Lecture 15:

Image Processing
Algorithm Grab Bag

Visual Computing Systems
CMU 15-869, Fall 2013

Today

m A grab bag of basicimage-processing techniques

B Goals:

- Provide an overview of solution strategies to select image
processing problems

- Provide a flavor of the types of operations future image signal
processors (ISPs) will need to perform

CMU 15-869, Fall 2013

Simple noise reduction techniques

CMU 15-869, Fall 2013

Median filter

B Noise reduction filter
— Unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region
B Not linear, not separable
— Filter weights are 1 or 0 (depending on image content)
® Naive algorithm for width-N square kernel support region:
— Sort N2 elements in support region, pick median: O(N2log(N2)) work per pixel

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
output[j*WIDTH + i] = // median of pixels in

// surrounding 5x5 pixel window

3px median filter 10px median filter
CMU 15-869, Fall 2013

5x5 median filter

B (O(N2) work-per-pixel solution: radix sort 8 bit-integer data
— Bin all pixels in support region, then scan histogram to find median

int WIDTH = 1024;
int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)]; Can you think of how to modify this code to
uint8 output[WIDTH * HEIGHT]; implement a O(N) work-per-pixel median filter?
int histogram|[256];
for (int §=0; j<HEIGHT; j++) { See Weiss [SIGGRAPH 2006] for

for (int i=0; i<WIDTH; i++) { O(lg N) work-per-pixel median filter

for (int ii=0; 1i<256; ii++)
histogram[ii] = O;
for (int jj=0; jj<5; Jjj++)
for (int ii=0; 1i<5; ii++)
histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;
int count = 0;
for (int ii=0; ii<256; i++) { // scan all 256 bins
if (count + histogram[i] »>= 13) // median of 25 elements is bin containing 13th value
output[j*WIDTH + i] = uint8(i);
count += histogram[i];

CMU 15-869, Fall 2013

Bilateral filter

! ‘ !

‘ SR — ‘

Example use of bilateral filter: removing noise while preserving image edges

(MU 15-869, Fall 2013

Bilateral filter

BF(I1(p)="Y f(1,-1,)G,(p-q)I(q)

qges

Output pixel p is the weighted sum of all pixels in the support region $ of a truncated
gaussian kernel (width o)

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

B An“edge preserving” filter: down-weight contribution of pixels on the other side of
strong edges. 7(x) defines what “strong edge means”

B Spatial distance weight term /(x) could be a gaussian
= Orverysimple:/(x) = 0 if x > threshold, I otherwise

CMU 15-869, Fall 2013

Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): Gaussian about input pixelp f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 CMU 15-869, Fall 2013

Bilateral filter: kernel depends on image content

S - output

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across).

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. CMU 15-869, Fall 2013

Denoising using non-local means

m Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding reqgion.
- Assumption: images have repeating texture "“"*"“*""-———]*

NLIIX(p)= Y, w(p.)I(q) g '

qgesS ' Equ

1 _HNP_NCIHz -
w(p,q)=—e "
C, ____.w‘

- N, and P, are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- Difference N, and P, ="“similarity” of surrounding regions
- Cpisjust a normalization constant to ensure weights sum to one for pixel p.
- Set Sis the search region (given by dotted red line in figure)

CMU 15-869, Fall 2013

Denoising using non-local means

B Large weight for input pixels that have similar neighborhood as p

= Intuition: “filtered result is the average of pixels “like” this one”
= In example below-right: g7 and g2 have high weight, g3 has low weight

In each image pair below:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-pixel

kernel support window.
(A) B)

(

(C)

Buades et al. CVPR 2005

(MU 15-869, Fall 2013

Optical flow

CMU 15-869, Fall 2013

Optical flow

in image

ects

J

2D screen-space velocity of visible ob

ine

: determ

m Goal

R 7 el L)

