Lecture 13: Camera Image Processing Pipeline: Part II

Visual Computing Systems CMU 15-869, Fall 2014

Today

- Finish image processing pipeline
- Auto-focus / auto-exposure
- Camera processing elements
- Smart phone processing elements

Simplified image processing pipeline

- Correct for sensor bias (using measurements of optically black pixels)
- **Correct pixel defects**
- **Vignetting compensation**
- **Dark frame subtract (optional)**
- White balance
- Demosaic
- Denoise / sharpen, etc.
- **Color Space Conversion**
- **Gamma Correction**
- **Color Space Conversion (Y'CbCr)**
- 4:4:4 to 4:2:2 chroma subsampling
- JPEG compress (lossy)

lossless compression

RAW file

Last time

JPEG file

Measurements recorded by sensor depend on the sensor's spectral response

Spectral response of human eye

Eye Spectral Response (S, M, L cones)

Uneven distribution of cone types ~64% of cones are L cones, ~ 32% M cones

Image credit: Wikipedia

Avg. eye spectral sensitivity (daytime-adapted)

Aside: web links on color matching

Color-space conversion

- Measurements of sensor depend on sensor's spectral response
 - Response depends on bandwidths filtered by color filter array
- Convert representation to sensor-independent basis: e.g., sRGB
 - 3 x 3 matrix multiplication

Aside: web links on human visual system

Lightness (perceived brightness)

Dark adapted eye: $L^* \propto L^{0.4}$

Bright adapted eye: $L^{\star} \propto L^{0.5}$

So what does a pixel's value mean?

Radiance (energy spectrum from scene)

Gamma (old motivation)

Old CRT display:

- 1. Frame buffer contains value X
- 2. CRT display converts digital signal to voltage V(x) (linear relationship)
- 3. Beam voltage converted to light: (non-linear relationship)

$$L \propto V^{\gamma}$$

Where $\gamma \sim 2.5$

So if pixels store L, what happens?

Observed image

Desired Image

Gamma correction

Goal: want viewer to <u>perceive</u> luminance differences as if they were present in the environment where a picture is taken (keep in mind: reproducing the absolute values of L is not practical)

Can set TV camera to record L, but store $L^{1/2.5} = L^{0.4}$ to compensate for CRT effect

But scene is bright (viewer bright adapted) and living room is dark (TV viewer dark adapted) So TV viewer perceives L^{0.4} in the living room instead of L^{0.5} (not the same as if viewer was "there")

Credit: Marc Levoy, Stanford CS178

Result: luminance emitted by monitor is same as that measured

$$\longrightarrow \text{ viewer } \longrightarrow \\ L^{1.25} \qquad L^{1.25*0.4} = L^{0.4}$$

Power law

12 bit sensor pixel:Can represent 4096 luminance valuesValues are ~ linear in luminance

Problem: quantization error

Insufficient (perceived) precision in darker regions of image

12 bit sensor pixel: 4096 representable luminance values Values are ~ linear in luminance

Most images are not RAW files

8 bits per channel (256 unique values) **Risks quantization dark areas of image**

5 bits/pixel (32 grays) **Pixel stores L**

Store values linear in brightness, not luminance

Evenly distribute values over perceptible range (Make better use of available bits)

Rule of thumb: human eye cannot differentiate differences in luminance

images average brightness or luminance?

Y'CbCr color space Y' = luma: perceived (gamma corrected) luminance

- **Cb** = **blue**-yellow deviation from gray
- Cr = red-cyan deviation from gray

Y' =	16 +	$\frac{65.738 \cdot R'_D}{256} +$	${129.057 \cdot G'_D \over 256} +$	$\frac{25.064 \cdot B_D'}{256}$
$C_B =$	128 +	$\frac{-37.945 \cdot R'_D}{256} -$	$\frac{74.494 \cdot G'_D}{256} +$	$\frac{112.439 \cdot B_D'}{256}$
$C_R =$	128 +	$\frac{112.439\cdot R_D'}{256}-$	$\frac{94.154\cdot G_D'}{256}-$	$\frac{18.285 \cdot B_D'}{256}$

Image credit: Wikipedia

Chroma subsampling

Y'CbCr is an efficient storage (and transmission) representation because Y' can be stored at higher resolution than CbCr without much loss in perceived visual quality

4:2:2 representation:

Store Y' at full resolution

Store Cb, Cr at full vertical resolution, but half horizontal resolution

Y' ₀₀ Cb ₀₀ Cr ₀₀	Υ′ ₁₀	Y' ₂₀ Cb ₂₀ Cr ₂₀	Y′ ₃₀
Y' ₀₁ Cb ₀₁ Cr ₀₁	Y′ 11	Y' ₂₁ Cb ₂₁ Cr ₂₁	Y' 31

JPG Compression

JPG compression observations

- Low-frequency content is predominant in images of the real world
- The human visual system is less sensitive to high frequency sources of error

