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Example video

28 second video: 1920 x 1080, @ 30fps 

After decode: 8-bits per channel RGB  → 24 bits/pixel → ~6MB/frame 
6 MB * 28 sec * 30 fps = 4 GB 
Actual file size: 53 MB (95-to-1 compression ratio) 
Compression/encoding performed in real time on my iPhone 5s

(Kaş, Turkey)



 CMU 15-869, Fall 2014

H.264/AVC video compression
▪ AVC = advanced video coding 
▪ Also called MPEG4 Part 10 
▪ Common format in many modern HD video applications: 

- Blue Ray 
- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.) 
- HD video recorded by your smart phone 
- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2) 
- Some satellite TV broadcasts (e.g., DirecTV) 

▪ Benefit: much higher compression ratios than MPEG2 or MPEG4  
- Alternatively, higher quality video for fixed bit rate 

▪ Costs: higher decoding complexity, substantially higher encoding cost 
- Idea: trades off more compute for requiring less bandwidth/storage 
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Hardware implementations
▪ Support for H.264 video encode/decode is provided by fixed function 

hardware on modern mobile devices 

▪ Hardware encoding/decoding support existed in modern Intel CPUs since 
Sandy Bridge (Intel “Quick Sync”) 

▪ Modern operating systems expose hardware support through APIs 
- e.g., DirectShow/DirectX (Windows), AVFoundation (iOS)  
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Video container format versus video codec
▪ Video container (MOV, AVI) bundles media assets 

▪ Video codec: H.264/AVC (MPEG 4 Part 10) 
- H.264 standard defines how to represent and decode video 
- H.264 does not define how to encode video (this is left up to implementations) 
- H.264 has many profiles 

- High Profile (HiP): supported by HDV and Blue Ray
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Review: Y’CbCr 4:2:0
Y’ = perceived brightness (“luma”)  
Cb = blue-yellow deviation from gray 
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

4:2:0 representation (subsampled chroma): 
- Store Y’ at full resolution 
- Store Cb, Cr at half vertical and horizontal resolution 

(1/4 as many chroma samples as luminance samples)

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

X:Y:Z notation: 
X = width of block 
Y = number of chroma samples in first row 
Z = number of chroma samples in second row
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Review: image transform coding via DCT 
(recall: JPEG compression segment of camera pipeline lecture)

i

j

0

7
7

Credit: Wikipedia, Pat Hanrahan
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Note: only showing coefficients for one 
channel (e.g., Y’) here. Each channel is 
transformed independently.  

64 cosine basis vectors  
(each vector is 8x8 image)

64 basis coefficients
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Review: quantization and entropy compression

Credit: Pat Hanrahan
Coefficient reordering

RLE compression of zeros 

Entropy compression of 
non-zeros

Compressed bits

Lossless compression!

Quantization loses information 
(lossy compression!)
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Residual: difference between compressed image and 
original image

Original pixels

Compressed pixels 
(JPEG quality level 2)

Residual 
(amplified for visualization)

Compressed pixels 
(JPEG quality level 6)

Residual 
(amplified for visualization)
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Video compression main ideas
▪ Compression is about exploiting redundancy in a signal 

- Intra-frame redundancy: value of pixels in neighboring 
regions of a frame are good predictor of values for other 
pixels in the frame (spatial redundancy) 

- Inter-frame redundancy: pixels from nearby frames in time 
are a good predictor for the current frame’s pixels 
(temporal redundancy)
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H.264/AVC video compression overview

Intra-/Inter-frame 
Prediction Model

Transform/
Quantize 
Residual

Previously 
Coded Data

Entropy 
Encoding

Source 
Video

Compressed 
Video Stream

Prediction 
parameters

Residual
Basis 

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: difference between predicted pixel values and input video pixel values
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16 x 16 macroblocks
Video frame is partitioned into 16 x 16 pixel 
macroblocks 

Due to 4:2:0 chroma subsampling, 
macroblocks correspond to 16 x 16 luma 
samples and 8 x 8 chroma samples 
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Macroblocks organized into slices
Can think of a slice as a sequence of 
macroblocks in raster scan order * 

Slices can be decoded independently **

Slice 1

Slice 2

* H.264 also has non-raster-scan order modes (FMO), will not discuss today. 

