
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 17:

H.264 Video Compression

 CMU 15-869, Fall 2014

Example video

28 second video: 1920 x 1080, @ 30fps

After decode: 8-bits per channel RGB → 24 bits/pixel → ~6MB/frame
6 MB * 28 sec * 30 fps = 4 GB
Actual file size: 53 MB (95-to-1 compression ratio)
Compression/encoding performed in real time on my iPhone 5s

(Kaş, Turkey)

 CMU 15-869, Fall 2014

H.264/AVC video compression
▪ AVC = advanced video coding
▪ Also called MPEG4 Part 10
▪ Common format in many modern HD video applications:

- Blue Ray
- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.)
- HD video recorded by your smart phone
- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)
- Some satellite TV broadcasts (e.g., DirecTV)

▪ Benefit: much higher compression ratios than MPEG2 or MPEG4
- Alternatively, higher quality video for fixed bit rate

▪ Costs: higher decoding complexity, substantially higher encoding cost
- Idea: trades off more compute for requiring less bandwidth/storage

 CMU 15-869, Fall 2014

Hardware implementations
▪ Support for H.264 video encode/decode is provided by fixed function

hardware on modern mobile devices

▪ Hardware encoding/decoding support existed in modern Intel CPUs since
Sandy Bridge (Intel “Quick Sync”)

▪ Modern operating systems expose hardware support through APIs
- e.g., DirectShow/DirectX (Windows), AVFoundation (iOS)

 CMU 15-869, Fall 2014

Video container format versus video codec
▪ Video container (MOV, AVI) bundles media assets

▪ Video codec: H.264/AVC (MPEG 4 Part 10)
- H.264 standard defines how to represent and decode video
- H.264 does not define how to encode video (this is left up to implementations)
- H.264 has many profiles

- High Profile (HiP): supported by HDV and Blue Ray

 CMU 15-869, Fall 2014

Review: Y’CbCr 4:2:0
Y’ = perceived brightness (“luma”)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

4:2:0 representation (subsampled chroma):
- Store Y’ at full resolution
- Store Cb, Cr at half vertical and horizontal resolution

(1/4 as many chroma samples as luminance samples)

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

X:Y:Z notation:
X = width of block
Y = number of chroma samples in first row
Z = number of chroma samples in second row

 CMU 15-869, Fall 2014

Review: image transform coding via DCT
(recall: JPEG compression segment of camera pipeline lecture)

i

j

0

7
7

Credit: Wikipedia, Pat Hanrahan

0

x=

Note: only showing coefficients for one
channel (e.g., Y’) here. Each channel is
transformed independently.

64 cosine basis vectors
(each vector is 8x8 image)

64 basis coefficients

 CMU 15-869, Fall 2014

Review: quantization and entropy compression

Credit: Pat Hanrahan
Coefficient reordering

RLE compression of zeros

Entropy compression of
non-zeros

Compressed bits

Lossless compression!

Quantization loses information
(lossy compression!)

 CMU 15-869, Fall 2014

Residual: difference between compressed image and
original image

Original pixels

Compressed pixels
(JPEG quality level 2)

Residual
(amplified for visualization)

Compressed pixels
(JPEG quality level 6)

Residual
(amplified for visualization)

 CMU 15-869, Fall 2014

Video compression main ideas
▪ Compression is about exploiting redundancy in a signal

- Intra-frame redundancy: value of pixels in neighboring
regions of a frame are good predictor of values for other
pixels in the frame (spatial redundancy)

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for the current frame’s pixels
(temporal redundancy)

 CMU 15-869, Fall 2014

H.264/AVC video compression overview

Intra-/Inter-frame
Prediction Model

Transform/
Quantize
Residual

Previously
Coded Data

Entropy
Encoding

Source
Video

Compressed
Video Stream

Prediction
parameters

Residual
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: difference between predicted pixel values and input video pixel values

 CMU 15-869, Fall 2014

16 x 16 macroblocks
Video frame is partitioned into 16 x 16 pixel
macroblocks

Due to 4:2:0 chroma subsampling,
macroblocks correspond to 16 x 16 luma
samples and 8 x 8 chroma samples

 CMU 15-869, Fall 2014

Macroblocks organized into slices
Can think of a slice as a sequence of
macroblocks in raster scan order *

