
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 15:

Image Processing
Algorithm Grab Bag

 CMU 15-869, Fall 2013

Today
▪ A grab bag of basic image-processing techniques

▪ Goals:
- Provide an overview of solution strategies to select image

processing problems
- Provide a flavor of the types of operations future image signal

processors (ISPs) will need to perform

 CMU 15-869, Fall 2013

Simple noise reduction techniques

 CMU 15-869, Fall 2013

Median filter

int	 WIDTH	 =	 1024;	

int	 HEIGHT	 =	 1024;	

uint8	 input[(WIDTH+2)	 *	 (HEIGHT+2)];	

uint8	 output[WIDTH	 *	 HEIGHT];	

for	 (int	 j=0;	 j<HEIGHT;	 j++)	 {	

	 	 for	 (int	 i=0;	 i<WIDTH;	 i++)	 {	

	 	 	 	 output[j*WIDTH	 +	 i]	 =	 //	 median	 of	 pixels	 in	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 //	 surrounding	 5x5	 pixel	 window	 	

	 	 }	

}

▪ Noise reduction filter
- Unlike gaussian blur, one bright pixel doesn’t drag up the average for entire region

▪ Not linear, not separable
- Filter weights are 1 or 0 (depending on image content)

▪ Naive algorithm for width-N square kernel support region:
- Sort N2 elements in support region, pick median: O(N2log(N2)) work per pixel

 CMU 15-869, Fall 2013

5x5 median filter

int	 WIDTH	 =	 1024;	
int	 HEIGHT	 =	 1024;	
uint8	 input[(WIDTH+2)	 *	 (HEIGHT+2)];	
uint8	 output[WIDTH	 *	 HEIGHT];	
int	 histogram[256];	

for	 (int	 j=0;	 j<HEIGHT;	 j++)	 {	
	 	 for	 (int	 i=0;	 i<WIDTH;	 i++)	 {	
	 	 	 	 for	 (int	 ii=0;	 ii<256;	 ii++)	
	 	 	 	 	 	 histogram[ii]	 =	 0;	
	 	 	 	 for	 (int	 jj=0;	 jj<5;	 jj++)	
	 	 	 	 	 	 for	 (int	 ii=0;	 ii<5;	 ii++)	
	 	 	 	 	 	 	 	 	 histogram[input[(j+jj)*(WIDTH+2)	 +	 (i+ii)]]++;	
	 	 	 	 int	 count	 =	 0;	
	 	 	 	 for	 (int	 ii=0;	 ii<256;	 i++)	 {	 	 	 	 	 	 	 	 	 //	 scan	 all	 256	 bins	
	 	 	 	 	 	 	 if	 (count	 +	 histogram[i]	 >=	 13)	 	 	 	 //	 median	 of	 25	 elements	 is	 bin	 containing	 13th	 value	 	
	 	 	 	 	 	 	 	 	 output[j*WIDTH	 +	 i]	 =	 uint8(i);	 	 	
	 	 	 	 	 	 	 count	 +=	 histogram[i];	
	 	 	 	 }	
	 	 }	
}

▪ O(N2) work-per-pixel solution: radix sort 8 bit-integer data
- Bin all pixels in support region, then scan histogram to find median

Can you think of how to modify this code to
implement a O(N) work-per-pixel median filter?

See Weiss [SIGGRAPH 2006] for
O(lg N) work-per-pixel median filter

 CMU 15-869, Fall 2013

Bilateral filter

Example use of bilateral filter: removing noise while preserving image edges

 CMU 15-869, Fall 2013

Bilateral filter

▪ An “edge preserving” filter: down-weight contribution of pixels on the other side of
strong edges. f (x) defines what “strong edge means”

▪ Spatial distance weight term f (x) could be a gaussian
- Or very simple: f (x) = 0 if x > threshold, 1 otherwise

Output pixel p is the weighted sum of all pixels in the support region S of a truncated
gaussian kernel (width σ)

But weight is combination of spatial distance and input image pixel intensity difference.
(non-linear filter: like the median filter, the filter’s weights depend on input image content)

 CMU 15-869, Fall 2013

Bilateral filter

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002

Pixels with significantly different intensity
as p contribute little to filtered result (they
are “on the “other side of the edge”

Input image G(): Gaussian about input pixel p

Input pixel p

f(): Influence of support region

G x f: filter weights for pixel p Filtered output image

 CMU 15-869, Fall 2013

Bilateral filter: kernel depends on image content

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al.