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent. 

One 16x16 macroblock
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Decoding via prediction + correction
▪ During decode, samples in a macroblock are generated by: 

1. Making a prediction based on already decoded samples in macroblocks from 
the same frame (intra-frame prediction) or from other frames (inter-frame 
prediction) 

2. Correcting the prediction with a residual stored in the video stream 

▪ Three forms of prediction: 
- I-macroblock: macroblock samples predicted from samples in previous 

macroblocks in the same slice of the current frame 
- P-macroblock: macroblock samples can be predicted from samples from one 

other frame (one prediction per macroblock) 
- B-macroblock: macroblock samples can be predicted by a weighted combination 

of multiple predictions from samples from other frames
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Intra-frame prediction (I-macroblock)
▪ Prediction of sample values is performed in spatial domain, not transform domain 

- Predicting pixel values, not basis coefficients 

▪ Modes for predicting the 16x16 luma (Y) values: *  
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels 
- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col 
- I_PCM: actual sample values provided

0 1 2 3 4 5 6 7 8

9	
  
10	
  
11	
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Intra_4X4

Intra_16x16

Yellow pixels: already reconstructed (values known) 
White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile
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Intra_4x4 prediction modes
▪ Nine prediction modes (6 shown below) 

- Other modes: horiz-down, vertical-left, horiz-up
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Mode 0: vertical 
(4x4 block is copy of 
above row of pixels)

Mode 1: horizontal 
(4x4 block is copy of left 

col of pixels)

Mode 2: DC 
(4x4 block is average of above 

row and left col of pixels)

Average

Mode 3: diagonal down-left (45o)
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Mode 4: diagonal down-right (45o)
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Mode 5: vertical-right (26.6o)
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Intra_16x16 prediction modes
▪ 4 prediction modes: vertical, horizontal, DC, plane

Average

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Mode 4: plane

P[i,j] = Ai * Bj  + C 
A derived from top row, B derived from left col, C from both
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Further details
▪ Intra-prediction of chroma (8x8 block) is performed using four modes similar to those 

of intra_16x16  (except reordered as: DC, vertical, horizontal, plane) 

▪ Intra-prediction scheme for each 4x4 block within macroblock encoded as follows: 
-  One bit per 4x4 block: 

- if 1, use most probable mode 
- Most probable = lower of modes used for 4x4 block to left or above current 

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode one 
of nine modes

mode=??mode=2

mode=8

- if rem_intra4x4_pred_mode is smaller than most probable 
mode, use mode given by rem_intra4x4_pred_mode	
  

- else, mode is rem_intra4x4_pred_mode+1
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Inter-frame prediction (P-macroblock)
▪ Predict sample values using values from a block of a previously decoded 

frame * 

▪ Basic idea: current frame formed by translation of pixels from temporally 
nearby frames (e.g., object moved slightly on screen between frames) 
- “Motion compensation”: use of spatial displacement to make prediction 

about pixel values

Recently decoded frames 
(stored in “decoded picture Buffer”)

macroblock

Frame currently 
being decoded

* Note: “previously decoded” does not imply source frame must come before frame in video sequence. 
   (Can H.264 supports decoding out of order.)
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P-macroblock prediction

Decoded picture 
buffer: frame 0

Decoded picture 
buffer: frame 1

Current frame

A

B

Block A: predicted from (frame 0, motion-vector = [-3, -1]) 
Block B: predicted from (frame 1, motion-vector = [-2.5, -0.5]) 

▪ Prediction can be performed at macroblock or sub-macroblock granularity 
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions” 
- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions 

▪ Each partition predicted by sample values defined by: 
(reference frame id, motion vector)

4x4 pixel sub-
macroblock 

partition

Note: non-integer motion vector
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Non-integer motion vectors require resampling

Interpolation to 1/2 pixel sample points via 6-tap filter: 
half_integer_value = clamp(	
  (A	
  -­‐	
  5B	
  +	
  20C	
  +	
  20D	
  -­‐	
  5E	
  +	
  F)	
  /	
  32)	
  

