Lecture 21:

A Systems View of Large-Scale
3D Reconstruction

Visual Computing Systems
CMU 15-869, Fall 2014



Goals and motivation

B (onstruct a detailed 3D model of the world from collections of photographs
- Organize the world’s photographs by their position in 3D space

B Leverage the organization to perform tasks

- Allow navigation/browsing of 3D environments (better maps, “virtual tourism”)
- Geolocation: given a picture, where was it taken?

- Find canonical views of scenes
- Differentiate transient objects in scene from stationary ones
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009 CMU 15-869, Fall 2014



Preliminaries and background

1. Image similarity / retrieval basics

2. Nearest neighbor search and approximate nearest neighbor
search (ANN) using a KD-tree

3. RANSACalgorithm overview
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Background part 1:
Image retrieval basics
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Are these images similar?

—

{
5

Photographs of same backyard, over six-month period.
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Pixel differences

Image 1
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Pixel differences
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Pixel differences
diff(x,y) = image1(x,y) - image 2(x,y)
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Visual Computing Systems
CMU 15-869 | Fall 2014

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important responsibilities of modern
computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system
efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel (and
heterogenecus) systems that serve tc accelerate visual computing applications. This course is intended for graduate and advanced
undergraduate-level students interested in architecting efficient future graphics and image processing platforms and for students
seeking to develop scalable algorithms for these platforms.

When We Meet

Time: Mon/Wed 1:30 - 2:50pm
Location: GHC 4102
Instructor: Kayvon Fatahalian

Click here for Course Logistics and Details
Schedule

Note, please consult the suggested readings page for a list of readings relevant to lecture topics.

Sep 8 Course Introduction + the Real-Time Graphics Pipeline

Real-time rendering from a systems perspective

Sep 10 Graphics Pipeline Parallelization and Scheduling

Characteristics of the pipeline workload, Molnar's scheduling taxonomy, trade-offs between parallelism, communication, and locality

Sep 15 Geometry Processing and the Scheduling Challenges of Data Amplification

Cipping, tessellation, challenges of parallel scheduling

Sep 17 Visibility: High-Performance Rasterization and Occlusion

Visibility algorithms and their fixed-function implementation, occlusion culling, anti-aliasing, frame-buffer compression

Sep 22, 24 Texturing Part |: Basic Algorithms and Cache-Efficient Data Layout

Anti-aliasing using the mip-map, locality-friendly texture data layouts

Sep 24, 29 Texturing Part |I: Texture Compression and GPU Latency Hiding Mechanisms

Hardware-accelerated texture decompression techniques, prefetching, and multi-threading

Oct1 Shading Language Design

Level of abstraction decisions, mapping shader logic to GPU processing cores

Octo Compute-Mode GPU Programming Models and Emerging "So-Called-Low-Level" APIs
Motivation for alternative abstractions, interoperability issues with graphics pipeline, AMD's Mantle, Apple's Meta

Oct 8 Deferred Shading, and Why it's Now So Popular in Games

Motivation for use, impact on global renderer scheduling decisions

Oct 13 High-Performance Ray Tracing and Emerging Ray Tracing Hardware

Workload characteristics, coherence optimizations, potential for hardware acceleration

Are these two web pages similar?

Parallel Computer Architecture
and Programming ...

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as
to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel
programs requires an understanding of key machine performance characteristics, this course will cover both parallel
hardware and software design.

[ Our Self-Made Online Reference ]
[ Policies, Logistics, and Details ]

When We Meet

Tues/Thurs 9:00 - 10:20am
Baker Hall A51 (Giant Eagle Auditorium)
nstructor: Kayvon Fatahalian

Spring 2013 Schedule

Jan 15 Why Parallelism?

Jan17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
Assignment 1 out

Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations

Jan 24 Parallel Programming Basics (the parallelization thought process)
Assignment 1 due

Jan 29 GPU Architecture and CUDA Programming

Assignment 2 out
Jan 31 Performance Optimization I: Work Distribution
Feb 5 Performance Optimization Il: Locality, Communication, and Contention
Feb 7 Parallel Application Case Studies

Feb 12 Workload-Driven Performance Evaluation
Assignment 2 due

Another example: which web page is most similar to the search query...
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Are these two web pages similar?

