
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 19:

Depth Cameras

 CMU 15-869, Fall 2014

Continuing theme: computational photography

▪ Cameras capture light, then extensive processing produces
the desired image

▪ Today:
- Capturing scene depth in addition to light intensity

 CMU 15-869, Fall 2014

Why might we want to know the depth of scene objects?

Mapping

Navigation

Segmentation

Object tracking

Credit: Blashko et al. CVPR 13 Tutorial

 CMU 15-869, Fall 2014

▪ Conventional LIDAR
- Laser beam scans scene (rotating mirror)
- Low frame rate to capture entire scene

▪ “Time-of-flight” (TOF) cameras
- No moving beam, capture entire image of scene with each light pulse

- Special CMOS sensor records a depth image

- High frame rate

- Formerly TOF cameras were low resolution, expensive...

- TOF camera featured in XBox One depth sensor
(today we will first talk about the original XBox 360 implementation)

Depth from time-of-flight

 CMU 15-869, Fall 2014

Computing depth of scene point from two images
Binocular stereo 3D reconstruction of point P: depth from disparity

P

x x’

ff
b

z

Focal length: f
Baseline: b
Disparity: d = x’- x

Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length
“Disparity” is the distance between object’s projected position in the two images: x - x’

 CMU 15-869, Fall 2014

Correspondence problem
How to determine which pairs of pixels in image 1 and image 2 correspond to the
same scene point?

 CMU 15-869, Fall 2014

▪ Goal: determine pixel correspondence
- Corresponding pixels = pairs of pixels that correspond to same scene point

▪ Epipolar Constraint
– Reduces correspondence problem to 1D search along conjugate epipolar lines
– Point in left image will lie on line in right image (epipolar line)

epipolar plane epipolar lineepipolar line

Epipolar constraint

Slide credit: S. Narasimhan

P

(image of the line through P)

 CMU 15-869, Fall 2014

For each epipolar line
For each pixel in the left image

Compare with every pixel on same epipolar line in right image
Pick pixel with minimum match cost

Basic improvements: match windows, adaptive size match windows...
- This should sound familiar given our discussion of image processing algorithms...
- Correlation, sum-of-squared difference (SSD), etc.

Solving correspondence (basic algorithm)

What are
assumptions?

Slide credit: S. Narasimhan

 CMU 15-869, Fall 2014

Solving correspondence: robustness challenges

▪ Scene with no texture (many parts of the scene look the same)

▪ Non-lambertian surfaces (surface appearance is dependent upon view)

▪ Pixel pairs may not be present (point on surface is occluded from one view)

 CMU 15-869, Fall 2014

Alternative: depth from defocus

P

f

z

c

a

z’Then use thin lens approximation to obtain z from z’

Aperture: a
Circle-of-confusion: c

Avoids correspondence problem of depth from disparity, but system must know
location of sharp edges in scene to estimate circle of confusion c.

 CMU 15-869, Fall 2014

Structured light

z

zref

d

f

Reference plane

Known light
source

b

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

Single spot illuminant is inefficient!
(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image)

x

 CMU 15-869, Fall 2014

Structured light
Simplify correspondence problem by encoding spatial position in illuminant

Projected light pattern Camera image
Image: Zhang et al.

 CMU 15-869, Fall 2014

Microsoft XBox 360 Kinect

Illuminant
(Infrared Laser + diffuser)

RGB CMOS Sensor
640x480 (w/ Bayer mosaic)

Monochrome Infrared
CMOS Sensor

(Aptina MT9M001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop

Image credit: iFixIt

 CMU 15-869, Fall 2014
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

 CMU 15-869, Fall 2014
Credit: www.futurepicture.org

Infrared image of Kinect illuminant output

 CMU 15-869, Fall 2014

Computing disparity for entire scene

1. Choose output pixels in infrared image, classify as UNKNOWN or SHADOW (based on whether speckle is found)

2. While significantly large percentage of output pixels are UNKNOWN

- Choose an UNKNOWN pixel.
- Correlate surrounding MxN pixel window with reference image to compute disparity D = (dx,dy)

(note: search window is a horizontal swath of image, plus some vertical slack)
- If sufficiently good correlation is found:

- Mark pixel as a region anchor (its depth is known)
- Attempt to grow region around the anchor pixel:

- Place region anchor in FIFO, mark as ACTIVE
- While FIFO not empty
- Extract pixel P from FIFO (known disparity for P is D)
- Attempt to establish correlations for UNKOWN neighboring pixels Pn of P (left,right,top,bottom

neighbors) by searching region given by Pn + D + (+/-1,+/1)
- If correlation is found, mark Pn as ACTIVE, set parent to P, add to FIFO
- Else, mark Pn as EDGE, set depth to depth of P.

