
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 21:

A Systems View of Large-Scale
3D Reconstruction

 CMU 15-869, Fall 2014

Goals and motivation
▪ Construct a detailed 3D model of the world from collections of photographs

- Organize the world’s photographs by their position in 3D space

▪ Leverage the organization to perform tasks
- Allow navigation/browsing of 3D environments (better maps, “virtual tourism”)
- Geolocation: given a picture, where was it taken?
- Find canonical views of scenes
- Differentiate transient objects in scene from stationary ones
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009

 CMU 15-869, Fall 2014

Preliminaries and background

1. Image similarity / retrieval basics
2. Nearest neighbor search and approximate nearest neighbor

search (ANN) using a KD-tree
3. RANSAC algorithm overview

 CMU 15-869, Fall 2014

Background part 1:
image retrieval basics

 CMU 15-869, Fall 2014

Are these images similar?

Photographs of same backyard, over six-month period.

 CMU 15-869, Fall 2014

Pixel differences
Image 1

 CMU 15-869, Fall 2014

Pixel differences
Image 2

 CMU 15-869, Fall 2014

Pixel differences
diff(x,y) = image1(x,y) - image 2(x,y)

 CMU 15-869, Fall 2014

Are these two web pages similar?

Another example: which web page is most similar to the search query...

 CMU 15-869, Fall 2014

Are these two web pages similar?
Another example: which web page
is most similar to the search query...

 CMU 15-869, Fall 2014

One simple definition of similarity to query
Given query words: w1 and w2
for each document d in database:

score(d, w1, w2) = number of occurrences of w1 and w2 in d
Return top 20 results in sorted order based on score

Ways to improve above approach:
- Improve accuracy of score function (return better results *)

- Improve query execution time: above solution is O(N) for database of N
documents

* The quality of the returned results is referred to as the “performance” of the algorithm. “An algorithm
performs better if it returns better results”. Clearly, using the term “performance” in this way going to
cause problems in this class.

 CMU 15-869, Fall 2014

Improving the solution: use an index

Document	
 0:	
 Kayvon	
 is	
 teaching	
 15-­‐869	
 today.	
 Yay	
 15-­‐869!	

Document	
 1:	
 15-­‐869	
 is	
 awesome,	
 Kayvon	
 claims.	

Document	
 2:	
 Kayvon	
 is	
 occasionally	
 awesome.	

Index: maps words to documents
-­‐ Kayvon:	
 0,	
 1,	
 2	

-­‐ is:	
 0,	
 1,	
 2	

-­‐ teaching:	
 0	

-­‐ 15-­‐869:	
 0,	
 1	

-­‐ yay:	
 0	

-­‐ thinks:	
 1	

-­‐ today:	
 0	

-­‐ awesome:	
 1,	
 2	

-­‐ occasionally:	
 2

Query: kayvon	
 awesome

Partial result set:
kayvon:	
 	
 {0,	
 1,,2}	

awesome:	
 {1,	
 2}

Result:
{0,1,2}	
 ∩	
 {1,	
 2}	
 =	
 {1,2}

To simplify, let:
score(d,w1,w2)	
 =	
 1	
 if	
 d	
 contains	
 w1	
 and	
 w2,	
 0	
 otherwise

 CMU 15-869, Fall 2014

Full inverted index

Document	
 0:	
 Kayvon	
 is	
 teaching	
 15-­‐869	
 today.	
 Yay	
 15-­‐869!	

Document	
 1:	
 15-­‐869	
 is	
 awesome,	
 Kayvon	
 claims.	

Document	
 2:	
 Kayvon	
 is	
 occasionally	
 awesome.	