Visual Computing Systems
CMU 15-869 | Fall 2014

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important responsibilities of modern

[ J
computer systems ranging from sensor-rich smart phones to large datacenters. These workloads demand exceptional system .
efficiency and this course examines the key ideas, techniques, and challenges associated with the design of parallel (and
heterogeneous) systems that serve to accelerate visual computing applications. This course is intended for graduate and advanced .

undergraduate-level students interested in architecting efficient future graphics and image processing platforms and for students
seeking to develop scalable algorithms for these platforms.

When We Meet

is most similar to the search query...

Location: GHC 4102
Instructor: Kayvon Fatahalian

Click here for Course Logistics and Details

Schedule

Note, please consult the suggested readings page for a list of readings relevant to lecture topics. l . I t- t
Sep 8 Course Introduction + the Real-Time Graphics Pipeline O e CI l I u V I su a co l I I p u l n g sys e I I Is
Real-time renderi ng froma systems perspective

Sep 10 Graphics Pipeline Parallelization and Scheduling
Characteristics of the pipeline workload, Molnar's schedul ng taxonomy, trade-offs between parallelism, communication, and locality

Sep 15 Geometry Processing and the Scheduling Challenges of Data Amplification
Cippi ng, tessellation, challenges of parallel schedul ng

Sep 17 Visibility: High-Performance Rasterization and Occlusion
Visibility algorithms and their fixed-function implementation, occlusion culling, anti-aliasing, frame-buffer compression 5 b t 3 1 8 OO O |t O 6 g d
Sep 22,24 Texturing Part |: Basic Algorithms and Cache-Efficient Data Layout O u 3 re S u S ( * S e CO n S )
Anti-aliasi ng using the mip-map, local Ty-T’ iendly texture data layouts

Sep 24,29 Texturing Part |1: Texture Compression and GPU Latency Hiding Mechanisms
Hardware-accelerated texture decompression techniques, prefetch Ng, and multi-threading

Oct1 Shading Language Design
Level of abstraction decisions, mappl

- - - -
Kayvon Fatahalian - Carnegie Mellon Universit
—
Oct 6 Compute-Mode GPU Programming Models and Emerging "So-Called-Low-Level" APIs yV g y
Motivation for alternative abstractions, interoperability issues with graphics pipe! MD's N 's Met,

s et oy ow o o www.cs.cmu.edu/~kayvonf/ ~ Carnegie Mellon University

High-Performance Ray Tracing and Emerging Ray Tracing Hardware
Workload characteristics, coherence optimizations, potential for hardware acceleration

Assistant Professor of Computer Science. Carnegie Mellon University. 412-268-1234
(Smith Hall 225). | architect new visual computing systems that enable ...
You've visited this page many times. Last visit: 10/27/14

Parallel Computer Architecture

and Programming ... Visual Computing Systems - Carnegie Mellon Graphics
From sman hones Lo muk creC7Us Gt thevwords et sparcamputers et st prsl graphics.cs.cmu.edu/courses/15869/fall2013/ ~ Carnegie Mellon University

fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as

to teach parallel programming tecl”mc:eks necessary to ffffecmvely utilize tf‘ege macc\‘nes. Because writing good parallel Visua I com puti n g taSkS SUCh as 2 D/3 D g rap h i CS, i mage proceSSing , and image
programs requires an understanding of key machine performance characteristics, this course will cover both parallel
understanding are important responsibilities of modern computer systems ...

hardware and software design.

[ Our Self-Made Online Reference ]

[ Policies, Logistics, and Details ]

When We Meet PPFVisual Computing Systems CMU 15-869, Fall 2013 Lectur...
e O o graphics.cs.cmu.edu/.../gfxpipeline_slides.pd... ¥ Camegie Mellon University
T A systems architect must meet challenging application goals within specifc design ...

Spring 2013 Schedule
e The characteristics/requirements of important visual computing workloads.

Jan15 Why Parallelism?

