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Today
▪ A grab bag of basic image-processing techniques 

▪ Goals: 
- Provide an overview of solution strategies to select image 

processing problems 
- Provide a flavor of the types of operations future image signal 

processors (ISPs) will need to perform 
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Simple noise reduction techniques
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Median filter

int	  WIDTH	  =	  1024;	  

int	  HEIGHT	  =	  1024;	  

uint8	  input[(WIDTH+2)	  *	  (HEIGHT+2)];	  

uint8	  output[WIDTH	  *	  HEIGHT];	  

for	  (int	  j=0;	  j<HEIGHT;	  j++)	  {	  

	  	  for	  (int	  i=0;	  i<WIDTH;	  i++)	  {	  

	  	  	  	  output[j*WIDTH	  +	  i]	  =	  //	  median	  of	  pixels	  in	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  //	  surrounding	  5x5	  pixel	  window	  	  

	  	  }	  

}

▪ Noise reduction filter 
- Unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region 

▪ Not linear, not separable 
- Filter weights are 1 or 0 (depending on image content) 

▪ Naive algorithm for width-N square kernel support region: 
-  Sort N2 elements in support region, pick median: O(N2log(N2)) work per pixel
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5x5 median filter

int	  WIDTH	  =	  1024;	  
int	  HEIGHT	  =	  1024;	  
uint8	  input[(WIDTH+2)	  *	  (HEIGHT+2)];	  
uint8	  output[WIDTH	  *	  HEIGHT];	  
int	  histogram[256];	  

for	  (int	  j=0;	  j<HEIGHT;	  j++)	  {	  
	  	  for	  (int	  i=0;	  i<WIDTH;	  i++)	  {	  
	  	  	  	  for	  (int	  ii=0;	  ii<256;	  ii++)	  
	  	  	  	  	  	  histogram[ii]	  =	  0;	  
	  	  	  	  for	  (int	  jj=0;	  jj<5;	  jj++)	  
	  	  	  	  	  	  for	  (int	  ii=0;	  ii<5;	  ii++)	  
	  	  	  	  	  	  	  	  	  histogram[input[(j+jj)*(WIDTH+2)	  +	  (i+ii)]]++;	  
	  	  	  	  int	  count	  =	  0;	  
	  	  	  	  for	  (int	  ii=0;	  ii<256;	  i++)	  {	  	  	  	  	  	  	  	  	  //	  scan	  all	  256	  bins	  
	  	  	  	  	  	  	  if	  (count	  +	  histogram[i]	  >=	  13)	  	  	  	  //	  median	  of	  25	  elements	  is	  bin	  containing	  13th	  value	  	  
	  	  	  	  	  	  	  	  	  output[j*WIDTH	  +	  i]	  =	  uint8(i);	  	  	  
	  	  	  	  	  	  	  count	  +=	  histogram[i];	  
	  	  	  	  }	  
	  	  }	  
}

▪ O(N2) work-per-pixel solution: radix sort 8 bit-integer data 
-  Bin all pixels in support region, then scan histogram to find median

Can you think of how to modify this code to 
implement a O(N) work-per-pixel median filter? 

See Weiss [SIGGRAPH 2006] for 
O(lg N) work-per-pixel median filter



 CMU 15-869, Fall 2013

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges
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Bilateral filter

▪ An “edge preserving” filter: down-weight contribution of pixels on the other side of 
strong edges.  f (x) defines what “strong edge means” 

▪ Spatial distance weight term f (x) could be a gaussian 
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Output pixel p is the weighted sum of all pixels in the support region S of a truncated 
gaussian kernel (width σ) 

But weight is combination of spatial distance and input image pixel intensity difference. 
(non-linear filter: like the median filter, the filter’s weights depend on input image content)
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Bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity 
as p contribute little to filtered result (they 
are “on the “other side of the edge”

Input image G(): Gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image
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Bilateral filter: kernel depends on image content 

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across).
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Denoising using non-local means
▪ Main idea: replace pixel with average value of nearby pixels 

that have a similar surrounding region. 
- Assumption: images have repeating texture

- Np and Pq are vectors of pixel values in square window around pixels p and q 
(highlighted regions in figure) 

- Difference Np and Pq  = “similarity” of surrounding regions 
- Cp is just a normalization constant to ensure weights sum to one for pixel p. 
- Set S is the search region (given by dotted red line in figure) 

p

q

Np

Nq
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Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p 