Index: maps words to (document, position)
-­‐ Kayvon:	
 (0,0),	
 (1,3)	
 (2,0)	

-­‐ is:	
 (0,1),	
 (1,1),	
 (2,1)	

-­‐ teaching:	
 (0,	
 2)	

-­‐ 15-­‐869:	
 (0,3),	
 (0,6),	
 (1,	
 0)	

-­‐ yay:	
 (0,	
 5)	

-­‐ claims:	
 (1,4)	

-­‐ today:	
 (0,	
 4)	

-­‐ awesome:	
 (1,2),	
 (2,3)	

-­‐ occasionally:	
 (2,2)

Query: kayvon	
 15-­‐869

Partial result set:
kayvon:	
 {(0,0),	
 (1,3),	
 (2,0)}	

15-­‐869:	
 {(0,3),	
 (0,6),	
 (1,0)}

Result:
{0	
 (1),	
 1	
 (1),	
 2	
 (1)}	
 ∩	

{0	
 (2),	
 1	
 (0)}	

=	
 {0	
 (3),	
 1	
 (2)}

Inverted index contains one entry per word occurrence:
score(d,w1,w2)	
 =	

	
 	
 	
 	
 	
 if	
 d	
 contains	
 w1	
 and	
 w2,	
 number	
 of	
 occurrences	
 of	
 w1	
 or	
 w2	

	
 	
 	
 	
 	
 0	
 otherwise

Ranking:
0,	
 1

 CMU 15-869, Fall 2014

TF-IDF weighting
▪ Term frequency:

- TF(w,d) = the number of occurrences of word w in document d
- Measure of how relevant a document is for a given query word

▪ Inverse document frequency:

- IDF(w, D) =

- Measure of how discriminative a word is (idf is small for common words)
- Depends on number of occurrences in entire document collection
- Idea: words that appear in most documents should influence score less

▪ tfidf_score(w, d, D) = TF(w,d) x IDF(w, D)

▪ Many variants on how to compute TF(w,d)
- Binary: 1 of 0, depending on whether word is in document
- Normalized frequency: number of occurrences normalized by document size

Number of documents in database D
Number of documents containing w

 CMU 15-869, Fall 2014

Searching for images (via text query)

 CMU 15-869, Fall 2014

Content-based image retrieval
▪ Search for images, based on a query images

- Take a photo, find similar looking photos
- Take a photo, find information about (objects, people, etc.) in photo

 CMU 15-869, Fall 2014

Text-based document retrieval
▪ Key idea was the breakdown of document into words

- Documents that have the same words are likely to be similar
- Words are a meaningful granularity of text to latch on to

 CMU 15-869, Fall 2014

Content-based image retrieval

▪ If we wanted to follow the text analogy, what are the words?
- Pixels?
- Blocks of pixels?
- Descriptors/features computed from images?

 CMU 15-869, Fall 2014

Correspondence
▪ Defining similarity requires us to quantify the notion of

correspondence
- Example: pictures of the same place are similar
- Example: pictures containing the same/similar objects are similar

▪ Seek image representations (“descriptors”) such that numerically
similar descriptors correspond to meaningful correspondences

- Example: similar descriptor value corresponds to same object in the
scene: descriptor’s value is invariant to noise, lighting, affine object
transformation (rotation, translation, scale)

- Of course, good descriptors should also be distinctive... shouldn’t take on
same value for every image!

 CMU 15-869, Fall 2014

Histogram of oriented gradients (HOG)
▪ Idea: local object appearance/shape is well characterized by distribution of local intensity gradients

▪ Gradient orientation is less sensitive to illumination change than gradient magnitude

[Dalal and Triggs 05]

[Image credit: Vondrick et al. ICCV 13]

For each pixel p in block:

Compute local gradient

Add vote to histogram cell based on
gradient orientation

(vote is weighted based on gradient
magnitude and distance between p and
block center)

 CMU 15-869, Fall 2014

HOG visualization close up

Visualizing magnitude of each histogram cell as a line

(Direction of line is at a right angle to the corresponding gradient orientation)

 CMU 15-869, Fall 2014

Sparse SIFT descriptors
▪ Interest-point-based, orientation of gradients descriptor
▪ Find interest points (locations in image, with support region scale and orientation)
▪ Compute 128-element descriptor for interest points