Jan17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
Assignment 1 out

Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations

15-869: Visual Computing Systems - Piazza

Jan 29 GPU Architecture and CUDA Programming

https://piazza.com/cmu/fall2013/15869/home ~ Piazza

Jan 31 Performance Optimization I: Work Distribution

Feb5  Performance Optimization II: Locality, Communication, and Contention Visual Computing taSks SUCh as gr‘aphics’ image proceSSing‘ and image s 15_869:

Feb 7 Parallel Application Case Studies

012 Workioad Driven Performance Evaluatin Visual Computing Systems is a course taught at Carnegie Mellon University ...

Assignment 3 out
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One simple definition of similarity to query

Given query words: w; and w;
for each document d in database:

score(d, w1, w2) = number of occurrences of w;andw;ind
Return top 20 results in sorted order based on score

Ways to improve ahove approach:

— Improve accuracy of score function (return better results *)

— Improve query execution time: above solution is O(N) for database of N
documents

* The quality of the returned results is referred to as the “performance” of the algorithm. “An algorithm
performs better if it returns better results”. Clearly, using the term “performance” in this way going to
cause problems in this class.
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Improving the solution: use an index

To simplify, let:
score(d,wl,w2) = 1 if d contains wl and w2, 0 otherwise

Document ©0: Kayvon 1is teaching 15-869 today. Yay 15-869!
Document 1: 15-869 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index: maps words to documents Query: kayvon awesome
- Kayvon: 0, 1, 2
- is: 0, 1, 2 Partial result set:
- teaching: © kayvon: {0, 1,,2}
- 15-869: 0, 1 awesome: {1, 2}
- yay: O
- thinks: 1 Result:
- today: © {0,1,2} n {1, 2} = {1,2}

- awesome: 1, 2
- occasionally: 2

CMU 15-869, Fall 2014



Full inverted index

Inverted index contains one entry per word occurrence:

score(d,wl,w2) =
if d contains wl and w2, number of occurrences of wl or w2

©® otherwise

Document 0: Kayvon 1is teaching 15-869 today. Yay 15-869!
Document 1: 15-869 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index

: maps words to (document, position)
Kayvon: (0,0), (1,3) (2,0)
is: (0,1), (1,1), (2,1)
teaching: (0, 2)

15-869: (0,3), (0,6), (1, 0)
yay: (0, 5)

claims: (1,4)

today: (0, 4)

awesome: (1,2), (2,3)
occasionally: (2,2)

Query: kayvon 15-869

Partial result set:

kayvon: {(0,0), (1,3), (2,0)}
15-869: {(9:3): (936): (1:9)}

Result:

{o (1), 1 (1), 2 (1)} n
{0 (2), 1 (90)}

= {0 (3), 1 (2)}

Ranking:

0, 1
CMU 15-869, Fall 2014



TF-IDF weighting

B Term frequency:
- TF(w,d) = the number of occurrences of word w in document d
- Measure of how relevant a document is for a given query word

B |nverse document frequency:
|D| +————— Number of documents in database D

_ — lo
IDF(w, D) = 108 Hd eDwed }‘ <«—— Number of documents containing w

- Measure of how discriminative a word is (idf is small for common words)
- Depends on number of occurrences in entire document collection
- |dea: words that appear in most documents should influence score less

m thdf score(w,d, D)= TF(w,d) X IDF(w, D)

B Many variants on how to compute TF(w,d)
- Binary: 1 of 0, depending on whether word is in document
- Normalized frequency: number of occurrences normalized by document size

CMU 15-869, Fall 2014



Searching for images (via text query

GO 8[6 crazy professors i@“

Web Images Maps Shopping More ~ Search tools

~\ill Teack
% for Food
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Content-based image retrieval

m Search forimages, based on a query images
- Take a photo, find similar looking photos
- Take a photo, find information about (objects, people, etc.) in photo

(MU 15-869, Fall 2014



Text-based document retrieval

B Keyidea was the breakdown of document into words

- Documents that have the same words are likely to be similar

- Words are a meaningful granularity of text to latch on to
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Content-based image retrieval

m |f we wanted to follow the text analogy, what are the words?
- Pixels?
- Blocks of pixels?

- Descriptors/features computed from images?

