Lecture 15:

Image Processing
Algorithm Grab Bag

Visual Computing Systems
CMU 15-869, Fall 2013



Today

m A grab bag of basicimage-processing techniques

B Goals:

- Provide an overview of solution strategies to select image
processing problems

- Provide a flavor of the types of operations future image signal
processors (ISPs) will need to perform
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Simple noise reduction techniques
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Median filter

B Noise reduction filter
— Unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region
B Not linear, not separable
— Filter weights are 1 or 0 (depending on image content)
®  Naive algorithm for width-N square kernel support region:
— Sort N2 elements in support region, pick median: O(N2log(N2)) work per pixel

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[ (WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
output[j*WIDTH + i] = // median of pixels in

// surrounding 5x5 pixel window

3px median filter 10px median filter
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5x5 median filter

B (O(N2) work-per-pixel solution: radix sort 8 bit-integer data
— Bin all pixels in support region, then scan histogram to find median

int WIDTH = 1024;
int HEIGHT = 1024;

uint8 input[ (WIDTH+2) * (HEIGHT+2)]; Can you think of how to modify this code to
uint8 output[WIDTH * HEIGHT]; implement a O(N) work-per-pixel median filter?
int histogram|[256];
for (int §=0; j<HEIGHT; j++) { See Weiss [SIGGRAPH 2006] for

for (int i=0; i<WIDTH; i++) { O(lg N) work-per-pixel median filter

for (int ii=0; 1i<256; ii++)
histogram[ii] = O;
for (int jj=0; jj<5; Jjj++)
for (int ii=0; 1i<5; ii++)
histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;
int count = 0;
for (int ii=0; ii<256; i++) { // scan all 256 bins
if (count + histogram[i] »>= 13) // median of 25 elements is bin containing 13th value
output[j*WIDTH + i] = uint8(i);
count += histogram[i];
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Bilateral filter

! ‘ !

‘ SR — ‘

Example use of bilateral filter: removing noise while preserving image edges
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Bilateral filter

BF(I1(p)="Y f(1,-1,)G,(p-q)I(q)

qges

Output pixel p is the weighted sum of all pixels in the support region $ of a truncated
gaussian kernel (width o)

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

B An“edge preserving” filter: down-weight contribution of pixels on the other side of
strong edges. 7(x) defines what “strong edge means”

B Spatial distance weight term /(x) could be a gaussian
= Orverysimple:/(x) = 0 if x > threshold, I otherwise
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Bilateral filter

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input pixel p

Input image G(): Gaussian about input pixelp  f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 CMU 15-869, Fall 2013



Bilateral filter: kernel depends on image content

S - output

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across).

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. CMU 15-869, Fall 2013



Denoising using non-local means

m Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding reqgion.
- Assumption: images have repeating texture "“"*"“*""-———]*

NLIIX(p)= Y, w(p.)I(q) g '

qgesS ' Equ

1 _HNP_NCIHz -
w(p,q)=—e "
C, ____.w‘

- N, and P, are vectors of pixel values in square window around pixels p and g
(highlighted regions in figure)

- Difference N, and P, ="“similarity” of surrounding regions
- Cpisjust a normalization constant to ensure weights sum to one for pixel p.
- Set Sis the search region (given by dotted red line in figure)
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Denoising using non-local means

B Large weight for input pixels that have similar neighborhood as p

= Intuition: “filtered result is the average of pixels “like” this one”
= In example below-right: g7 and g2 have high weight, g3 has low weight

In each image pair below:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-pixel

kernel support window.
(A) B)

(

(C)

Buades et al. CVPR 2005
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Optical flow
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Image source: https://vimeo.com/28395792
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Optical flow

B Givenimage A (at time £) and image B (at time t + At) compute optical flow between
the two images

B Major assumption 1: “brightness constancy”

- The appearance of a scene surface point that is visible in both images A and B is
the same in both images

I(x,y, ) =1(x+ Ax, y + Ay, t + At) <«—— The point observed at (x,y) at time  moves to (x+4, y+4) at t-+At,
(and has a constant appearance in both situations)
Tailor expansion

I(x+Ax,y + Ay, t + At) =I(x, y, ) + I(x, y, )Ax + L(x, y, H)Ay + I{x, y, {)At -+ higherorder

terms

So...
I(x, y, ) = I(x, y, ) + I(x, y, OAx + L)(x, y, DAy + Idx, y, DAt

L(x, y, DAx + L(x, y, DAY |+|I(x, y, HAL|= 0
(%, 3, 1) %, 3, DAY 4— The observed change in pixel (x,y)