Pool gradient samples from 4x4 window into 8-bin histogram
Concatenate 4x4 grid of histograms to get full descriptor (8 x 16 = 128)

Figure credits:
R. Bandara, Codeproject
Chen, Kong, Oh, Sanan, Wohlberk 09

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

 CMU 15-869, Fall 2014

State-of-the-art: learn good features
Obtain feature representations by training deep neural networks

Krizhevsky 2012 classifier (“AlexNet”): trained to recognize objects in 1000 categories
First seven layers compute 4096-dimensional descriptor from image
Soft-max classifier performs classification on this descriptor.

Visualizing responses of filters in network

Visualizing responses of filters in network

 CMU 15-869, Fall 2014

Visual words
▪ Text document is made up of words (discrete values in a vocabulary)
▪ Descriptors are points in continuous high-dimensional descriptor space
▪ Idea: construct “visual words” from descriptors

Features in images

Compute “vocabulary” for dataset by
clustering all features across all
images: represent each cluster by its
mean (or median) feature

Bin (discretize) all image features by
assigning feature to closest cluster in
vocabulary

Represent image by its histogram of
visual word counts

(A)

(B)

(C)

(D)

 CMU 15-869, Fall 2014

Bag of words (BOW) image descriptor:
▪ Bag of words (BOW) descriptor:

- Image descriptor is a histogram of word occurrences
- Very sparse vector

▪ Given query image descriptor q, compute score for database image d:
- Example: dot product of normalized query descriptor and DB image descriptor:

score(q,d) =

- Improvement: weight descriptor elements by visual word IDF values
- Many alternative distance functions:

- e.g., histogram intersection: min(qi, di) rather than inner product

0 	
 0 	
 0 	
 1 	
 0 	
 1 	
 0 	
 4 	
 0 	
 0 	
 0 	
 0 	
 0 	
 8 	
 9 	
 3 	
 0 	
 0 	
 0 	
 . . .

 CMU 15-869, Fall 2014

Summary
▪ Image search using bag of words descriptors and an inverted index

acceleration structure:
1. Compute features for image collection
2. Build vocabulary (visual words) by clustering features in collection
3. Compute inverted index:

- For each visual word, index stores list of images with word, plus the tf-idf weight for that
word in that image: tfidf_score(w,	
 d,	
 D)	
 =	
 	
 tf(w,d)	
 *	
 idf(w,	
 D)

4. For each query image:
- Compute BOW descriptor

- Use inverted index to find candidate set of similar images

- Compute score between query and candidate images (e.g., dot product of descriptors)

- Rank results by score

 CMU 15-869, Fall 2014

Background part 2: nearest neighbor
search using a KD-tree

 CMU 15-869, Fall 2014

Search application: establish feature correspondence

▪ Example: SIFT descriptor (length-128 vector)
▪ For all descriptors in image 1, find nearest neighbor descriptor

in image 2

1 2

 CMU 15-869, Fall 2014

Review: K-D tree
▪ Spatial partitioning hierarchy
▪ K = dimensionality of space (below: K = 2)

4 2

3 2 1 3 3

Counts of points in leaf nodes

 CMU 15-869, Fall 2014

Nearest neighbor search with K-D tree

Query point

A

Closest so far: A (at distance d)

Step 1: traverse to leaf cell containing query: compute closest point in
this cell to the query.

Best so far: A (at distance d)

d

 CMU 15-869, Fall 2014

Nearest neighbor search with K-D tree

Query point

A

Closest so far: B (at distance d’)

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Best so far: A (at distance d)

B

d

d’

 CMU 15-869, Fall 2014

Nearest neighbor search with K-D tree

Query point

Nearest neighbor result: B (at distance d’)
(Visited nodes during query shown in pink)

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Best so far: A (at distance d)

Bd’

 CMU 15-869, Fall 2014

Approximate nearest neighbor (ANN) search

Query point

A

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)