- Intuition: “filtered result is the average of pixels “like” this one” 
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair below: 
- Image at left shows the pixel to denoise. 
- Image at right shows weights of pixels in 21x21-pixel 

kernel support window.
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Optical flow
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Optical flow
▪ Goal: determine 2D screen-space velocity of visible objects in image

Image source: https://vimeo.com/28395792

https://vimeo.com/28395792
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Optical flow
▪ Given image A (at time t) and image B (at time t + ∆t) compute optical flow between 

the two images 

▪ Major assumption 1: “brightness constancy” 
- The appearance of a scene surface point that is visible in both images A and B is 

the same in both images
I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t)

Tailor expansion
I(x + ∆x, y + ∆y, t + ∆t)  = I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t + higher order 

terms

The point observed at (x,y) at time t moves to (x+∆, y+∆) at t+∆t, 
(and has a constant appearance in both situations) 

So...

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)
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Ix(x, y, t)
Iy(x, y, t)
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Gradient-constraint equation for a pixel is 
underconstrained
Gradient-constraint equation is insufficient to solve for motion 
One equation, two unknowns: (∆x, ∆y) 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
Known: observed change in pixel (x,y) over 
consecutive frames

Known: spatial image gradients in image A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. . 
.

Now we have a overconstrained system, compute least squares solution
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Weighted least-squares solution
Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. . 
.

Compute weighted least squares solution by minimizing: 
(xi, yi) are pixels in region around (x,y). 

Weighting function w() weights error contribution based on distance between (xi, yi) and (x, y).  e.g., Gaussian fall-off.  
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Solving for motion
E (∆x, ∆y) minimized when derivatives are zero:

Rewrite, now solve the following linear system for ∆x, ∆y: 

Precompute partial derivatives Ix, Iy, It from original images A and B 
For each pixel (x,y): evaluate A0, B0, C0, A1, B1, C1, then solve for (∆x, ∆y) at (x,y)   

A0 B0 C0

A1 B1 C1
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Optical flow, implemented in practice
Gradient-constraint equation makes a linear motion assumption

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t 

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

▪ Improvement: iterative techniques use this original flow field to compute higher 
order residuals (to estimate non-linear motion) 

▪ Question: why is it important for optical flow implementation to be very efficient? 
- Hint: consider linear-motion assumption
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Image manipulation by example
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Data-driven texture synthesis
▪ Input: low resolution texture image 
▪ Desired output: high resolution texture that appears “like” the input

Source texture 
(low resolution) High-resolution texture generated by tiling low-resolution texture
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Algorithm: non-parametric texture synthesis
Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability 
distribution function for possible values of p, given values of neighborhood w(p) around p: 
P(p=X | w(p))  

P

[Efros and Leung 99]

For	  each	  pixel	  p	  to	  synthesize:	  

1. Find	  other	  patches	  in	  the	  image	  that	  are	  similar	  to	  the	  NxN	  
neighborhood	  around	  p	  (use	  gaussian	  weighted	  sum-‐of-‐squared-‐
differences	  as	  the	  patch	  distance	  function)	  

2. Center	  pixels	  of	  closest	  patches	  are	  candidates	  for	  p	  

3. Randomly	  sample	  from	  candidates	  weighted	  by	  distance	  d	  
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Non-parametric texture synthesis

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23
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More texture synthesis examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]
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Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]
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Problem: high computational cost
▪ Large patch windows + full image search = slow 

- Want large patch windows: preserve image structure 
- Want full-image search: highly relevant examples are rare 

▪ Must perform search process for all pixels to fill in 
- Naive algorithm:

▪ Possible acceleration techniques?
- Limit search window (reduces output quality — may miss relevant examples) 
- Use acceleration structure for search (e.g., k-d tree) 
- Reduce dimensionality of patches + approximate nearest neighbor search (ANN) 
- Exploit spatial coherence of pixel values in images

For	  each	  pixel	  p	  to	  fill	  in:	  

	  	  	  For	  each	  pixel	  pi	  in	  image:	  

	  	  	  	  	  	  Compute	  distance	  between	  neighborhoods	  of	  p	  and	  pi.
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PatchMatch
▪ A randomized algorithm for rapidly finding correspondences 

between image patches 

▪ Problem definition: 
- Given images A and B, for each patch in image A, compute the offset to the 

nearest neighbor patch in image B 
- Overlapping patches: each patch defined by its center pixel (ignoring 

boundary conditions, each MxN image consists of MxN patches) 
- PatchMatch computes nearest neighbor field (NNF) 