A R

U = A ot
P eV P

\.\’l’“\\t‘\\\ll\ -
‘{\-\.ll ’ -

Image source: https://vimeo.com/28395792

(MU 15-869, Fall 2013

https://vimeo.com/28395792

Optical flow

B Givenimage A (at time £) and image B (at time t + At) compute optical flow between
the two images

B Major assumption 1: “brightness constancy”

- The appearance of a scene surface point that is visible in both images A and B is
the same in both images

I(x,y,) =1(x+ Ax, y + Ay, t + At) <«—— The point observed at (x,y) at time moves to (x+4, y+4) at t-+At,
(and has a constant appearance in both situations)
Tailor expansion

I(x+Ax,y + Ay, t + At) =I(x, y,) + I(x, y,)Ax + L(x, y, H)Ay + I{x, y, {)At -+ higherorder

terms

So...
I(x, y,) = I(x, y,) + I(x, y, OAx + L)(x, y, DAy + Idx, y, DAt

L(x, y, DAx + L(x, y, DAY |+|I(x, y, HAL|= 0
(%, 3, 1) %, 3, DAY 4— The observed change in pixel (x,y)

. O Is due to object motion at point by (Ax, Ay)

(MU 15-869, Fall 2013

AP Photo/Daniel Ochoa De Olza

(MU 15-869, Fall 2013

Gradient-constraint equation for a pixel is
underconstrained

Gradient-constraint equation is insufficient to solve for motion
One equation, two unknowns: (Ax, Ay)

y I, y, DAL 40— Known: observed change in pixel (x,y) over

consecutive frames
Known: spatial image gradients inimage A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

L(x0, yo,)Ax + L(xo, yo,)Ay + I(x0, yo,)At = 0
L(x1, y1,)Ax + I(x1, y1, DAy + Idx1, y1,)At = 0
]x(XZ, Y2, f)AX T]y(X2, Y2, t)Ay T]t(x2, Y2, t)At =0

Now we have a overconstrained system, compute least squares solution

CMU 15-869, Fall 2013

Weighted least-squares solution

L(x0, yo,)Ax + L(xo, yo,)Ay + I(x0, yo,)At = 0
L(x1, y1,)Ax + I(x1, y1, DAy + Ix1, y1,)At = 0
]x(X2, Y2, f)AX T]y(.X2, Y2, t)Ay T]t(XZ, Y2, t)At =0

Compute weighted least squares solution by minimizing:

(xi, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (x;, yi) and (x, y). e.g., Gaussian fall-off.

E(Ax,Ay) = 2 w(x, Y, x| L (%9, 0Mx + 1 (x5,)Ay +1,(x,,y, ,z‘)Az‘]2

X; 5Y;

CMU 15-869, Fall 2013

Solving for motion

E (Ax, Ay) minimized when derivatives are zero:

dE(Ax,Ay))
= Y w(x,y, , X, | Ax+1 1 Ay+1 1
e Ey (%, 3:%.3)| Ay+ 11

dE(Ax,Ay) X
= Y w(x,,y,, x, V)|IAy+1 I Ax+1 1
d(Ay) 2(” LA+ LLA L

Rewrite, now solve the following linear system for Ax, Ay:

0

0

AO B C

Precompute partial derivatives /,, /,, I from original images A and B
For each pixel (x,y): evaluate A0, BO, CO, A1, B1, (1, then solve for (Ax, Ay) at (x,y)

CMU 15-869, Fall 2013

Optical flow, implemented in practice

Gradient-constraint equation makes a linear motion assumption

I(x, y,) = I(x, y, 1) + I(x, y, OAx + I)(x, y, DAy + Idx, y,)At

L(x, y, H)Ax + I(x, y, 1)A Iix, y, DA 420— The observed change in pixel (x,y)

. Is due to object motion at point by (Ax, Ay)

B Improvement: iterative techniques use this original flow field to compute higher
order residuals (to estimate non-linear motion)

® Question: why is it important for optical flow implementation to be very efficient?
— Hint: consider linear-motion assumption