One simple answer: just take closest point in leaf node containing query

Best so far: A (at distance d)

d

 CMU 15-869, Fall 2014

Approximate nearest neighbor search

Query point

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest N nodes to query

Best so far: A (at distance d)

d1

d2

d3

d4 d1

d2

d3

d4

 CMU 15-869, Fall 2014

Basic K-D tree build
▪ To find a partition for a node:

- Partition axis for which the variance of current data points is the highest
- Split at the median of the current data points

▪ You implemented nearest neighbor search in 3-D using a K-D tree
when implementing photon mapping in 15-462 (there, K=3)

 CMU 15-869, Fall 2014

Randomized K-D tree
▪ To find a partition for a node:

- Randomly choose axis to partition
- Draw from distribution weighted proportionally with variance of current

data points is the highest
- Simple solution: pick partition axis by uniformly sampling from top N axes

with highest variance
- Randomly choose partition point

- Draw from distribution heavily weighted at the median of the current data
points (make it likely to split near the median of the data points)

 CMU 15-869, Fall 2014

Approximate nearest-neighbor (ANN) search using
a forest of randomized K-D trees
▪ Construct a set (“forest”) of random K-D trees

▪ For each tree, find NN in leaf cell containing query
- Add all nodes (across all trees) traversed along the way to a priority queue (node

priority = distance from query to node)

▪ Take closest of all answers across all
trees as an initial ANN

▪ For top D nodes in queue, resume
downward search from that node
(D = 5 in figure [Muja et al. 2009])

▪ Solution for approximate k-NN as well

 CMU 15-869, Fall 2014

Background part 3: RANSAC

 CMU 15-869, Fall 2014

RANSAC
▪ RANdom Sample And Concensus
▪ Goal: fit model to collection of noisy data points

Red data points: outliers
Blue data points: consensus set

Image credit: Wikipedia

For	
 i=0	
 to	
 K:	

	
 	
 	
 Perform	
 random	
 subsampling	
 of	
 datapoints	
 (hypothetical	
 inlier	
 set)	
 	

	
 	
 	
 Fit	
 model	
 Mi	
 to	
 hypothetical	
 inlier	
 set	

	
 	
 	
 For	
 each	
 datapoint	
 d:	

	
 	
 	
 	
 	
 	
 Compute	
 e	
 =	
 error(d,	
 Mi)	

	
 	
 	
 	
 	
 	
 if	
 e	
 <	
 threshold:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 d	
 is	
 in	
 consensus	
 set	
 (it	
 is	
 consistent	
 with	
 model)	

	
 	
 	
 If	
 consensus	
 set	
 for	
 Mi	
 is	
 larger	
 than	
 that	
 for	
 Mbest:	

	
 	
 	
 	
 	
 Mbest	
 =	
 Mi	

Let	
 w	
 =	
 number	
 of	
 inliers	
 /	
 number	
 of	
 data	
 points	

	
 	
 	
 	
 	
 	
 =	
 probability	
 of	
 selecting	
 an	
 inlier	
 at	
 random	

So:	

	
 wN	
 	
 	
 	
 	
 =	
 probability	
 of	
 selecting	
 all	
 inliers	
 in	
 hypothetical	
 inlier	
 set	
 of	
 size	
 N	

(1-­‐wN)K	
 =	
 probability	
 that	
 no	
 iteration	
 selects	
 a	
 set	
 of	
 all	
 inliers	
 after	
 K	
 RANSAC	
 iterations	

 CMU 15-869, Fall 2014

3D reconstruction from photos

 CMU 15-869, Fall 2014

3D reconstruction from photo collections
▪ A good example of large-scale systems problem

▪ Efficient solutions involved combination of parallel execution and
algorithmic innovation

▪ Today we will “black box” certain computer-vision techniques to focus
on overall algorithm design/systems issues

 CMU 15-869, Fall 2014

Reconstructing scenes
▪ Input:

- Unstructured collection of photos from same location (e.g., images from Flickr, Facebook)
▪ Output:

- Sparse 3D representation of scene (point cloud)
- Position of camera for each photo

 CMU 15-869, Fall 2014

▪ Goal: find pairs of “matching” images containing views of the same object

▪ Step 1: compute feature points for all images (SIFT keypoint descriptors: 128-elements)
- Generates thousands of keypoints per image

▪ Step 2: for each pair of images (I, J), determine if a match exists:

- (A) find potentially matching keypoints (similar descriptors)

- Output of (2-A): pairs of matching keypoints in image I and J

- (B) verify matching keypoints: attempt to find geometric relationship between the two
viewpoints: estimate a fundamental matrix (3x3 matrix, rank 2) for the image pair using RANSAC:

- Select eight matching keypoints at random, estimate F-matrix
- If there are not at least 20 inlier keypoints, repeat

Step 1: find matching images from collection

Compute	
 K-­‐D	
 tree	
 for	
 all	
 keypoints	
 in	
 J	

for	
 each	
 keypoint	
 i	
 in	
 I:	

	
 	
 	
 //	
 d1,	
 d2	
 are	
 distance	
 to	
 first	
 nearest	
 neighbor	
 j1	
 and	
 second	
 NN	
 j2	

	
 	
 	
 (d1,	
 d2)	
 =	
 perform	
 approximate	
 nearest	
 neighbor	
 (ANN)	
 lookup	
 for	
 i	

	
 	
 	
 if	
 (d1/d2	
 <	
 threshold)	

	
 	
 	
 	
 	
 	
 i	
 in	
 I	
 and	
 j1	
 in	
 J	
 are	
 candidates	
 for	
 being	
 the	
 same	
 point	
 on	
 the	
 same	
 surface	
 	
 	
 	
 	
 	

Recall: for key point visible at point p1 in image 1 and p2 in image 2, p2 should lie on the epipolar line
of p1: p1TFp2 = 0

 CMU 15-869, Fall 2014

Geometric verification (example in 2D)

Image 1 Image 2

Outlier

 CMU 15-869, Fall 2014

Step 2: organize matches into tracks
▪ Track = connected set of matching keypoints

- A track corresponds to a single point in the scene
- Track must contain at least two keypoints
- All images in a track are different views of that scene point

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image
(clearly, all both keypoints in this image cannot correspond to same scene point)

 CMU 15-869, Fall 2014

Image connectivity graph
▪ Graph nodes = images

▪ Graph edges = images that contain matching keypoints

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007

 CMU 15-869, Fall 2014

Step 3: structure from motion (SfM)

▪ Goal: minimize track reprojection error:
- Error = SSDs between projection of each track and the

corresponding feature in the image.

- Non-linear problem: solved via bundle adjustment

Where:

is the projection matrix into the i’th image (depends on camera pos, orientation, f-length)

is the 3D scene position of track j

is the 2D keypoint location of track j in image i

is a binary indicator: designating whether a keypoint for track j exists in image i

▪ Given image match graph and a set of tracks, estimate:
- Camera parameters for each image (position, orientation, focal length)
- 3D scene position of each track

 CMU 15-869, Fall 2014

Incremental SfM approach
▪ Incrementally solve for camera positions, one camera at a time:

- Begin with data that algorithm is most confident in (avoid local minima)
▪ Initialization:

- Pick pair of images with large number of feature matches and also wide baseline, estimate
camera pose from these matches *

- Triangulate shared tracks to estimate 3D position
- Run two-frame bundle adjustment to refine camera poses and track position

▪ Add next camera:
- Choose camera that observes most number of tracks with known positions
- Estimate camera pose from track matches using DLT/RANSAC
- Run bundle adjustment to refine only new camera and positions of tracks it observes
- Add new tracks to scene (observed by new camera but not yet in scene)

- Triangulate positions of new tracks using two cameras with maximum angle of separation
- Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 keypoint matches, and for which the smallest percentage of matches are
inliers to an estimated homography relating the two images