- NNF is function f: ℝ2 ➝ ℝ2  (maps patches in A to patches in B) 
- Example: if patch b=(x2,y2) in image B is NN of patch a=(x1,y1) in image A, 

then f (a) = b

[Barnes et al. 2009]
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PatchMatch: key idea #1
▪ Law of large numbers: a non-trivial fraction of a large field of random offset 

assignments are likely to be good guesses 

▪ Initialize f with random values

Visualization of nearest neighbor offsets: 

Saturation = magnitude of match offset 
Gray = zero offset: best match patch in 
B is at same pixel location as query 
patch in A) 

Hue = direction of offset 
offset X = red-cyan axis 
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]
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PatchMatch key idea #2: spatial coherence
▪ There will be high coherence of nearest neighbors in natural images 

▪ Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest 
neighbor of patch at (x+1,y)
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How this graph was made: 
1. Compute NNF for collection of images 
2. For select pixels (x,y), compare NN offset to NN offsets 

of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1) 

Image credit: [Barnes et al. 2009]
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Propagation: improving the NNF estimate 
▪ The NNF estimate provides a “best-so-far” NN for each patch in A 

- f(a) = nearest neighbor patch of a 
- d(a,b) = distance between patch a and patch b (e.g., sum-of-squared differences over 

the patch) 

▪ Try to improve NNF estimate by exploiting spatial coherence with left and top 
neighbor: 
- Let a=(x,y), then candidate matches for a are: 

- f(x-1, y) + (1,0) 
- f(x, y-1) + (0,1) 

- Replace f(a) with candidate patch b=f(x,y-1)+(0,1) if d(a, b) < d(a, f(a)) 

▪ Next iteration, use bottom and right neighbors as candidates 
- Propagate down-right in first pass 
- Propagate up-left in second pass, etc.
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PatchMatch iterative improvement

Image A

Image B 
(source of 
patches)

Experiment: 
Reconstruct image A using 
patches from image B

Random init: 1/4 through iter 1

End of iter 1 Iter 2 Iter 5 Image credit: [Barnes et al. 2009]
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Random search: avoiding local minima
▪ Propagation can cause PatchMatch to get stuck in local minima 

▪ Sample random sequence of candidates from exponential distribution 
- Let a=(x,y), then candidate matches for a are: (x,y) + wαiRi   
- Ri is uniform random offset in [-1,1] x [-1,1] 
- w is maximum search radius (e.g., width of entire image) 
- α is typically 1/2  
- Check all candidates where wαi ≥ 1 
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Optimization: enrichment
▪ Propagation step propagates good matches across spatial 

dimensions of image 
▪ Can also propagate good matches across space of matches itself 
▪ Idea: if f(a) = b, and f(b) = c, then c is a good candidate match for a 

- If you think of the NNF as a graph, then enrichment looks for nodes reachable 
in two steps 

- Note: enrichment assumes we’re searching for matches in the same image as 
the image we are trying to complete
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Example applications
Photoshop’s Content Aware Fill

Image retargeting (changing aspect ratio)

Original image 
(with user-provided search 

constraints)

Retargeted 
(without constraints)

Retargeted 
(with constraints)

Image credits: [Barnes et al. 2009]

Object Manipulation

Building scaled up, 
preserving texture

Building segment 
marked by user
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PatchMatch summary
▪ Randomized algorithm: converges rapidly in practice 

▪ Main idea: coherence (largely spatial) of nearest neighbors 

▪ Propagation step is inherently serial, but good parallel approximations exist 
- PatchMatch has been implemented efficiently on GPUs   

▪ Data access caches well, but it is unpredictable (not a bounded window) 
- Different workload characteristics from many other image processing 

algorithms we have discussed  



 CMU 15-869, Fall 2013

Class discussion
▪ Imagine the your final project is to architect a processor to handle image 

processing tasks for the widely anticipated kPhone. (like the iPhone, but better) 

▪ How would you characterize image processing workloads? 
- Parallelism? 
- Data-access patterns? 
- Predictability? (of data access, of instruction stream) 

▪ What are good characteristics of a processor for image processing tasks? 
- Programmable, or fixed-function? 

- If programmable, do we need: branch-prediction? out-of-order execution? 
- If fixed-function, in what ways can it be configured? 

- What forms of parallelism? (SIMD, multi-core) 
- Support for multi-threading, prefetching? 
- Data caches or on-chip buffers/scratchpads?
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Readings
▪ Adams et al. The Frankencamera: An Experimental Platform for  

Computational Photography. SIGGRAPH 2010