CMU 15-869, Fall 2013

Image manipulation by example

CMU 15-869, Fall 2013

IS

texture synthes

iven

dr

Data-

image

ion texture i

low resolut

® [nput

Input

texture that appears “like” the i

ion

high resolut

m Desired output

Source texture
(low resolution)

High-resolution texture generated by tiIing low-resolution texture

n e B % w . |
l‘/r lwexnviiwl‘/r a l‘/r a.(l‘/r

s - e - dl‘ - e -~
A /v /# A rF /v /J A ¥ »..r .Iv /J A
f\ / / b ‘J‘ / / ‘J{ / / l

,..ﬂ(m,,ﬂ(a,,,p(w,,a(a)ﬁ.&\

%.. IV.. Iv.. lv.. Iv.. L o~ “.
.mn...,af.mf,a .mf.af..).. AR f..)..

¢< e’ lr¢<

tlv /,IJ&»#JI /f?...»tlf /,IJ{».»I- /,n!..flf /IJ{»#I- N

* lu Jolq o lu Jo.d. o lu 19& o lu Jo.ﬂ. o Iu 19
v... Alri V.. % At.l V.. /..i v.. A.rl v.. /ri v.. (Afrl
e v s e - o % - ot 0 ” ot

rJ.sCF/x b N l-fir..r, b N lrJif.F/ /f l-...r&ff./x /f l-...rtft./x ~ l-...rcf.#.f / l

.m.‘,....(uq .19&.‘,.._.6.. .Jo.&.J_.lu Jo:q .p._ lu Jo:.n p._ lu. .&.L,:v(u o
JVI l,muftl VIJI‘AII Vl l‘qfll v.. ‘Aorl v.. ‘Aorl v.. l‘/l
-fiﬁt. .f / l-.arsﬁt. / / l-rwiﬁt. - / l-fiff./ / l-fiﬁf./ / lyJ.cff. / /f l

.ol .Y .Y

.m}..lujv.& ..._619& ,.._619& ._ Jo:.q ._ Jc:q :_lu.fw:

v; Iv.. d_ J IV.. d. Iv.n i.
Y .W:aa.,.cﬂ.u: ..M....,i.f.,/.. ..}...,4.,.../.,

;gr.#Jr/l.}af.l'/hf.»flf/lf&»f/v/h!!»f//lfi»fl'lfl
o 1.,&. N Jo.h. ..._ N5 b Ny N Jo:.n. ..._ N /.:q. J_ 6. Ny

e b ‘- ,.
. P - ¥ - P
“.v.b l‘}-rnvl Vﬂfw U{ll .J.v. (q{tnrl Vl (Al.rl V. Afr.vl v.ﬂw (A.rl
f..flw /f..f.f /?x?lr b f..f/ / bf.f/ = faf.f o
._‘: Iu Jc.&. J.l,r, /9#. :lu 19&. ..._Iu Jv;q a.../.u, /9& ...ﬂu,lc.

v

(MU 15-869, Fall 2013

Algorithm: non-parametric texture synthesis

Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability
distribution function for possible values of p, given values of neighborhood w(p) around p:

P(p=X| w(p))

For each pixel p to synthesize:

1. Find other patches in the image that are similar to the NxN
neighborhood around p (use gaussian weighted sum-of-squared-
differences as the patch distance function)

2. Center pixels of closest patches are candidates for p

3. Randomly sample from candidates weighted by distance d

[Efros and Leung 99]

CMU 15-869, Fall 2013

Non-parametric texture synthesis imimss

Synthesized Textures

-

Source textures

7 /W/**‘VM*‘ | e e

”W B ’W’WW"”W///
o P Ao vty e i , A P P

_ o e e A i 25

/f/;;' o T b # dbibanrie: o

e O R sl |

U | N ehE | G

R e A :
_? R e M’/"W/’V G IR
LT

-7

P PR
., k))/ff/m(f/’/é W/” e ‘ |
il T T I
A > r /:' : .
LA o
B i VA AR

| s s e S S
--ll1.—I_- =—__

P O DT e
e e R e

5%5 " 11x11 15x15 23x23

Increasing size of neighborhood search window: w(p)