Slices can be decoded independently **

Slice 1

Slice 2

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

One 16x16 macroblock

 CMU 15-869, Fall 2014

Decoding via prediction + correction
▪ During decode, samples in a macroblock are generated by:

1. Making a prediction based on already decoded samples in macroblocks from
the same frame (intra-frame prediction) or from other frames (inter-frame
prediction)

2. Correcting the prediction with a residual stored in the video stream

▪ Three forms of prediction:
- I-macroblock: macroblock samples predicted from samples in previous

macroblocks in the same slice of the current frame
- P-macroblock: macroblock samples can be predicted from samples from one

other frame (one prediction per macroblock)
- B-macroblock: macroblock samples can be predicted by a weighted combination

of multiple predictions from samples from other frames

 CMU 15-869, Fall 2014

Intra-frame prediction (I-macroblock)
▪ Prediction of sample values is performed in spatial domain, not transform domain

- Predicting pixel values, not basis coefficients

▪ Modes for predicting the 16x16 luma (Y) values: *
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels
- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col
- I_PCM: actual sample values provided

0 1 2 3 4 5 6 7 8

9	

10	

11	

12

Intra_4X4

Intra_16x16

Yellow pixels: already reconstructed (values known)
White pixels: 4x4 block to be reconstructed

* An additional 8x8 mode exists in the H.264 High Profile

 CMU 15-869, Fall 2014

Intra_4x4 prediction modes
▪ Nine prediction modes (6 shown below)

- Other modes: horiz-down, vertical-left, horiz-up

0 1 2 3 4

9	

10	

11	

12

0 1 2 3 4

9	

10	

11	

12

0 1 2 3 4

9	

10	

11	

12

0 1 2 3 4 5 6 7 8

9	

10	

11	

12

Mode 0: vertical
(4x4 block is copy of
above row of pixels)

Mode 1: horizontal
(4x4 block is copy of left

col of pixels)

Mode 2: DC
(4x4 block is average of above

row and left col of pixels)

Average

Mode 3: diagonal down-left (45o)

0 1 2 3 4

9	

10	

11	

12

Mode 4: diagonal down-right (45o)

0 1 2 3 4

9	

10	

11	

12

Mode 5: vertical-right (26.6o)

 CMU 15-869, Fall 2014

Intra_16x16 prediction modes
▪ 4 prediction modes: vertical, horizontal, DC, plane

Average

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Mode 4: plane

P[i,j] = Ai * Bj + C
A derived from top row, B derived from left col, C from both

 CMU 15-869, Fall 2014

Further details
▪ Intra-prediction of chroma (8x8 block) is performed using four modes similar to those

of intra_16x16 (except reordered as: DC, vertical, horizontal, plane)

▪ Intra-prediction scheme for each 4x4 block within macroblock encoded as follows:
- One bit per 4x4 block:

- if 1, use most probable mode
- Most probable = lower of modes used for 4x4 block to left or above current

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode one
of nine modes

mode=??mode=2

mode=8

- if rem_intra4x4_pred_mode is smaller than most probable
mode, use mode given by rem_intra4x4_pred_mode	

- else, mode is rem_intra4x4_pred_mode+1

 CMU 15-869, Fall 2014

Inter-frame prediction (P-macroblock)
▪ Predict sample values using values from a block of a previously decoded

frame *

▪ Basic idea: current frame formed by translation of pixels from temporally
nearby frames (e.g., object moved slightly on screen between frames)
- “Motion compensation”: use of spatial displacement to make prediction

about pixel values

Recently decoded frames
(stored in “decoded picture Buffer”)

macroblock

Frame currently
being decoded

* Note: “previously decoded” does not imply source frame must come before frame in video sequence.
 (Can H.264 supports decoding out of order.)

 CMU 15-869, Fall 2014

P-macroblock prediction

Decoded picture
buffer: frame 0

Decoded picture
buffer: frame 1

Current frame

A

B

Block A: predicted from (frame 0, motion-vector = [-3, -1])
Block B: predicted from (frame 1, motion-vector = [-2.5, -0.5])

▪ Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 “partitions”
- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

▪ Each partition predicted by sample values defined by:
(reference frame id, motion vector)

4x4 pixel sub-
macroblock

partition

Note: non-integer motion vector

 CMU 15-869, Fall 2014

Non-integer motion vectors require resampling

Interpolation to 1/2 pixel sample points via 6-tap filter:
half_integer_value = clamp(
 (A	
 -­‐	
 5B	
 +	
 20C	
 +	
 20D	
 -­‐	
 5E	
 +	
 F)	
 /	
 32)	

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel
samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

A

B
C

D
E

F

Example: motion vector with 1/2 pixel values.
Must resample reference block at positions given by red dots.