 CMU 15-869, Fall 2014

Algorithm summary
▪ For each image, compute matching images
▪ Organize matching keypoints into consistent tracks
▪ Until no new cameras can be estimated:

- Pick next camera to estimate
- Refine estimate globally using bundle adjustment

 CMU 15-869, Fall 2014

Accelerating match finding
▪ A naive formulation of match finding is O(N2): for each image check for match

against all other images

- Large image collections → large N
- Computing a match is expensive: (recall, requires finding a geometric fit via

estimating fundamental matrix): ~ a few matches per core per second
- N=1,000,000, 10 matches per second per core = 3,100 CPU years

▪ Must avoid performing expensive check on all possible matches!

▪ This is a retrieval problem! (“quickly find most likely matches”)

 CMU 15-869, Fall 2014

Accelerating match finding
▪ Step 1: use fast retrieval techniques to find candidate matching images

- e.g., use inverted index with TF-IDF weighting
- Result: top-k nearest neighbors for query image

▪ For each of the k candidates, perform expensive geometric verification step
- Reduce complexity of expensive operations to O(kN), where k << N

Visual words

Im
ag

es TFIDF weights

Node 0

Node 1

Node 2

. . .

Parallelization on a distributed system:

1. Partition images across nodes, compute features/BOW + term-
frequencies for all images
- SIFT features for 1M images: ~ 1-2 TB
- BOW representation for 1M images: ~ 13 GB

2. Global reduction to compute IDF for each visual word
3. Broadcast IDF information to all nodes
4. Broadcast TFIDF table to all nodes (13 GB)
5. Each node computes top-k NN for the images it owns

 CMU 15-869, Fall 2014

Improving match finding for 3D scene reconstruction
▪ Assume primary goal is to produce a high-quality 3D scene reconstruction (not to

compute position of camera for every image in the database)

▪ Want a match graph that is sufficiently dense to enable 3D reconstruction:
- Want as few connected components in match graph as possible (note: each

connected component will be its own 3D scene after reconstruction)
- Prefer a single, large scene reconstruction, not many “pieces” of scene

- Want multiple views of the same track (i.e., want multiple images containing
the same features to aid robustness of bundle adjustment)

 CMU 15-869, Fall 2014

Building a match graph
▪ Step 1: Compute k nearest neighbors using acceleration structure, k = k1 + k2

▪ Step 2: Perform geometric verification of top k1 matches, add graph edge
when verification succeeds

▪ Step 3: Verify next k2 matches, but only verify image pair (I,J) if image I and
image J are in different components of the graph

▪ Step 4: Densify the graph using several rounds of “query expansion”
For	
 each	
 image	
 I	

	
 	
 For	
 each	
 neighbor	
 J	
 of	
 I	
 in	
 graph	

	
 	
 	
 	
 For	
 each	
 neighbor	
 K	
 of	
 J	
 in	
 graph	

	
 	
 	
 	
 	
 	
 	
 If	
 I	
 and	
 K	
 are	
 in	
 different	
 components:	
 verify	
 (I,	
 K)

[Agarwal 2009]

 CMU 15-869, Fall 2014

Putting it all together (distributed implementation)
1. In parallel across all nodes, compute features
2. Compute IDF weights via reduction, broadcast to all nodes
3. Broadcast TFIDF information (weight table) to all nodes
4. Independently compute K=k1+k2 NN on all nodes
5. For each image i, verify top k1 candidates (parallelized dynamically via shared work queue across

nodes)
6. Compute match graph connected components (sequentially on one node is easiest)
7. For each image i, verify next k2 candidates if candidate is not in same graph connected

component (dynamic parallelization) as i
8. For each image i, verify further matches based on candidates returned from query expansion

- Repeat for N rounds, or until convergence
9. Generate tracks:

- Each node generates tracks for the images it owns (in parallel across nodes)
- Then merge tracks across nodes (parallel reduction, or sequentially on home node)

10. Compute graph skeletal set (next slide)

 CMU 15-869, Fall 2014

Match graph sparsification
▪ All images do not contribute accurately to coverage/accuracy of 3D reconstruction