(MU 15-869, Fall 2013

More texture synthesis examples

Source textures

ut it becornes harder to lau
round itself, at "this daily
ving roorns,” as House Der
25cribed it last fall. He fail
Jthe left a ringing question
wie years of Monica Lewnir
inda Tripp?" That now seer
*olitical cornedian A1 Frar
zxt phase of the story will

Synthesized Textures

A AULLLIL LU TR L0 LU TISELL 41 ULIS Ud LEW JLUE &
1t ndatirears coune Tring rooms,” as Heft be fastod it
3¢5 dat noears cortseas ribed it last ot hest bedian A1. F
econical Homd it h Al. Heft ars 67 as da Lewindailf]
lian A1 Ths " as Lewing questies last aticarsticall. He
is dian Al last fal counda Lewn, at "this dailyears d ily
wdianicall. Hoorewing roorms,” as House De fale £ De
und itical counoestscribed itlast fall. He fall. Hefft
15 oxoheoned itnd ithe left a ringing questica Lewnin.
Acars coecorns,” astore years of Monica Lewinow seee
a Thas Fring roorne stooniscat nowea e left a roouse

bougstof Mie lelft a Lést fast ngine lauwwesticars Hef
wditrip? THouself, 3 ringind itfonestid. it a ving que:
.astical cois oxe years of Moung fall. He ribof BMouse
yee years ofanda Tripp?” That hedian A1 Lest fasee yea
ada Tripp? olitical cornedian Alét he f2 5¢ 1ing que
olitical conw xe years of the storears ofas 1 Fratnica L
ras Lew se lesta rione 1 He fas quest nging of, at beouw

Naive tiling solution

[Efros and Leung 99]

(MU 15-869, Fall 2013

I m a g e Co m p I Eti 0 n exa m p I e Image credit: [Barnes et al. 2009]

Completion Result

Masked Region

(MU 15-869, Fall 2013

Problem: high computational cost

m Large patch windows + full image search = slow

- Want large patch windows: preserve image structure
- Want full-image search: highly relevant examples are rare

B Must perform search process for all pixels to fill in
- Naive algorithm:

For each pixel p to fill in:
For each pixel pi in image:

Compute distance between neighborhoods of p and pi.

m Possible acceleration techniques?

- Limit search window (reduces output quality — may miss relevant examples)

- Use acceleration structure for search (e.g., k-d tree)

- Reduce dimensionality of patches + approximate nearest neighbor search (ANN)
- Exploit spatial coherence of pixel values in images

CMU 15-869, Fall 2013

PatchMatch

m Arandomized algorithm for rapidly finding correspondences
between image patches

[Barnes et al. 2009]

B Problem definition:

- Givenimages A and B, for each patch in image A, compute the offset to the
nearest neighbor patch inimage B

- Overlapping patches: each patch defined by its center pixel (ignoring
boundary conditions, each MxN image consists of MxN patches)

- PatchMatch computes nearest neighbor field (NNF)

= NNFis function /: R — R? (maps patches in A to patches in B)

- Example: if patch b=(x2,y2) inimage B is NN of patch a=(x1,y1) inimage A,
thenf(a)=0b

CMU 15-869, Fall 2013

PatchMatch: key idea #1

m Law of large numbers: a non-trivial fraction of a large field of random offset
assignments are likely to be good guesses

Initialize f with random values

Visualization of nearest neighbor offsets:

Saturation = magnitude of match offset
Gray = zero offset: best match patch in
B is at same pixel location as query
patchin A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]

(MU 15-869, Fall 2013

PatchMatch key idea #2: spatial coherence

B There will be high coherence of nearest neighbors in natural images

B Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest
neighbor of patch at (x+1,y)