** Source: PrimeSense Patent WO 2007/043036 A1

Use region-growing algorithm for compute efficiency *
(Assumption: spatial locality implies depth locality)

 CMU 15-869, Fall 2014

Kinect block diagram

Infrared Sensor RGB Sensor Illuminant

Image
processing

ASIC

USB bus

Box 360 CPU

640x480 x 30fps RGB image
640x480 x 30fps Disparity image

Disparity calculations performed by PrimeSense ASIC in Kinect, not by XBox 360 CPU

Kinect

Cheap sensors: ~ 1 MPixel

Cheap illuminant: laser + diffuser makes random
dot pattern (not a traditional projector)

Custom image-processing ASIC to compute
disparity image (scale-invariant region
correlation involves non-trivial compute cost)

 CMU 15-869, Fall 2014

Extracting the player’s skeleton
(enabling full-body game input)

Depth Image Character Joint AnglesChallenge: how to determine player’s position and
motion from (noisy) depth images... without consuming
a large fraction of the XBox 360’s compute capability?

[Shotton et al. 2011]

 CMU 15-869, Fall 2014

Key idea: classify pixels into body regions

Shotton et al. represents body with 31 regions

[Shotton et al. 2011]

 CMU 15-869, Fall 2014

Pixel classification
For each pixel: compute features from depth image

Classify pixels into body parts using randomized decision forest classifier
- Trained on 100K motion capture poses + database of rendered images as ground truth

Two example depth features

Per-pixel probabilities pooled to compute 3D spatial density function for each body part c
(joint angles inferred from this density)

Result of classification: (probability pixel x in depth image I is body part c)

[Shotton et al. 2011]

Where and is the

depth image value at pixel X.

Features are cheap to compute + can be computed for all pixels in parallel
- Features do not depend on velocities: only information from current frame

 CMU 15-869, Fall 2014

Performance result
▪ Real-time skeleton estimation from depth image requires < 10%

of Xbox 360 CPU

▪ XBox GPU-based implementation @ 200Hz (research
implementation described in publication, not used in product)
- Actual XBox 360 product implementation is likely far more efficient

 CMU 15-869, Fall 2014

XBox 360 + Kinect system
Infrared Sensor RGB Sensor Illuminant

Image
processing

ASIC

USB bus

XBox 360

640x480 x 30fps RGB image
640x480 x 30fps Disparity image

Kinect

Disparity computations
(create depth image)

CPU CPU CPU GPU

1 MB Shared L2
10 MB Embedded

DRAM

Skeleton inference

 CMU 15-869, Fall 2014

Xbox 360 Kinect summary
▪ Hardware = cheap depth sensor + custom image processing ASIC

- Structured light pattern generated by scattering infrared laser
- Depth obtained from triangulation (depth from disparity), not time-of-flight
- Custom ASIC to convert infrared image into depth values (high computational

cost is searching for correspondences)

▪ Interpretation of depth values is performed on CPU
- Low-cost, data-patallel skeleton estimation made computationally feasible by

machine learning approach

 CMU 15-869, Fall 2014

Xbox One Sensor
▪ Time-of-flight sensor (not based on structured light like the original Kinect)

▪ 1080p depth sensing + wider field-of-view than original Kinect

▪ “Computer vision” challenges in obtaining high-quality signal:
- Flying pixels
- Segmentation
- Motion blur

Another TOF camera:
Creative Depth Camera

 CMU 15-869, Fall 2014

Time of flight cameras
▪ Measure phase offset of light reflected off environment

- Phase shift proportional to distance from object

Image credit: V. Castaneda and N. Navab
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf

▪ Many “computer vision” challenges to achieving high quality depth estimate
- Measurement error
- Motion blur
- Flying pixels
- Segmentation

[Reynolds et al. CVPR 2011]

[A Kolb et al. 2009]

http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf

 CMU 15-869, Fall 2014

Reading
▪ KinectFusion: Real-time 3D Reconstruction and interaction Using a Moving

Depth Camera. S. Izadi et al. UIST 11