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edge the bilateral filter will not respect (it will blur across).

 CMU 15-869, Fall 2013

Denoising using non-local means
▪ Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding region.
- Assumption: images have repeating texture

- Np and Pq are vectors of pixel values in square window around pixels p and q
(highlighted regions in figure)

- Difference Np and Pq = “similarity” of surrounding regions
- Cp is just a normalization constant to ensure weights sum to one for pixel p.
- Set S is the search region (given by dotted red line in figure)

p

q

Np

Nq

 CMU 15-869, Fall 2013

Denoising using non-local means
▪ Large weight for input pixels that have similar neighborhood as p

- Intuition: “filtered result is the average of pixels “like” this one”
- In example below-right: q1 and q2 have high weight, q3 has low weight

Buades et al. CVPR 2005

(A) (B)

(C) (D)

In each image pair below:
- Image at left shows the pixel to denoise.
- Image at right shows weights of pixels in 21x21-pixel

kernel support window.

 CMU 15-869, Fall 2013

Optical flow

 CMU 15-869, Fall 2013

Optical flow
▪ Goal: determine 2D screen-space velocity of visible objects in image

Image source: https://vimeo.com/28395792

https://vimeo.com/28395792

 CMU 15-869, Fall 2013

Optical flow
▪ Given image A (at time t) and image B (at time t + ∆t) compute optical flow between

the two images

▪ Major assumption 1: “brightness constancy”
- The appearance of a scene surface point that is visible in both images A and B is

the same in both images
I(x, y, t) = I(x + ∆x, y + ∆y, t + ∆t)

Tailor expansion
I(x + ∆x, y + ∆y, t + ∆t) = I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t + higher order

terms

The point observed at (x,y) at time t moves to (x+∆, y+∆) at t+∆t,
(and has a constant appearance in both situations)

So...

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

 CMU 15-869, Fall 2013

Ix(x, y, t)
Iy(x, y, t)

 CMU 15-869, Fall 2013

Gradient-constraint equation for a pixel is
underconstrained
Gradient-constraint equation is insufficient to solve for motion
One equation, two unknowns: (∆x, ∆y)

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
Known: observed change in pixel (x,y) over
consecutive frames

Known: spatial image gradients in image A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
.

Now we have a overconstrained system, compute least squares solution

 CMU 15-869, Fall 2013

Weighted least-squares solution
Ix(x0, y0, t)∆x + Iy(x0, y0, t)∆y + It(x0, y0, t)∆t = 0

Ix(x1, y1, t)∆x + Iy(x1, y1, t)∆y + It(x1, y1, t)∆t = 0

Ix(x2, y2, t)∆x + Iy(x2, y2, t)∆y + It(x2, y2, t)∆t = 0

. .
.

Compute weighted least squares solution by minimizing:
(xi, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (xi, yi) and (x, y). e.g., Gaussian fall-off.