CMU 15-869, Fall 2014



Correspondence

m Defining similarity requires us to quantify the notion of
correspondence

- Example: pictures of the same place are similar
- Example: pictures containing the same/similar objects are similar

m Seek image representations (“descriptors”) such that numerically
similar descriptors correspond to meaningful correspondences

- Example: similar descriptor value corresponds to same object in the
scene: descriptor’s value is invariant to noise, lighting, affine object
transformation (rotation, translation, scale)

- Of course, good descriptors should also be distinctive... shouldn’t take on
same value for every image!

CMU 15-869, Fall 2014



Histogram of oriented gradients (HOG) .m0

B |dea: local object appearance/shape is well characterized by distribution of local intensity gradients

B Gradient orientation is less sensitive to illumination change than gradient magnitude

B

} :

For each pixel p in block:
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Compute local gradient

Add vote to histogram cell based on
gradient orientation
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[Image credit: Vondrick et al. ICCV 13] CMU 15-869, Fall 2014



HOG visualization close up

Visualizing magnitude of each histogram cell as a line

(Direction of line is at a right angle to the corresponding gradient orientation)

(MU 15-869, Fall 2014



Sparse SIFT descriptors

Interest-point-based, orientation of gradients descriptor

Find interest points (locations in image, with support region scale and orientation)
Compute 128-element descriptor for interest points
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Image gradients Keypoint descriptor

Pool gradient samples from 4x4 window into 8-bin histogram
Concatenate 4x4 grid of histograms to get full descriptor (8 x 16 = 128)

Figure credits:

R. Bandara, Codeproject
Chen, Kong, Oh, Sanan, Wohlberk 09
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http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

State-of-the-art: learn good features

Obtain feature representations by training deep neural networks

image size 224 110 26 13 13 13 _ -
filter size 7 %3 | 3
1 e384 V1 384 w256 i
n256 N N
Stnde 2 IxIma Ix3 max C
poal| | contrast ool 4066 4056} class
Stride 2f | norm. stride 2 units| | units | softmax
3 @13 . 256 )
Input Image '\2‘56 - -
Layer 1 Layer 2 Layer 3 Layer4 Layer 5 Layer6 Layer?7 Output

Krizhevsky 2012 classifier (“AlexNet”): trained to recognize objects in 1000 categories
First seven layers compute 4096-dimensional descriptor from image
Soft-max classifier performs classification on this descriptor.

(MU 15-869, Fall 2014



ing responses of filters in network
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Visualizing responses of filters in network
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Visual words

B Text document is made up of words (discrete values in a vocabulary)
B Descriptors are points in continuous high-dimensional descriptor space
B |dea: construct “visual words” from descriptors

(A) Featuresinimages

(B) Compute “vocabulary” for dataset by
clustering all features across all
images: represent each cluster by its
mean (or median) feature

(C) Bin (discretize) all image features by
assigning feature to closest cluster in
vocabulary

(D) Represent image by its histogram of
visual word counts

(MU 15-869, Fall 2014



Bag of words (BOW) image descriptor:

®m  Bag of words (BOW) descriptor:
- Image descriptor is a histogram of word occurrences
- Very sparse vector

©|90|0(1|]090|1(0|4|0|(0|0|0(0|8|93]0]|0|6

B Given query image descriptor g, compute score for database image d:

- Example: dot product of normalized query descriptor and DB image descriptor:
q-d
[all]<]

- Improvement: weight descriptor elements by visual word IDF values
- Many alternative distance functions:
- e.g., histogram intersection: min(g;, di) rather than inner product

score(q,d) =

CMU 15-869, Fall 2014



Summary

B |mage search using bag of words descriptors and an inverted index
acceleration structure:

1. Compute features for image collection

2. Build vocabulary (visual words) by clustering features in collection

3. Compute inverted index:

- For each visual word, index stores list of images with word, plus the tf-idf weight for that
word in that image: tfidf score(w, d, D) = tf(w,d) * idf(w, D)

4. For each queryimage:
- Compute BOW descriptor

- Use inverted index to find candidate set of similarimages

- Compute score between query and candidate images (e.g., dot product of descriptors)

- Rank results by score

CMU 15-869, Fall 2014



Background part 2: nearest neighbor
search using a KD-tree



Search application: establish feature correspondence

m Example: SIFT descriptor (length-128 vector)

m Forall descriptors in image 1, find nearest neighbor descriptor
inimage 2
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Review: K-D tree

m Spatial partitioning hierarchy
m K= dimensionality of space (below: K = 2)

e LI
~

Counts of points in leaf nodes

(MU 15-869, Fall 2014



Nearest neighbor search with K-D tree

Step 1: traverse to leaf cell containing query: compute closest point in
this cell to the query.