. O Is due to object motion at point by (Ax, Ay)
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AP Photo/Daniel Ochoa De Olza
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Gradient-constraint equation for a pixel is
underconstrained

Gradient-constraint equation is insufficient to solve for motion
One equation, two unknowns: (Ax, Ay)

y I, y, DAL 40— Known: observed change in pixel (x,y) over

consecutive frames
Known: spatial image gradients inimage A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

L(x0, yo, )Ax + L(xo, yo, )Ay + I(x0, yo, )At = 0
L(x1, y1, )Ax + I(x1, y1, DAy + Idx1, y1, )At = 0
]x(XZ, Y2, f)AX T ]y(X2, Y2, t)Ay T ]t(x2, Y2, t)At =0

Now we have a overconstrained system, compute least squares solution
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Weighted least-squares solution

L(x0, yo, )Ax + L(xo, yo, )Ay + I(x0, yo, )At = 0
L(x1, y1, )Ax + I(x1, y1, DAy + Ix1, y1, )At = 0
]x(X2, Y2, f)AX T ]y(.X2, Y2, t)Ay T ]t(XZ, Y2, t)At =0

Compute weighted least squares solution by minimizing:

(xi, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (x;, yi) and (x, y). e.g., Gaussian fall-off.

E(Ax,Ay) = 2 w(x, Y, x| L (%9, 0Mx + 1 (x5, )Ay +1,(x,,y, ,z‘)Az‘]2

X; 5Y;
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Solving for motion

E (Ax, Ay) minimized when derivatives are zero:

dE(Ax,Ay) )
= Y w(x,y, , X, | Ax+1 1 Ay+1 1
e Ey (%, 3:%.3)| Ay+ 11

dE(Ax,Ay) X
= Y w(x,,y,, x, V)|IAy+1 I Ax+1 1
d(Ay) 2(” LA+ LLA L

Rewrite, now solve the following linear system for Ax, Ay:

0

0

AO B C

Precompute partial derivatives /,, /,, I from original images A and B
For each pixel (x,y): evaluate A0, BO, CO, A1, B1, (1, then solve for (Ax, Ay) at (x,y)
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Optical flow, implemented in practice

Gradient-constraint equation makes a linear motion assumption

I(x, y, ) = I(x, y, 1) + I(x, y, OAx + I)(x, y, DAy + Idx, y, )At

L(x, y, H)Ax + I(x, y, 1)A Iix, y, DA 420— The observed change in pixel (x,y)

. Is due to object motion at point by (Ax, Ay)

B Improvement: iterative techniques use this original flow field to compute higher
order residuals (to estimate non-linear motion)

®  Question: why is it important for optical flow implementation to be very efficient?
— Hint: consider linear-motion assumption
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Image manipulation by example
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Algorithm: non-parametric texture synthesis

Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability
distribution function for possible values of p, given values of neighborhood w(p) around p:

P(p=X| w(p))

For each pixel p to synthesize:

1. Find other patches in the image that are similar to the NxN
neighborhood around p (use gaussian weighted sum-of-squared-
differences as the patch distance function)

2. Center pixels of closest patches are candidates for p

3. Randomly sample from candidates weighted by distance d

[Efros and Leung 99]
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Non-parametric texture synthesis imimss

Synthesized Textures
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More texture synthesis examples

Source textures
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I m a g e Co m p I Eti 0 n exa m p I e Image credit: [Barnes et al. 2009]

Completion Result

Masked Region

(MU 15-869, Fall 2013



Problem: high computational cost

m Large patch windows + full image search = slow

- Want large patch windows: preserve image structure
- Want full-image search: highly relevant examples are rare

B Must perform search process for all pixels to fill in
- Naive algorithm:

For each pixel p to fill in:
For each pixel pi in image:

Compute distance between neighborhoods of p and pi.

m Possible acceleration techniques?