 CMU 15-869, Fall 2013

Solving for motion
E (∆x, ∆y) minimized when derivatives are zero:

Rewrite, now solve the following linear system for ∆x, ∆y:

Precompute partial derivatives Ix, Iy, It from original images A and B
For each pixel (x,y): evaluate A0, B0, C0, A1, B1, C1, then solve for (∆x, ∆y) at (x,y)

A0 B0 C0

A1 B1 C1

 CMU 15-869, Fall 2013

Optical flow, implemented in practice
Gradient-constraint equation makes a linear motion assumption

I(x, y, t) ≈ I(x, y, t) + Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t

Ix(x, y, t)∆x + Iy(x, y, t)∆y + It(x, y, t)∆t = 0
The observed change in pixel (x,y)

Is due to object motion at point by (∆x, ∆y)

▪ Improvement: iterative techniques use this original flow field to compute higher
order residuals (to estimate non-linear motion)

▪ Question: why is it important for optical flow implementation to be very efficient?
- Hint: consider linear-motion assumption

 CMU 15-869, Fall 2013

Image manipulation by example

 CMU 15-869, Fall 2013

Data-driven texture synthesis
▪ Input: low resolution texture image
▪ Desired output: high resolution texture that appears “like” the input

Source texture
(low resolution) High-resolution texture generated by tiling low-resolution texture

 CMU 15-869, Fall 2013

Algorithm: non-parametric texture synthesis
Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability
distribution function for possible values of p, given values of neighborhood w(p) around p:
P(p=X | w(p))

P

[Efros and Leung 99]

For	 each	 pixel	 p	 to	 synthesize:	

1. Find	 other	 patches	 in	 the	 image	 that	 are	 similar	 to	 the	 NxN	
neighborhood	 around	 p	 (use	 gaussian	 weighted	 sum-‐of-‐squared-‐
differences	 as	 the	 patch	 distance	 function)	

2. Center	 pixels	 of	 closest	 patches	 are	 candidates	 for	 p	

3. Randomly	 sample	 from	 candidates	 weighted	 by	 distance	 d	

 CMU 15-869, Fall 2013

Non-parametric texture synthesis

Increasing size of neighborhood search window: w(p)

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23

 CMU 15-869, Fall 2013

More texture synthesis examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]

 CMU 15-869, Fall 2013

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]

 CMU 15-869, Fall 2013

Problem: high computational cost
▪ Large patch windows + full image search = slow

- Want large patch windows: preserve image structure
- Want full-image search: highly relevant examples are rare

▪ Must perform search process for all pixels to fill in
- Naive algorithm:

▪ Possible acceleration techniques?
- Limit search window (reduces output quality — may miss relevant examples)
- Use acceleration structure for search (e.g., k-d tree)
- Reduce dimensionality of patches + approximate nearest neighbor search (ANN)
- Exploit spatial coherence of pixel values in images

For	 each	 pixel	 p	 to	 fill	 in:	

	 	 	 For	 each	 pixel	 pi	 in	 image:	

	 	 	 	 	 	 Compute	 distance	 between	 neighborhoods	 of	 p	 and	 pi.

 CMU 15-869, Fall 2013

PatchMatch
▪ A randomized algorithm for rapidly finding correspondences

between image patches

▪ Problem definition:
- Given images A and B, for each patch in image A, compute the offset to the

nearest neighbor patch in image B
- Overlapping patches: each patch defined by its center pixel (ignoring

boundary conditions, each MxN image consists of MxN patches)
- PatchMatch computes nearest neighbor field (NNF)

- NNF is function f: ℝ2 ➝ ℝ2 (maps patches in A to patches in B)
- Example: if patch b=(x2,y2) in image B is NN of patch a=(x1,y1) in image A,

then f (a) = b

[Barnes et al. 2009]

 CMU 15-869, Fall 2013

PatchMatch: key idea #1
▪ Law of large numbers: a non-trivial fraction of a large field of random offset

assignments are likely to be good guesses

▪ Initialize f with random values

Visualization of nearest neighbor offsets:

Saturation = magnitude of match offset
Gray = zero offset: best match patch in
B is at same pixel location as query
patch in A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]

 CMU 15-869, Fall 2013

PatchMatch key idea #2: spatial coherence
▪ There will be high coherence of nearest neighbors in natural images

▪ Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest
neighbor of patch at (x+1,y)