 CMU 15-869, Fall 2014

Motion vector prediction
▪ Problem: per-partition motion vectors requires significant amount of storage
▪ Solution: predict motion vectors from neighboring partitions and encode

residual in compressed video stream
- Simple example below: predict D’s motion vector as average of motion vectors of A, B, C
- Prediction logic becomes more complex when when partitions of neighboring blocks are

of different size

DA

B C

 CMU 15-869, Fall 2014

Question: what partition size is best?
▪ Smaller partitions likely yield more accurate prediction

- Fewer bits needed for residuals

▪ Smaller partitions require more bits to store partition
information (diminish benefits of prediction)
- Reference picture id
- Motion vectors (note: motion vectors are more coherent with finer sampling,

so they likely compress well)

 CMU 15-869, Fall 2014

Inter-frame prediction (B-macroblock)
▪ Each partition predicted by up to two source blocks

- Prediction is the average of the two reference blocks
- Each B-macroblock partition stores two frame references and two motion

vectors (recall P-macroblock partitions only stored one)

Previously decoded frames
(stored in “decoded picture Buffer”)

Frame currently
being decoded

A

B

prediction = (A + B) / 2

 CMU 15-869, Fall 2014

Additional prediction details
▪ Optional weighting to prediction:

- Per-slice explicit weighting (reference samples multiplied by weight)
- Per-B-slice implicit weights (reference samples weights by temporal distance of

reference frame from current frame in video)
- Idea: weight samples from reference frames nearby in time more

▪ Deblocking
- Blocking artifacts may result as a result of superblock granularity encoding
- After macroblock decoding is complete, optional perform smoothing filter

across block edges.

 CMU 15-869, Fall 2014

Putting it all together: encoding an inter-
predicted macroblock
▪ Inputs:

- Current state of decoded picture buffer (state of the decoder)
- 16x16 block of input video to encode

▪ General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel

resampling
- Choose prediction type (P-type or B-type)
- Choose reference pictures for prediction
- Choose motion vectors for each macroblock partition (or sub-partition)
- Predict motion vectors and compute motion vector difference
- Encode choice of prediction type, reference pictures, and motion vector

differences
- Encode residual for macroblock prediction
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to

use as reference picture for future macroblocks

Heavily coupled
decisions

 CMU 15-869, Fall 2014

H.264/AVC video encoding

Intra-frame
Prediction

Transform/
Quantize
Residual

Decoded
picture buffer

Source
Video
Frame

Compressed
Video Stream

Prediction parameters

Actual MB pixels
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Inter-frame
Prediction

Predicted MB
Compute
Residual

Entropy
Encoder

Motion
Vector Pred.

Compute
MV Diffs

Inverse
transform/

quantize
Deblock

Motion
vectors

MB = macroblock
MV = motion vector

 CMU 15-869, Fall 2014

Motion estimation
▪ Encoder must find reference block that predicts current frame’s pixels well.

- Can search over multiple pictures in decoded picture buffer + motion vectors can be
non-integer (huge search space)

- Must also choose block size (macroblock partition size)
- And whether to predict using combination of two blocks
- Literature is full of heuristics to accelerate this process

- Remember, must execute in real-time for HD video (1920x1080), on a low-power
smartphone

A

gray area:
search region Decoded picture

buffer: frame 0
Current frame

Limit search window:

 CMU 15-869, Fall 2014

Motion estimation optimizations
▪ Coarser search:

- Limit search window to small region
- First compute block differences at coarse scale (save partial sums from previous searches)

▪ Smarter search:
- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, refine to finer scale
- Else, recenter around best match

▪ Early termination: don’t find optimal reference patch, just find one that’s “good enough”: e.g.,
compressed representation is lower than threshold

- Test zero-motion vector first (optimize for non-moving background)
▪ Optimizations for subpixel motion vectors:

- Refinement: find best reference block given only pixel offsets, then try 1/2, 1/4-subpixel
offsets around this match

Original Refined Recentered

