor from image 
Soft-max classifier performs classification on this descriptor.



Visualizing responses of filters in network



Visualizing responses of filters in network
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Visual words
▪ Text document is made up of words (discrete values in a vocabulary) 
▪ Descriptors are points in continuous high-dimensional descriptor space 
▪ Idea: construct “visual words” from descriptors

Features in images 

Compute “vocabulary” for dataset by 
clustering all features across all 
images: represent each cluster by its 
mean (or median) feature 

Bin (discretize) all image features by 
assigning feature to closest cluster in 
vocabulary 

Represent image by its histogram of 
visual word counts

(A)

(B)

(C)

(D)
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Bag of words (BOW) image descriptor:
▪ Bag of words (BOW) descriptor: 

- Image descriptor is a histogram of word occurrences 
- Very sparse vector 

▪ Given query image descriptor q, compute score for database image d: 
- Example: dot product of normalized query descriptor and DB image descriptor: 

score(q,d) = 

- Improvement: weight descriptor elements by visual word IDF values 
- Many alternative distance functions: 

- e.g., histogram intersection: min(qi, di) rather than inner product 

0 	
   0 	
   0 	
   1 	
   0 	
   1 	
   0 	
   4 	
   0 	
   0 	
   0 	
   0 	
   0 	
   8 	
   9 	
   3 	
   0 	
   0 	
   0 	
   . . .
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Summary
▪ Image search using bag of words descriptors and an inverted index 

acceleration structure: 
1. Compute features for image collection 
2. Build vocabulary (visual words) by clustering features in collection 
3. Compute inverted index: 

- For each visual word, index stores list of images with word, plus the tf-idf weight for that 
word in that image:  tfidf_score(w,	
  d,	
  D)	
  =	
  	
  tf(w,d)	
  *	
  idf(w,	
  D) 

4. For each query image: 
- Compute BOW descriptor 

- Use inverted index to find candidate set of similar images  

- Compute score between query and candidate images (e.g., dot product of descriptors) 

- Rank results by score 
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Background part 2: nearest neighbor 
search using a KD-tree
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Search application: establish feature correspondence

▪ Example: SIFT descriptor (length-128 vector) 
▪ For all descriptors in image 1, find nearest neighbor descriptor 

in image 2

1 2
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Review: K-D tree
▪ Spatial partitioning hierarchy 
▪ K = dimensionality of space (below: K = 2)

4 2

3 2 1 3 3

Counts of points in leaf nodes
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Nearest neighbor search with K-D tree

Query point

A

Closest so far: A (at distance d)

Step 1: traverse to leaf cell containing query: compute closest point in 
this cell to the query. 

Best so far: A (at distance d)

d
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Nearest neighbor search with K-D tree

Query point

A

Closest so far: B (at distance d’)

Step 2: backtrack: if distance to other cells is closer than distance to 
closest point found so far, must check points in this cell 

Best so far: A (at distance d)

B

d

d’
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Nearest neighbor search with K-D tree

Query point

Nearest neighbor result: B (at distance d’) 
(Visited nodes during query shown in pink)

Step 2: backtrack: if distance to other cells is closer than distance to 
closest point found so far, must check points in this cell 

Best so far: A (at distance d)

Bd’
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Approximate nearest neighbor (ANN) search 

Query point

A

Approximate nearest neighbor: A (at distance d) 
(nodes visited during query shown in pink) 

One simple answer: just take closest point in leaf node containing query

Best so far: A (at distance d)

d
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Approximate nearest neighbor search 

Query point

Improvement: place nodes in priority queue during downward traversal 
Resume downward traversal from closest N nodes to query 

Best so far: A (at distance d)

d1

d2

d3

d4 d1

d2

d3

d4
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Basic K-D tree build
▪ To find a partition for a node: 

- Partition axis for which the variance of current data points is the highest 
- Split at the median of the current data points 

▪ You implemented nearest neighbor search in 3-D using a K-D tree 
when implementing photon mapping in 15-462 (there, K=3)
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Randomized K-D tree
▪ To find a partition for a node: 