14M How this graph was made:
1. Compute NNF for collection of images
12M 2. For select pixels (x,y), compare NN offset to NN offsets
. of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1)
T 10M
£
S 8M
=
=
= oM
2
E
-_—
2M
0
0 5 10 15 20 25 30 35 40

Offset Distance

Image credit: [Barnes et al. 2009] CMU 15-869, Fall 2013

Propagation: improving the NNF estimate

B The NNF estimate provides a “best-so-far” NN for each patchin A
- f(a) = nearest neighbor patch of a

- d(a,b) = distance between patch a and patch b (e.g., sum-of-squared differences over
the patch)

® Try to improve NNF estimate by exploiting spatial coherence with left and top
neighbor:

- Let a=(x,y), then candidate matches for a are:
- fix-1,y)+(1,0)
- fix,y-1)+(0,1)
- Replace fla) with candidate patch b=f(x,y-1)+(0,1) if d(a, b) < d(a, (a))

B Next iteration, use bottom and right neighbors as candidates
- Propagate down-right in first pass
- Propagate up-left in second pass, etc.

CMU 15-869, Fall 2013

PatchMatch iterative improvement

5
-
- i

Random init: 1/4 through iter 1

Experiment:
Reconstruct image A using
patches from image B

Image B
(source of
patches)

Image credit: [Barnes et al. 2009]
CMU 15-869, Fall 2013

End of iter 1 Iter 2 Iter 5

Random search: avoiding local minima

m Propagation can cause PatchMatch to get stuck in local minima

B Sample random sequence of candidates from exponential distribution
- Let a=(x,y), then candidate matches for a are: (x,y) + wo'R?
= R’is uniform random offsetin[-1,1] x [-1,1]
= w is maximum search radius (e.g., width of entire image)
= o is typically 1/;

= Check all candidates where wo! =1

CMU 15-869, Fall 2013

Optimization: enrichment

m Propagation step propagates good matches across spatial
dimensions of image

m (an also propagate good matches across space of matches itself
B |dea:if fla) = b, and f(b) = ¢, then cis a good candidate match fora

- If you think of the NNF as a graph, then enrichment looks for nodes reachable
in two steps

- Note: enrichment assumes we're searching for matches in the same image as
the image we are trying to complete

CMU 15-869, Fall 2013

Example applications

Photoshop’s Content Aware Fill

i "”"v‘. . :-_ ™ . ;.".l - '-_. -

uilding segmen iIding scaled up,

marked by user preserving texture
Original image Retargeted Retargeted
(with user-provided search (without constraints) (with constraints)
constraints)

Image credits: [Barnes et al. 2009] CMU 15-869, Fall 2013

PatchMatch summary

B Randomized algorithm: converges rapidly in practice
B Mainidea: coherence (largely spatial) of nearest neighbors

B Propagation step is inherently serial, but good parallel approximations exist
- PatchMatch has been implemented efficiently on GPUs

® Data access caches well, but it is unpredictable (not a hounded window)

- Different workload characteristics from many other image processing
algorithms we have discussed

CMU 15-869, Fall 2013

Class discussion

B Imagine the your final project is to architect a processor to handle image
processing tasks for the widely anticipated kPhone. (like the iPhone, but better)

® How would you characterize image processing workloads?

- Parallelism?
- Data-access patterns?
- Predictability? (of data access, of instruction stream)

®m What are good characteristics of a processor for image processing tasks?

- Programmable, or fixed-function?
- If programmable, do we need: branch-prediction? out-of-order execution?
- If fixed-function, in what ways can it be configured?

- What forms of parallelism? (SIMD, multi-core)

- Support for multi-threading, prefetching?

- Data caches or on-chip buffers/scratchpads?

CMU 15-869, Fall 2013

Readings

m Adams et al. The Frankencamera: An Experimental Platform for
Computational Photography. SIGGRAPH 2010

CMU 15-869, Fall 2013