Query point
N L -
° 09 O o /
‘oo ) O
. . /
-

R a8

Closest so far: A (at distance d)
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Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
" \ dl B o ® .
09 0 o \
¥ I L) O
® °
L) (L {

R .

Closest so far: B (at distance d”)
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Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
‘. \ dl B o o .
09 O o
. )
® °
L) (0 L

R .

Nearest neighbor result: B (at distance d’)
(Visited nodes during query shown in pink)
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Approximate nearest neighbor (ANN) search

One simple answer: just take closest point in leaf node containing query

Query point
N -
° 09 O
o o ° ) O
® °
) ()

R .

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)
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Approximate nearest neighbor search

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest N nodes to query

Query point
o -
d \d’ ¢ @
® , Wi di
0o O
d; ®
I o )
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Basic K-D tree bhuild

m To find a partition for a node:

- Partition axis for which the variance of current data points is the highest

- Split at the median of the current data points

® You implemented nearest neighbor search in 3-D using a K-D tree
when implementing photon mapping in 15-462 (there, K=3)

CMU 15-869, Fall 2014



Randomized K-D tree

m To find a partition for a node:

- Randomly choose axis to partition

- Draw from distribution weighted proportionally with variance of current
data points is the highest

- Simple solution: pick partition axis by uniformly sampling from top N axes
with highest variance

- Randomly choose partition point

- Draw from distribution heavily weighted at the median of the current data
points (make it likely to split near the median of the data points)

CMU 15-869, Fall 2014



Approximate nearest-neighbor (ANN) search using

a forest of randomized K-D trees

Construct a set (“forest”) of random K-D trees

For each tree, find NN in leaf cell containing query

- Add all nodes (across all trees) traversed along the way to a priority queue (node

priority = distance from query to node)

Take closest of all answers across all
trees as an initial ANN

For top D nodes in queue, resume
downward search from that node

(D=5 in figure [Muja et al. 2009])

Solution for approximate k-NN as well

Speedup over linear search

—
L

A
o

10

— —

. . . -
— -

| — 70% precision
| = = —95% precision

10’ 10°
Number of trees
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Background part 3: RANSAC



RANSAC

B RANdom Sample And Concensus
m  Goal: fit model to collection of noisy data points

For i=0 to K: -
Perform random subsampling of datapoints (hypothetical inlier set) ’ .. s ,'
Fit model M; to hypothetical inlier set e o by 4
For each datapoint d: . . . ¢, ‘

Compute e = error(d, M;) . * ’ ‘
if e < threshold: ’ ..' ¢
d is in consensus set (it is consistent with model) . ,.. i )
If consensus set for M; is larger than that for Mpest: .' _
Mpest = Mi ' ¢ .

Red data points: outliers

Let w = number of inliers / number of data points Blue data points: consensus set
= probability of selecting an inlier at random

So:

wh = probability of selecting all inliers in hypothetical inlier set of size N

1-wN)X = probability that no iteration selects a set of all inliers after K RANSAC iterations
y

Image credit: Wikipedia (MU 15-869, Fall 2014



3D reconstruction from photos

CMU 15-869, Fall 2014



3D reconstruction from photo collections

m A good example of large-scale systems problem

m Efficient solutions involved combination of parallel execution and
algorithmicinnovation

m Today we will “black box” certain computer-vision techniques to focus
on overall algorithm design/systems issues

CMU 15-869, Fall 2014



Reconstructing scenes

B |nput:

- Unstructured collection of photos from same location (e.g., images from Flickr, Facebook)
B Qutput:

- Sparse 3D representation of scene (point cloud)

- Position of camera for each photo

- - -

adli aiaAEAs s
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Step 1: find matching images from collection

B Goal: find pairs of “matching” images containing views of the same object

B Step 1: compute feature points for all images (SIFT keypoint descriptors: 128-elements)
- (Generates thousands of keypoints per image

B Step 2: for each pair of images (1, J), determine if a match exists:

- (A) find potentially matching keypoints (similar descriptors)

Compute K-D tree for all keypoints in J
for each keypoint i in I:

(d1, d2) = perform approximate nearest neighbor (ANN) lookup for i
if (d1/d2 < threshold)

i in I and jl1 in J are candidates for being the same point on the same surface

- Output of (2-A): pairs of matching keypoints inimage | and J

- (B) verify matching keypoints: attempt to find geometric relationship between the two
viewpoints: estimate a fundamental matrix (3x3 matrix, rank 2) for the image pair using RANSAC:

- Select eight matching keypoints at random, estimate F-matrix
- If there are not at least 20 inlier keypoints, repeat

Recall: for key point visible at point p1 in image 1 and p, inimage 2, p should lie on the epipolar line
of pi: p1'Fp2=0
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Geometric verification (example in 2D)

Outlier

Image 1

CMU 15-869, Fall 2014



Step 2: organize matches into tracks

B Track = connected set of matching keypoints
- Atrack corresponds to a single point in the scene
- Track must contain at least two keypoints

- Allimages in a track are different views of that scene point

K

W

‘A,

)

_» O

Consistent track: black arrows indicate matching keypoints in difference images

\

—
O
o
)\
O

o~

W

‘<

\C

Ov_

Inconsistent track: contains two keypoints in one image
(clearly, all both keypoints in this image cannot correspond to same scene point)
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Image connectivity graph

B Graph nodes =images

B Graph edges =images that contain matching keypoints
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In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007 (MU 15-869, Fall 2014



Step 3: structure from motion (SfM)

B Given image match graph and a set of tracks, estimate:

- (Camera parameters for each image (position, orientation, focal length)
- 3D scene position of each track

B Goal: minimize track reprojection error:

- Error = SSDs between projection of each track and the ®
corresponding feature in the image. "

argmm y

- Non-llnear problem: solved via bundle adjustment /. i

1
1
1
1
1
1
1
1
[ ]
~
‘Q
' ~
] ~5
] ~~
1
~
] ~
] ~~ [
Qs [
§~ 1
~ 1
§~ 1
‘—"~ L}
- . I
=" A 1
- ~
=" \s 1
- - L}
~
[ ] N []
§~ []
( N r
~
~
. /
~

Pa is the projection matrix into the /'th image (depends on camera pos, orientation, f-length) Q

l

X 7 is the 3D scene position of track

f,-j is the 2D keypoint location of trackj in image /

Wl-j is a binary indicator: designating whether a keypoint for track j exists in image J
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Incremental SfM approach

B [ncrementally solve for camera positions, one camera at a time:
- Begin with data that algorithm is most confident in (avoid local minima)
B |nitialization:

- Pick pair of images with large number of feature matches and also wide baseline, estimate
camera pose from these matches *

- Triangulate shared tracks to estimate 3D position
= Run two-frame bundle adjustment to refine camera poses and track position
B Add next camera:
- Choose camera that observes most number of tracks with known positions
- Estimate camera pose from track matches using DLT/RANSAC
- Run bundle adjustment to refine only new camera and positions of tracks it observes
- Add new tracks to scene (observed by new camera but not yet in scene)
- Triangulate positions of new tracks using two cameras with maximum angle of separation
= Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 keypoint matches, and for which the smallest percentage of matches are

inliers to an estimated homography relating the two images CMU 15-869, Fall 2014



Algorithm summary

B For each image, compute matching images
B (Organize matching keypoints into consistent tracks
B Until no new cameras can be estimated:
- Pick next camera to estimate
- Refine estimate globally using bundle adjustment

CMU 15-869, Fall 2014



Accelerating match finding

B A naive formulation of match finding is 0(N2): for each image check for match
against all other images

= Large image collections — large N

- Computing a match is expensive: (recall, requires finding a geometric fit via
estimating fundamental matrix): ~ a few matches per core per second

- N=1,000,000, 10 matches per second per core = 3,100 CPU years

B Must avoid performing expensive check on all possible matches!