- Randomly choose axis to partition 
- Draw from distribution weighted proportionally with variance of current 

data points is the highest 
- Simple solution: pick partition axis by uniformly sampling from top N axes 

with highest variance 
- Randomly choose partition point 

- Draw from distribution heavily weighted at the median of the current data 
points (make it likely to split near the median of the data points)
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Approximate nearest-neighbor (ANN) search using 
a forest of randomized K-D trees
▪ Construct a set (“forest”) of random K-D trees 

▪ For each tree, find NN in leaf cell containing query 
- Add all nodes (across all trees) traversed along the way to a priority queue (node 

priority = distance from query to node)

▪ Take closest of all answers across all 
trees as an initial ANN  

▪ For top D nodes in queue, resume 
downward search from that node  
(D = 5 in figure [Muja et al. 2009]) 

▪ Solution for approximate k-NN as well 
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Background part 3: RANSAC
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RANSAC
▪ RANdom Sample And Concensus 
▪ Goal: fit model to collection of noisy data points

Red data points: outliers 
Blue data points: consensus set

Image credit: Wikipedia

For	
  i=0	
  to	
  K:	
  

	
  	
  	
  Perform	
  random	
  subsampling	
  of	
  datapoints	
  (hypothetical	
  inlier	
  set)	
  	
  

	
  	
  	
  Fit	
  model	
  Mi	
  to	
  hypothetical	
  inlier	
  set	
  

	
  	
  	
  For	
  each	
  datapoint	
  d:	
  

	
  	
  	
  	
  	
  	
  Compute	
  e	
  =	
  error(d,	
  Mi)	
  

	
  	
  	
  	
  	
  	
  if	
  e	
  <	
  threshold:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  d	
  is	
  in	
  consensus	
  set	
  (it	
  is	
  consistent	
  with	
  model)	
  

	
  	
  	
  If	
  consensus	
  set	
  for	
  Mi	
  is	
  larger	
  than	
  that	
  for	
  Mbest:	
  

	
  	
  	
  	
  	
  Mbest	
  =	
  Mi	
  

Let	
  w	
  =	
  number	
  of	
  inliers	
  /	
  number	
  of	
  data	
  points	
  

	
  	
  	
  	
  	
  	
  =	
  probability	
  of	
  selecting	
  an	
  inlier	
  at	
  random	
  

So:	
  

	
  wN	
  	
  	
  	
  	
  =	
  probability	
  of	
  selecting	
  all	
  inliers	
  in	
  hypothetical	
  inlier	
  set	
  of	
  size	
  N	
  

(1-­‐wN)K	
  =	
  probability	
  that	
  no	
  iteration	
  selects	
  a	
  set	
  of	
  all	
  inliers	
  after	
  K	
  RANSAC	
  iterations	
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3D reconstruction from photos
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3D reconstruction from photo collections
▪ A good example of large-scale systems problem 

▪ Efficient solutions involved combination of parallel execution and 
algorithmic innovation 

▪ Today we will “black box” certain computer-vision techniques to focus 
on overall algorithm design/systems issues
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Reconstructing scenes
▪ Input: 

- Unstructured collection of photos from same location (e.g., images from Flickr, Facebook) 
▪ Output:  

- Sparse 3D representation of scene (point cloud) 
- Position of camera for each photo
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▪ Goal: find pairs of “matching” images containing views of the same object 

▪ Step 1: compute feature points for all images (SIFT keypoint descriptors: 128-elements) 
- Generates thousands of keypoints per image 

▪ Step 2: for each pair of images (I, J), determine if a match exists: 

- (A) find potentially matching keypoints (similar descriptors) 

- Output of (2-A): pairs of matching keypoints in image I and J 

- (B) verify matching keypoints: attempt to find geometric relationship between the two 
viewpoints: estimate a fundamental matrix (3x3 matrix, rank 2) for the image pair using RANSAC: 

- Select eight matching keypoints at random, estimate F-matrix 
- If there are not at least 20 inlier keypoints, repeat  

Step 1: find matching images from collection

Compute	
  K-­‐D	
  tree	
  for	
  all	
  keypoints	
  in	
  J	
  
for	
  each	
  keypoint	
  i	
  in	
  I:	
  