Discrete cosine transform (DCT) for 8x8 block of pixels Project image from pixel basis into cosine basis

basis[*i*, *j*] = cos
$$\left[\pi \frac{i}{N} \left(x + \frac{1}{2}\right)\right] \times \cos \left[\pi \frac{j}{N}\right]$$

 $\frac{\eta}{V}\left(y+\frac{1}{2}\right)$

Quantization

Quantization produces small values for coefficients (only few bits per coefficient) Quantization zeros out many coefficients **Application's JPEG quality setting scales quantization matrix**

- 61 103 99

Slide credit: Wikipedia, Pat Hanrahan CMU 15-869, Fall 2014

JPEG compression artifacts

8x8 pixel block boundaries

Lossless compression of quantized DCT values

Quantized DCT Values

Entropy encoding: (lossless)

Reorder values

RLE encode 0's

Huffman encode non-zero values

Reordering

Image credit: Wikipedia

JPG compression summary

For each image channel For each 8x8 image block **Compute DCT Quantize results (lossy) Reorder values RLE encode 0-spans** Huffman encode non-zero values

Summary: exploiting characteristics of human perception to build efficient image processing systems

- Encode pixel values linearly in perceived brightness, not in luminance
- Y'CrCb representation allows reduced resolution in color channels (4:2:2)
- JPEG compression reduces file size at cost of quantization errors in high spatial frequencies (human brain tolerates these high frequency errors more than low frequency ones)

Simplified image processing pipeline

- Correct for sensor bias (using measurements of optically black pixels)
- **Correct pixel defects**
- **Vignetting compensation**
- **Dark-frame subtract (optional)**
- White balance
- Demosaic
- **Denoise / sharpen, etc.**
- **Color Space Conversion**
- **Gamma Correction**
- **Color Space Conversion (Y'CbCr)**
- 4:4:4 to 4:2:2 chroma subsampling
- **JPEG compression**

12-bits per pixel **1 intensity per pixel Pixel values linear in energy**

3x12-bits per pixel **RGB** intensity per pixel **Pixel values linear in energy**

3x8-bits per pixel (until 4:2:2 subsampling) Pixel values perceptually linear

Nikon D7000

- Sensor made by Sony
 - 16 MP
 - Pixel size 4.78 x 4.78 um
 - 14 bit ADC
- 6 full-resolution JPG compressed shots / sec
- Note: RAW to JPG conversation in Adobe Lightroom on my MacBook Pro: 6 sec / image (36 times slower)

Auto Focus / Auto Exposure

Autofocus demos

- Phase-detection auto focus
 - **Common in SLRs**
- Contrast-detection auto focus
 - Point-and-shoots, smart-phone cameras

SLR Camera

Nikon D7000

- Auto-focus sensor: 39 regions
- Metering sensor: 2K pixels
 - Auto-exposure
 - Auto-white-balance
 - Subject tracking to aid focus (predicts movement)
- Shutter lag ~ 50ms

Auto exposure

Low resolution metering sensor capture

Metering sensor pixels are large (higher dynamic range than main sensor)

How do we set exposure?

What if a camera doesn't have a separate metering sensor?

Image credits: Marc Levoy, Andrew Adams

AF/AE summary

- **DSLRs** have additional sensing/processing hardware to assist with the "3A's" (auto-focus, auto-exposure, auto-white-balance)
 - Phase-detection AF: optical system directs light to AF sensor
 - Example: Nikon metering sensor: large pixels to avoid over-saturation
- Point-and-shoots/smartphone cameras make these measurements by performing image processing operations on data from the main sensor
 - Contrast-detection AF: search for lens position that produces large image gradients
 - Exposure metering: if pixels are saturating, meter again with lower exposure
- In general, implementing AF/AE/AWB is an image understanding problem ("computer vision")
 - Understand the scene well enough to set the camera's image capture and image processing parameters to best approximate the image a human would perceive
 - As processing/sensing capability increases, algorithms are becoming more sophisticated

Smarter cameras

Goal: help photographer capture the shot they want

Image credit: Sony

Face detection: camera finds faces: tunes AWB, AE, AF for these regions

Another example: iPhone burst mode "best" shot selection

Image credit: Sony Sony's ill-fated "smile shutter" **Camera detects smile and automatically takes picture.**

Smarter cameras

Future behaviors

- Automatic photo framing/cropping?
- Replace undesirable data with more desirable data acquired previously

Four source photos: in each shot, at least one child's eyes are closed

"Face-swapping" [Bitouk et al. 2008]

Result: Composite image with everyone's eyes open

Smarter cameras

Future behaviors

- Automatic photo framing/cropping?
- Replace undesirable data with more desirable data acquired previously

Original image

Selected "Bad" region

Scene Completion Using Millions of Photos [Hays and Efros 2007]

Final Composite

Top Replacement Candidates

Camera processing resources

Generic SLR camera

Consider everything that happens from shutter press to image! Do designers care about latency or throughput?