® This is a retrieval problem! (“quickly find most likely matches”)

CMU 15-869, Fall 2014



Accelerating match finding

B Step 1: use fast retrieval techniques to find candidate matching images

- e.g., use inverted index with TF-IDF weighting

- Result: top-k nearest neighbors for query image

® For each of the k candidates, perform expensive geometric verification step

- Reduce complexity of expensive operations to 0(kN), wherek << N

Visual words R
Node 0
------------------------------- Node 1
3| TOFweights | Node2
E | fromroeeeeneeeeeennseeane s

Parallelization on a distributed system:

1. Partition images across nodes, compute features/BOW + term-
frequencies for all images

- SIFT features for M images: ~ 1-2TB
- BOW representation for TM images: ~ 13 GB
2. Global reduction to compute IDF for each visual word
3. Broadcast IDF information to all nodes
4. Broadcast TFIDF table to all nodes (13 GB)
5. Each node computes top-k NN for the images it owns

(MU 15-869, Fall 2014



Improving match finding for 3D scene reconstruction

B Assume primary goal is to produce a high-quality 3D scene reconstruction (not to
compute position of camera for every image in the database)

®m Want a match graph that is sufficiently dense to enable 3D reconstruction:

- Want as few connected components in match graph as possible (note: each
connected component will be its own 3D scene after reconstruction)

- Prefer asingle, large scene reconstruction, not many “pieces” of scene

- Want multiple views of the same track (i.e., want multiple images containing
the same features to aid robustness of bundle adjustment)

CMU 15-869, Fall 2014



Building a match graph Noarwal 2008

B Step 1: Compute k nearest neighbors using acceleration structure, k=k; + k;

B Step 2: Perform geometric verification of top k; matches, add graph edge
when verification succeeds

m  Step 3: Verify next k; matches, but only verify image pair (/,J) ifimage / and
image J are in different components of the graph

B Step 4: Densify the graph using several rounds of “query expansion”

For each image I
For each neighbor J of I in graph
For each neighbor K of J in graph
If I and K are in different components: verify (I, K)

[nitial Matches CC Merge Query Expansion 1 Query Expansion 4
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Putting it all together (distributed implementation)

In parallel across all nodes, compute features
Compute IDF weights via reduction, broadcast to all nodes
Broadcast TFIDF information (weight table) to all nodes

Independently compute K=k;+k, NN on all nodes

A

For each image i, verify top k; candidates (parallelized dynamically via shared work queue across
nodes)

6. Compute match graph connected components (sequentially on one node is easiest)

7. For each image i, verify next k; candidates if candidate is not in same graph connected
component (dynamic parallelization) as i

8. Foreachimage i, verify further matches based on candidates returned from query expansion
- Repeat for N rounds, or until convergence

9. Generate tracks:
- Each node generates tracks for the images it owns (in parallel across nodes)
- Then merge tracks across nodes (parallel reduction, or sequentially on home node)

10. Compute graph skeletal set (next slide)
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Match graph sparsification

[Snavely 2008]

m Allimages do not contribute accurately to coverage/accuracy of 3D reconstruction

B For efficiency, we'd like to compute SfM using a minimal set of images (the “skeletal set”)
that yields similar reconstruction quality as the full match graph
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Match graph Skeletal set Reconstruction Adding addition final result post
(black nodes are skeletal set  from skeletal set images with pose bundle
images, gray nodes are estimation adjustment
remaining images)

ad

Result: 2x to 50x improvement in reconstruction performance

Image credit: Snavely et al. 2008 CMU 15-869, Fall 2014



Systems problems, algorithmic solutions

B Desire to work at scale triggered innovation in algorithms

- Scale imposes new constraints

m [terative approach to SfM (to avoid local minimal)

B New algorithm for removing redundant images from match graph
- Redundant = doesn’t improve reconstruction quality

B |mproved algorithm for bundle adjustment at scale
- Not discussed today
- See“Bundle Adjustment in the Large’, Agarwal et al. ECCV 2010
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Results

“Building Rome in a Day” Agarwal et al. 2009

Time (hrs)
Data set Images Cores Registered Pairs verified Pairs found Matching Skeletal sets Reconstruction
Dubrovnik 57,845 352 11,868 2,658,264 498,982 5 1 16.5
Rome 150,000 496 36,658 8,825,256 2,712,301 13 1 7
Venice 250,000 496 47,925 35,465,029 6,119,207 27 21.5 16.5