	
  	
  	
  //	
  d1,	
  d2	
  are	
  distance	
  to	
  first	
  nearest	
  neighbor	
  j1	
  and	
  second	
  NN	
  j2	
  
	
  	
  	
  (d1,	
  d2)	
  =	
  perform	
  approximate	
  nearest	
  neighbor	
  (ANN)	
  lookup	
  for	
  i	
  
	
  	
  	
  if	
  (d1/d2	
  <	
  threshold)	
  
	
  	
  	
  	
  	
  	
  i	
  in	
  I	
  and	
  j1	
  in	
  J	
  are	
  candidates	
  for	
  being	
  the	
  same	
  point	
  on	
  the	
  same	
  surface	
  	
  	
  	
  	
  	
  

Recall: for key point visible at point p1 in image 1 and p2 in image 2, p2 should lie on the epipolar line 
of p1:     p1TFp2 = 0 
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Geometric verification (example in 2D)

Image 1 Image 2

Outlier
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Step 2: organize matches into tracks
▪ Track = connected set of matching keypoints 

- A track corresponds to a single point in the scene 
- Track must contain at least two keypoints 
- All images in a track are different views of that scene point

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image 
(clearly, all both keypoints in this image cannot correspond to same scene point)
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Image connectivity graph
▪ Graph nodes = images 

▪ Graph edges = images that contain matching keypoints

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007
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Step 3: structure from motion (SfM)

▪ Goal: minimize track reprojection error: 
- Error = SSDs between projection of each track and the 

corresponding feature in the image. 

- Non-linear problem: solved via bundle adjustment

Where: 

is the projection matrix into the i’th image (depends on camera pos, orientation, f-length) 

is the 3D scene position of track j 

is the 2D keypoint location of track j in image i 

is a binary indicator: designating whether a keypoint for track j exists in image i 

▪ Given image match graph and a set of tracks, estimate: 
- Camera parameters for each image (position, orientation, focal length) 
- 3D scene position of each track
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Incremental SfM approach
▪ Incrementally solve for camera positions, one camera at a time: 

- Begin with data that algorithm is most confident in (avoid local minima) 
▪ Initialization: 

- Pick pair of images with large number of feature matches and also wide baseline, estimate 
camera pose from these matches * 

- Triangulate shared tracks to estimate 3D position 
- Run two-frame bundle adjustment to refine camera poses and track position 

▪ Add next camera: 
- Choose camera that observes most number of tracks with known positions 
- Estimate camera pose from track matches using DLT/RANSAC 
- Run bundle adjustment to refine only new camera and positions of tracks it observes 
- Add new tracks to scene (observed by new camera but not yet in scene) 

- Triangulate positions of new tracks using two cameras with maximum angle of separation 
- Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 keypoint matches, and for which the smallest percentage of matches are 
inliers to an estimated homography relating the two images
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Algorithm summary
▪ For each image, compute matching images 
▪ Organize matching keypoints into consistent tracks 
▪ Until no new cameras can be estimated: 

- Pick next camera to estimate 
- Refine estimate globally using bundle adjustment



 CMU 15-869, Fall 2014

Accelerating match finding
▪ A naive formulation of match finding is O(N2): for each image check for match 

against all other images 

- Large image collections → large N 
- Computing a match is expensive: (recall, requires finding a geometric fit via 

estimating fundamental matrix): ~ a few matches per core per second 
- N=1,000,000, 10 matches per second per core =  3,100 CPU years 

▪ Must avoid performing expensive check on all possible matches! 

▪ This is a retrieval problem!  (“quickly find most likely matches”)
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Accelerating match finding
▪ Step 1: use fast retrieval techniques to find candidate matching images 

- e.g., use inverted index with TF-IDF weighting 
- Result: top-k nearest neighbors for query image 

▪ For each of the k candidates, perform expensive geometric verification step 
- Reduce complexity of expensive operations to O(kN), where k << N

Visual words

Im
ag

es TFIDF weights

Node 0

Node 1

Node 2

. . .