- Limit search window (reduces output quality — may miss relevant examples)

- Use acceleration structure for search (e.g., k-d tree)

- Reduce dimensionality of patches + approximate nearest neighbor search (ANN)
- Exploit spatial coherence of pixel values in images
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PatchMatch

m Arandomized algorithm for rapidly finding correspondences
between image patches

[Barnes et al. 2009]

B Problem definition:

- Givenimages A and B, for each patch in image A, compute the offset to the
nearest neighbor patch inimage B

- Overlapping patches: each patch defined by its center pixel (ignoring
boundary conditions, each MxN image consists of MxN patches)

- PatchMatch computes nearest neighbor field (NNF)

= NNFis function /: R — R? (maps patches in A to patches in B)

- Example: if patch b=(x2,y2) inimage B is NN of patch a=(x1,y1) inimage A,
thenf(a)=0b
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PatchMatch: key idea #1

m  Law of large numbers: a non-trivial fraction of a large field of random offset
assignments are likely to be good guesses

Initialize f with random values

Visualization of nearest neighbor offsets:

Saturation = magnitude of match offset
Gray = zero offset: best match patch in
B is at same pixel location as query
patchin A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]
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PatchMatch key idea #2: spatial coherence

B There will be high coherence of nearest neighbors in natural images

B Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest
neighbor of patch at (x+1,y)

14M How this graph was made:
1. Compute NNF for collection of images
12M 2. For select pixels (x,y), compare NN offset to NN offsets
. of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1)
T 10M
£
S 8M
=
=
= oM
2
E
-_—
2M
0
0 5 10 15 20 25 30 35 40

Offset Distance

Image credit: [Barnes et al. 2009] CMU 15-869, Fall 2013



Propagation: improving the NNF estimate

B The NNF estimate provides a “best-so-far” NN for each patchin A
- f(a) = nearest neighbor patch of a

- d(a,b) = distance between patch a and patch b (e.g., sum-of-squared differences over
the patch)

® Try to improve NNF estimate by exploiting spatial coherence with left and top
neighbor:

- Let a=(x,y), then candidate matches for a are:
- fix-1,y)+(1,0)
- fix,y-1)+(0,1)
- Replace fla) with candidate patch b=f(x,y-1)+(0,1) if d(a, b) < d(a, (a))

B Next iteration, use bottom and right neighbors as candidates
- Propagate down-right in first pass
- Propagate up-left in second pass, etc.
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PatchMatch iterative improvement

5
-
- i

Random init: 1/4 through iter 1

Experiment:
Reconstruct image A using
patches from image B

Image B
(source of
patches)

Image credit: [Barnes et al. 2009]
CMU 15-869, Fall 2013
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Random search: avoiding local minima

m Propagation can cause PatchMatch to get stuck in local minima

B Sample random sequence of candidates from exponential distribution
- Let a=(x,y), then candidate matches for a are: (x,y) + wo'R?
= R’is uniform random offsetin[-1,1] x [-1,1]
= w is maximum search radius (e.g., width of entire image)
= o is typically 1/;

= Check all candidates where wo! =1
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Optimization: enrichment

m Propagation step propagates good matches across spatial
dimensions of image

m (an also propagate good matches across space of matches itself
B |dea:if fla) = b, and f(b) = ¢, then cis a good candidate match fora

- If you think of the NNF as a graph, then enrichment looks for nodes reachable
in two steps

- Note: enrichment assumes we're searching for matches in the same image as
the image we are trying to complete
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Example applications

Photoshop’s Content Aware Fill

i "”"v‘. . :-_ ™ . ;.".l - '-_. -

uilding segmen iIding scaled up,

marked by user preserving texture
Original image Retargeted Retargeted
(with user-provided search  (without constraints) (with constraints)
constraints)

Image credits: [Barnes et al. 2009] CMU 15-869, Fall 2013



PatchMatch summary

B Randomized algorithm: converges rapidly in practice
B Mainidea: coherence (largely spatial) of nearest neighbors

B Propagation step is inherently serial, but good parallel approximations exist
- PatchMatch has been implemented efficiently on GPUs

® Data access caches well, but it is unpredictable (not a hounded window)

- Different workload characteristics from many other image processing
algorithms we have discussed
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Class discussion

B Imagine the your final project is to architect a processor to handle image
processing tasks for the widely anticipated kPhone. (like the iPhone, but better)

® How would you characterize image processing workloads?

- Parallelism?
- Data-access patterns?
- Predictability? (of data access, of instruction stream)

®m What are good characteristics of a processor for image processing tasks?

- Programmable, or fixed-function?
- If programmable, do we need: branch-prediction? out-of-order execution?
- If fixed-function, in what ways can it be configured?

- What forms of parallelism? (SIMD, multi-core)

- Support for multi-threading, prefetching?

- Data caches or on-chip buffers/scratchpads?
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Readings

m Adams et al. The Frankencamera: An Experimental Platform for
Computational Photography. SIGGRAPH 2010
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