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors 
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel 
samples 
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

A

B
C

D
E

F

Example: motion vector with 1/2 pixel values. 
Must resample reference block at positions given by red dots.
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Motion vector prediction
▪ Problem: per-partition motion vectors requires significant amount of storage 
▪ Solution: predict motion vectors from neighboring partitions and encode 

residual in compressed video stream 
- Simple example below: predict D’s motion vector as average of motion vectors of A, B, C 
- Prediction logic becomes more complex when when partitions of neighboring blocks are 

of different size

DA

B C
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Question: what partition size is best?
▪ Smaller partitions likely yield more accurate prediction 

- Fewer bits needed for residuals 

▪ Smaller partitions require more bits to store partition 
information (diminish benefits of prediction) 
- Reference picture id 
- Motion vectors (note: motion vectors are more coherent with finer sampling, 

so they likely compress well)
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Inter-frame prediction (B-macroblock)
▪ Each partition predicted by up to two source blocks 

- Prediction is the average of the two reference blocks 
- Each B-macroblock partition stores two frame references and two motion 

vectors (recall P-macroblock partitions only stored one)

Previously decoded frames 
(stored in “decoded picture Buffer”)

Frame currently 
being decoded

A

B

prediction = (A + B) / 2
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Additional prediction details
▪ Optional weighting to prediction: 

- Per-slice explicit weighting (reference samples multiplied by weight) 
- Per-B-slice implicit weights (reference samples weights by temporal distance of 

reference frame from current frame in video) 
- Idea: weight samples from reference frames nearby in time more 

▪ Deblocking 
- Blocking artifacts may result as a result of superblock granularity encoding 
- After macroblock decoding is complete,  optional perform smoothing filter 

across block edges.
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Putting it all together: encoding an inter-
predicted macroblock
▪ Inputs: 

- Current state of decoded picture buffer (state of the decoder) 
- 16x16 block of input video to encode 

▪ General steps: (need not be performed in this order) 
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel 

resampling 
- Choose prediction type (P-type or B-type)  
- Choose reference pictures for prediction 
- Choose motion vectors for each macroblock partition (or sub-partition) 
- Predict motion vectors and compute motion vector difference 
- Encode choice of prediction type, reference pictures, and motion vector 

differences 
- Encode residual for macroblock prediction  
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to 

use as reference picture for future macroblocks

Heavily coupled 
decisions
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H.264/AVC video encoding

Intra-frame 
Prediction

Transform/
Quantize 
Residual

Decoded 
picture buffer

Source 
Video 
Frame

Compressed 
Video Stream

Prediction parameters

Actual MB pixels
Basis 

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Inter-frame 
Prediction

Predicted MB
Compute 
Residual

Entropy 
Encoder

Motion 
Vector Pred.

Compute 
MV Diffs

Inverse 
transform/ 

quantize
Deblock

Motion 
vectors

MB = macroblock 
MV = motion vector
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Motion estimation
▪ Encoder must find reference block that predicts current frame’s pixels well.  

- Can search over multiple pictures in decoded picture buffer + motion vectors can be 
non-integer (huge search space) 

- Must also choose block size (macroblock partition size) 
- And whether to predict using combination of two blocks 
- Literature is full of heuristics to accelerate this process  

- Remember, must execute in real-time for HD video (1920x1080), on a low-power 
smartphone

A

gray area: 
search region Decoded picture 

buffer: frame 0
Current frame

Limit search window:
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Motion estimation optimizations
▪ Coarser search: 

- Limit search window to small region 
- First compute block differences at coarse scale (save partial sums from previous searches) 

▪ Smarter search: 
- Guess motion vectors similar to motion vectors used for neighboring blocks 
- Diamond search: start by test large diamond pattern centered around block 

- If best match is interior, refine to finer scale 
- Else, recenter around best match 

▪ Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g., 
compressed representation is lower than threshold 

- Test zero-motion vector first (optimize for non-moving background) 
▪ Optimizations for subpixel motion vectors: 

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel 
offsets around this match

Original Refined Recentered