(MU 15-869, Fall 2014



Building Rome on a Cloudless Day

Reconstruction from 2.8M images on a single PCin one day (Frahm et al. ECCV 2010)

Gist & SIFT & Local iconic
Dataset Clustering|Geom. verification |[scene graph| Dense |[total time
Rome & geo|| 1:35 hrs 11:36 hrs 8:35 hrs 1:58 hrs|| 23:53 hrs
Berlin & geo|| 1:30 hrs 11:46 hrs 7:03 hrs 0:58 hrs|| 21:58 hrs
LSBC F#Himages

Dataset total |clusters|iconics|verified |3D models|largest model

Rome & geo [|2,884,653(100, 000| 21,651 | 306788 63905 5671

Berlin & geol|2,771,966(100, 000| 14664 | 124317 31190 3198

Key ideas:

- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor)
= (Cluster binary codes by Hamming distance

- Verify clusters by finding N images near center that can be geometrically verified using SIFT keypoints (reject

clusters than cannot be verified)

- Compute “iconic” image for each cluster (image with most inliers)

- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by

image geotags)
- Use high-performance plane-sweep 3D reconstruction
- Use asingle PC with four GPUs
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Task: location recognition

®  Given a new image, how can we leverage an existing 3D reconstruction
to estimate the camera’s location and orientation?

Query image Database image (keypoints shown)

®  First-thought solution:

- For each SIFT feature in query image, ﬁndmg mtchmg trcks in scene database of
all images (recall: tracks correspond to scene features)

Possible implementation: ANN lookup using KD-tree built over database

Then attempt camera pose estimation for query given the collection of matches

Left image credit: Mark Ordonez (via Flickr), Right image credit: Li et al. 2010 CMU 15-869, Fall 2014



Observation

B Not all scene database features are equally useful in matching images

B Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

(MU 15-869, Fall 2014



Observation

B Not all scene database features are equally useful in matching images

B Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database
(many tourist images of Dubrovnik, Croatia on Flickr contain this feature)

m |dea: use up-front knowledge of
likelihood of scene points to appear
inimages. .. to accelerate image
feature matching

(MU 15-869, Fall 2014



ldea: analyze image database to accelerate
matching

m Previously in this lecture: organize database feature points
into KD-tree to accelerate search

m Now: leverage co-occurrence and frequency of occurrence

- We do not desire all matches in the database, only enough matches to
estimate camera pose

- (Co-occurrence: it is sufficient to search over a small subset of scene points
(since many scene points co-occur in the same images and are similarly
useful for pose estimation)

- Frequency of occurrence: search for the points that are most likely to be
in the query image.
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K-coverings of scene images

m Subsample database: compute scene point set that is a K-
covering of all images in the database

— K-cover: set of points such that at least K points are present in each image

— Simple greedy algorithm to compute K cover:

S = {} // set of points in covering
sort all scene points by number of images they appear in
while K-cover not reached by S:

add point P appearing in largest number of images into S

m Precompute two K-coverings for image database
- Ps: 5-covering, capped to at most 2,000 points
- P< 100-covering
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Localization algorithm

B Query = list of feature points
m Database = list of feature points

B |dea: rather than search database for matches to points in query image, search
query list for matches database feature points

B Simple algorithm: tests scene points against query image in priority order

Compute Kd tree for points in query
Initial prioritization of database points:
Highest priority points: Ps
Next highest priority points: Pc
Remaining points: priority = number of images point is visible 1in

while additional matching points are required:
Attempt to match highest priority point against query points
if match found:
for each DB image I containing matched point:
Increase priority of all DB points in I

\ Dynamic reprioritization of DB points based on co-occurrence
with matched points. CMU 15-869, Fall 2014



Recap: how the algorithm works

B Test the most likely to match images from the database first
- Recall: only need a few matches to estimate 3D camera pose of query image

B Once a match is found, leverage co-occurrence of points in images to predict new
matching points

B Desirable system behavior: optimize for the common case!
- Common images get found very quickly
- Uncommon images take longer to localize

- Memory efficient: don’t need to store acceleration structure for the entire
database of images
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Class discussion:
Alternative reconstruction strateqy: KinectFusion (lzadi et al.)
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