Parallelization on a distributed system: 

1. Partition images across nodes, compute features/BOW + term-
frequencies for all images 
- SIFT features for 1M images: ~ 1-2 TB 
- BOW representation for 1M images: ~ 13 GB  

2. Global reduction to compute IDF for each visual word 
3. Broadcast IDF information to all nodes   
4. Broadcast TFIDF table to all nodes (13 GB) 
5. Each node computes top-k NN for the images it owns
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Improving match finding for 3D scene reconstruction
▪ Assume primary goal is to produce a high-quality 3D scene reconstruction (not to 

compute position of camera for every image in the database) 

▪ Want a match graph that is sufficiently dense to enable 3D reconstruction: 
- Want as few connected components in match graph as possible (note: each 

connected component will be its own 3D scene after reconstruction) 
- Prefer a single, large scene reconstruction, not many “pieces” of scene 

- Want multiple views of the same track (i.e., want multiple images containing 
the same features to aid robustness of bundle adjustment)
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Building a match graph
▪ Step 1: Compute k nearest neighbors using acceleration structure, k = k1 + k2 

▪ Step 2: Perform geometric verification of top k1 matches, add graph edge 
when verification succeeds 

▪ Step 3: Verify next k2 matches, but only verify image pair (I,J) if image I and 
image J are in different components of the graph 

▪ Step 4: Densify the graph using several rounds of “query expansion” 
For	
  each	
  image	
  I	
  
	
  	
  For	
  each	
  neighbor	
  J	
  of	
  I	
  in	
  graph	
  
	
  	
  	
  	
  For	
  each	
  neighbor	
  K	
  of	
  J	
  in	
  graph	
  
	
  	
  	
  	
  	
  	
  	
  If	
  I	
  and	
  K	
  are	
  in	
  different	
  components:	
  verify	
  (I,	
  K)

[Agarwal 2009]
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Putting it all together (distributed implementation)
1. In parallel across all nodes, compute features 
2. Compute IDF weights via reduction, broadcast to all nodes 
3. Broadcast TFIDF information (weight table) to all nodes 
4. Independently compute K=k1+k2 NN on all nodes 
5. For each image i, verify top k1 candidates (parallelized dynamically via shared work queue across 

nodes) 
6. Compute match graph connected components (sequentially on one node is easiest) 
7. For each image i, verify next k2 candidates if candidate is not in same graph connected 

component (dynamic parallelization) as i 
8. For each image i, verify further matches based on candidates returned from query expansion 

- Repeat for N rounds, or until convergence 
9. Generate tracks: 

- Each node generates tracks for the images it owns (in parallel across nodes) 
- Then merge tracks across nodes (parallel reduction, or sequentially on home node) 

10. Compute graph skeletal set (next slide)
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Match graph sparsification
▪ All images do not contribute accurately to coverage/accuracy of 3D reconstruction 

▪ For efficiency, we’d like to compute SfM using a minimal set of images (the “skeletal set”) 
that yields similar reconstruction quality as the full match graph

Image credit: Snavely et al. 2008

[Snavely 2008]

Match graph Skeletal set 
(black nodes are skeletal set 

images, gray nodes are 
remaining images) 

Reconstruction 
from skeletal set

Adding addition 
images with pose 

estimation

final result post 
bundle 

adjustment

Result: 2x to 50x improvement in reconstruction performance
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Systems problems, algorithmic solutions
▪ Desire to work at scale triggered innovation in algorithms 

- Scale imposes new constraints 

▪ Iterative approach to SfM (to avoid local minimal) 

▪ New algorithm for removing redundant images from match graph 
- Redundant = doesn’t improve reconstruction quality 

▪ Improved algorithm for bundle adjustment at scale 
- Not discussed today 
- See “Bundle Adjustment in the Large”, Agarwal et al. ECCV 2010
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Results
“Building Rome in a Day” Agarwal et al. 2009
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Building Rome on a Cloudless Day

Key ideas: 
- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor) 
- Cluster binary codes by Hamming distance 
- Verify clusters by finding N images near center that can be geometrically verified using SIFT keypoints (reject 

clusters than cannot be verified) 
- Compute “iconic” image for each cluster (image with most inliers) 
- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by 

image geotags) 
- Use high-performance plane-sweep 3D reconstruction 
- Use a single PC with four GPUs