▪ For efficiency, we’d like to compute SfM using a minimal set of images (the “skeletal set”)
that yields similar reconstruction quality as the full match graph

Image credit: Snavely et al. 2008

[Snavely 2008]

Match graph Skeletal set
(black nodes are skeletal set

images, gray nodes are
remaining images)

Reconstruction
from skeletal set

Adding addition
images with pose

estimation

final result post
bundle

adjustment

Result: 2x to 50x improvement in reconstruction performance

 CMU 15-869, Fall 2014

Systems problems, algorithmic solutions
▪ Desire to work at scale triggered innovation in algorithms

- Scale imposes new constraints

▪ Iterative approach to SfM (to avoid local minimal)

▪ New algorithm for removing redundant images from match graph
- Redundant = doesn’t improve reconstruction quality

▪ Improved algorithm for bundle adjustment at scale
- Not discussed today
- See “Bundle Adjustment in the Large”, Agarwal et al. ECCV 2010

 CMU 15-869, Fall 2014

Results
“Building Rome in a Day” Agarwal et al. 2009

 CMU 15-869, Fall 2014

Building Rome on a Cloudless Day

Key ideas:
- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor)
- Cluster binary codes by Hamming distance
- Verify clusters by finding N images near center that can be geometrically verified using SIFT keypoints (reject

clusters than cannot be verified)
- Compute “iconic” image for each cluster (image with most inliers)
- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by

image geotags)
- Use high-performance plane-sweep 3D reconstruction
- Use a single PC with four GPUs

Reconstruction from 2.8M images on a single PC in one day (Frahm et al. ECCV 2010)

 CMU 15-869, Fall 2014

Task: location recognition
▪ Given a new image, how can we leverage an existing 3D reconstruction

to estimate the camera’s location and orientation?
Query image

4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

Database image (keypoints shown)

▪ First-thought solution:
- For each SIFT feature in query image, finding matching tracks in scene database of

all images (recall: tracks correspond to scene features)
- Possible implementation: ANN lookup using KD-tree built over database

- Then attempt camera pose estimation for query given the collection of matches
Left image credit: Mark Ordonez (via Flickr), Right image credit: Li et al. 2010

 CMU 15-869, Fall 2014

Observation
▪ Not all scene database features are equally useful in matching images
▪ Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

 CMU 15-869, Fall 2014

Observation
▪ Not all scene database features are equally useful in matching images
▪ Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

4 Yunpeng Li, Noah Snavely, and Daniel P. Huttenlocher

Fig. 1. SIFT Features in an image corresponding to reconstructed 3D points in the full model
(left) and the compressed model (right) for Dubrovnik. The feature corresponding to the most
visible point (i.e., seen by the most number of images) is marked in red in the right-hand image.
This feature, the face of a clock tower, is intuitively a highly visible one, and was successfully
matched in 370 images (over 5% of the total database).

to any other photo—we remove these from consideration, as well as other very small
connected components). For instance, the Rome dataset described in Section 5 consists
of 69 large components. An example 3D reconstruction is shown in Figure 2. Each
reconstruction consists of a set of recovered camera locations, as well as a set of re-
constructed 3D points, denoted P . For each point p 2 P , we know the set of images
in which p was successfully detected and matched during the feature matching process
(and deemed to be a geometrically consistent detection during SfM). We also have a
128-byte SIFT descriptor for each detection (we will assign the mean descriptor to p).
Given a new query image from the same scene, our goal is to find correspondences
between these scene features and the query image, then determine the camera pose.

One property of Internet photo collections (and current SfM methods) is that there
is a large variability in the number of times each scene feature is matched between
images. While many scene points are matched in only two images, others might be suc-
cessfully matched in hundreds. Consequently, not all scene features are equally useful
when matching with a new query image. This suggests a first step of “compressing” the
set of scene features by keeping only a subset of informative points, thus reducing the
computational cost of matching and suppressing potential sources of confusion.