0 5 10 15 20 25 30 35 40

14M

12M

10M

8M

6M

4M

2M

0

Offset Distance

Nu
m

be
r o

f n
ei

gh
bo

rin
g p

ai
rs

How this graph was made:
1. Compute NNF for collection of images
2. For select pixels (x,y), compare NN offset to NN offsets

of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1)

Image credit: [Barnes et al. 2009]

 CMU 15-869, Fall 2013

Propagation: improving the NNF estimate
▪ The NNF estimate provides a “best-so-far” NN for each patch in A

- f(a) = nearest neighbor patch of a
- d(a,b) = distance between patch a and patch b (e.g., sum-of-squared differences over

the patch)

▪ Try to improve NNF estimate by exploiting spatial coherence with left and top
neighbor:
- Let a=(x,y), then candidate matches for a are:

- f(x-1, y) + (1,0)
- f(x, y-1) + (0,1)

- Replace f(a) with candidate patch b=f(x,y-1)+(0,1) if d(a, b) < d(a, f(a))

▪ Next iteration, use bottom and right neighbors as candidates
- Propagate down-right in first pass
- Propagate up-left in second pass, etc.

 CMU 15-869, Fall 2013

PatchMatch iterative improvement

Image A

Image B
(source of
patches)

Experiment:
Reconstruct image A using
patches from image B

Random init: 1/4 through iter 1

End of iter 1 Iter 2 Iter 5 Image credit: [Barnes et al. 2009]

 CMU 15-869, Fall 2013

Random search: avoiding local minima
▪ Propagation can cause PatchMatch to get stuck in local minima

▪ Sample random sequence of candidates from exponential distribution
- Let a=(x,y), then candidate matches for a are: (x,y) + wαiRi
- Ri is uniform random offset in [-1,1] x [-1,1]
- w is maximum search radius (e.g., width of entire image)
- α is typically 1/2
- Check all candidates where wαi ≥ 1

 CMU 15-869, Fall 2013

Optimization: enrichment
▪ Propagation step propagates good matches across spatial

dimensions of image
▪ Can also propagate good matches across space of matches itself
▪ Idea: if f(a) = b, and f(b) = c, then c is a good candidate match for a

- If you think of the NNF as a graph, then enrichment looks for nodes reachable
in two steps

- Note: enrichment assumes we’re searching for matches in the same image as
the image we are trying to complete

 CMU 15-869, Fall 2013

Example applications
Photoshop’s Content Aware Fill

Image retargeting (changing aspect ratio)

Original image
(with user-provided search

constraints)

Retargeted
(without constraints)

Retargeted
(with constraints)

Image credits: [Barnes et al. 2009]

Object Manipulation

Building scaled up,
preserving texture

Building segment
marked by user

 CMU 15-869, Fall 2013

PatchMatch summary
▪ Randomized algorithm: converges rapidly in practice

▪ Main idea: coherence (largely spatial) of nearest neighbors

▪ Propagation step is inherently serial, but good parallel approximations exist
- PatchMatch has been implemented efficiently on GPUs

▪ Data access caches well, but it is unpredictable (not a bounded window)
- Different workload characteristics from many other image processing

algorithms we have discussed

 CMU 15-869, Fall 2013

Class discussion
▪ Imagine the your final project is to architect a processor to handle image

processing tasks for the widely anticipated kPhone. (like the iPhone, but better)

▪ How would you characterize image processing workloads?
- Parallelism?
- Data-access patterns?
- Predictability? (of data access, of instruction stream)

▪ What are good characteristics of a processor for image processing tasks?
- Programmable, or fixed-function?

- If programmable, do we need: branch-prediction? out-of-order execution?
- If fixed-function, in what ways can it be configured?

- What forms of parallelism? (SIMD, multi-core)
- Support for multi-threading, prefetching?
- Data caches or on-chip buffers/scratchpads?

 CMU 15-869, Fall 2013

Readings
▪ Adams et al. The Frankencamera: An Experimental Platform for  

Computational Photography. SIGGRAPH 2010