Reconstruction from 2.8M images on a single PC in one day (Frahm et al. ECCV 2010)
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Task: location recognition
▪ Given a new image, how can we leverage an existing 3D reconstruction 

to estimate the camera’s location and orientation?
Query image

4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

Database image (keypoints shown)

▪ First-thought solution: 
- For each SIFT feature in query image, finding matching tracks in scene database of 

all images (recall: tracks correspond to scene features) 
- Possible implementation: ANN lookup using KD-tree built over database 

- Then attempt camera pose estimation for query given the collection of matches
Left image credit: Mark Ordonez (via Flickr), Right image credit: Li et al. 2010
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Observation
▪ Not all scene database features are equally useful in matching images 
▪ Many scene features appear in many images 

- Example below: clock face on tower is most frequently observed point in database 
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)
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reconstruction consists of a set of recovered camera locations, as well as a set of re-
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One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

▪ Idea: use up-front knowledge of 
likelihood of scene points to appear 
in images… to accelerate image 
feature matching 
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Idea: analyze image database to accelerate 
matching

▪ Previously in this lecture: organize database feature points 
into KD-tree to accelerate search 

▪ Now: leverage co-occurrence and frequency of occurrence 
- We do not desire all matches in the database, only enough matches to 

estimate camera pose 
- Co-occurrence: it is sufficient to search over a small subset of scene points 

(since many scene points co-occur in the same images and are similarly 
useful for pose estimation) 

- Frequency of occurrence: search for the points that are most likely to be 
in the query image.
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K-coverings of scene images
▪ Subsample database: compute scene point set that is a K-

covering of all images in the database 
- K-cover: set of points such that at least K points are present in each image 

- Simple greedy algorithm to compute K cover: 
S	
  =	
  {}	
  	
  	
  	
  //	
  set	
  of	
  points	
  in	
  covering	
  

sort	
  all	
  scene	
  points	
  by	
  number	
  of	
  images	
  they	
  appear	
  in	
  

while	
  K-­‐cover	
  not	
  reached	
  by	
  S:	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  add	
  point	
  P	
  appearing	
  in	
  largest	
  number	
  of	
  images	
  into	
  S	
  

▪ Precompute two K-coverings for image database 
- Ps: 5-covering, capped to at most 2,000 points 
- Pc:  100-covering
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Localization algorithm
▪ Query = list of feature points 

▪ Database = list of feature points 

▪ Idea: rather than search database for matches to points in query image, search 
query list for matches database feature points  

▪ Simple algorithm: tests scene points against query image in priority order 
Compute	
  Kd	
  tree	
  for	
  points	
  in	
  query	
  
Initial	
  prioritization	
  of	
  database	
  points:	
  

Highest	
  priority	
  points:	
  Ps	
  
Next	
  highest	
  priority	
  points:	
  Pc	
  
Remaining	
  points:	
  priority	
  =	
  number	
  of	
  images	
  point	
  is	
  visible	
  in	
  

	
  while	
  additional	
  matching	
  points	
  are	
  required:	
  
	
  	
  	
  	
  Attempt	
  to	
  match	
  highest	
  priority	
  point	
  against	
  query	
  points	
  
	
  	
  	
  	
  if	
  match	
  found:	
  
	
  	
  	
  	
  	
  	
  	
  	
  for	
  each	
  DB	
  image	
  I	
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  point:	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Increase	
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  of	
  all	
  DB	
  points	
  in	
  I

Dynamic reprioritization of DB points based on co-occurrence 
with matched points. 
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Recap: how the algorithm works
▪ Test the most likely to match images from the database first 

- Recall: only need a few matches to estimate 3D camera pose of query image 
▪ Once a match is found, leverage co-occurrence of points in images to predict new 

matching points 
▪ Desirable system behavior:  optimize for the common case! 

- Common images get found very quickly 
- Uncommon images take longer to localize 
- Memory efficient: don’t need to store acceleration structure for the entire 

database of images
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Class discussion: 
Alternative reconstruction strategy: KinectFusion (Izadi et al.)