A naı̈ve way to compress the model is to rank the scene features by “visibility” (by
which we mean the number of images in which that point has been successfully detected
and matched) and select a set from the top of this list. However, points selected in
such way can (and usually do) have very uneven spatial distribution, with popular areas
having a large number of points, and other areas having few or none.

Instead, we would like to choose a set of points that are both prominent and that
cover the whole model. To this end, we pose the selection of points as a set covering
problem, where the images in the model are the elements to be covered and each point
is regarded as a set containing the images in which it is visible. In other words, we
seek the smallest subset of P , such that each image is covered by at least one point in
the subset. Given such a subset, we might expect that a query image drawn from the
same distribution of views as the database images would—roughly speaking—match

▪ Idea: use up-front knowledge of
likelihood of scene points to appear
in images… to accelerate image
feature matching

 CMU 15-869, Fall 2014

Idea: analyze image database to accelerate
matching

▪ Previously in this lecture: organize database feature points
into KD-tree to accelerate search

▪ Now: leverage co-occurrence and frequency of occurrence
- We do not desire all matches in the database, only enough matches to

estimate camera pose
- Co-occurrence: it is sufficient to search over a small subset of scene points

(since many scene points co-occur in the same images and are similarly
useful for pose estimation)

- Frequency of occurrence: search for the points that are most likely to be
in the query image.

 CMU 15-869, Fall 2014

K-coverings of scene images
▪ Subsample database: compute scene point set that is a K-

covering of all images in the database
- K-cover: set of points such that at least K points are present in each image

- Simple greedy algorithm to compute K cover:
S	
 =	
 {}	
 	
 	
 	
 //	
 set	
 of	
 points	
 in	
 covering	

sort	
 all	
 scene	
 points	
 by	
 number	
 of	
 images	
 they	
 appear	
 in	

while	
 K-­‐cover	
 not	
 reached	
 by	
 S:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 add	
 point	
 P	
 appearing	
 in	
 largest	
 number	
 of	
 images	
 into	
 S	

▪ Precompute two K-coverings for image database
- Ps: 5-covering, capped to at most 2,000 points
- Pc: 100-covering

 CMU 15-869, Fall 2014

Localization algorithm
▪ Query = list of feature points

▪ Database = list of feature points

▪ Idea: rather than search database for matches to points in query image, search
query list for matches database feature points

▪ Simple algorithm: tests scene points against query image in priority order
Compute	
 Kd	
 tree	
 for	
 points	
 in	
 query	

Initial	
 prioritization	
 of	
 database	
 points:	

Highest	
 priority	
 points:	
 Ps	

Next	
 highest	
 priority	
 points:	
 Pc	

Remaining	
 points:	
 priority	
 =	
 number	
 of	
 images	
 point	
 is	
 visible	
 in	

	
 while	
 additional	
 matching	
 points	
 are	
 required:	

	
 	
 	
 	
 Attempt	
 to	
 match	
 highest	
 priority	
 point	
 against	
 query	
 points	

	
 	
 	
 	
 if	
 match	
 found:	

	
 	
 	
 	
 	
 	
 	
 	
 for	
 each	
 DB	
 image	
 I	
 containing	
 matched	
 point:	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Increase	
 priority	
 of	
 all	
 DB	
 points	
 in	
 I

Dynamic reprioritization of DB points based on co-occurrence
with matched points.

 CMU 15-869, Fall 2014

Recap: how the algorithm works
▪ Test the most likely to match images from the database first

- Recall: only need a few matches to estimate 3D camera pose of query image
▪ Once a match is found, leverage co-occurrence of points in images to predict new

matching points
▪ Desirable system behavior: optimize for the common case!

- Common images get found very quickly
- Uncommon images take longer to localize
- Memory efficient: don’t need to store acceleration structure for the entire

database of images

 CMU 15-869, Fall 2014

Class discussion:
Alternative reconstruction strategy: KinectFusion (Izadi et al.)

