
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 12:

Camera Image
Processing Pipeline

 CMU 15-869, Fall 2014

This week

Canon 14 MP CMOS Sensor
(14 bits per pixel)

Final image representation
(e.g., JPG file)

Image Processing
RAW bits

Sequence of operations that convert photons hitting a sensor to a high-quality image
Processing systems used to efficiently implement these operations

 CMU 15-869, Fall 2014

Review: who can describe this figure?

 CMU 15-869, Fall 2014

Review: light field inside a pinhole camera

Sensor plane: (X,Y)

Lens aperture plane:
(U,V)

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Pinhole at (0.5, 0.5)

Scene objects

0.5

 CMU 15-869, Fall 2014

Camera cross section

Image credit: Canon (EOS M)

Sensor plane: (X,Y)

 CMU 15-869, Fall 2014

Review: light field inside a camera

Sensor plane: (X,Y)

Lens aperture: (U,V)

Scene focal plane

Pixel P1 Pixel P2

X

U

Ray space plot

Pixel P1 Pixel P2

Sensor pixels measure integral of energy due to all
rays of light passing through points on the aperture
and a pixel-sized area of the sensor.

 CMU 15-869, Fall 2014

Where we are headed
▪ I’m about to describe the pipeline of operations that take raw image

pixels from a sensor (measurements) to high-quality images
- Correct for sensor bias (using measurements of optically black pixels)
- Correct pixel defects
- Vignetting compensation
- Dark frame subtract (optional)
- White balance
- Demosaic
- Denoise / sharpen, etc.
- Color Space Conversion
- Gamma Correction
- Color Space Conversion (Y’CbCr)
- 4:4:4 to 4:2:2 chroma subsampling
- JPEG compress (lossy)

▪ Today’s pipelines are sophisticated, but they only scratch the surface
of what future image processing pipelines might do
- Consider what a future image analysis pipeline might feature: person identification, action recognition,

scene understanding (to automatically compose shot or automatically pick best picture) etc.

 CMU 15-869, Fall 2014

Generic camera: system overview

Sensor

Image Processing
ASIC

RAW bits

Application Processor
(ARM CPU)

RAM

Screen Display Processing

 CMU 15-869, Fall 2014

The Sensor

 CMU 15-869, Fall 2014

CMOS sensor

Digital Logic (control/processing)

Active pixel sensor
(2D array of photo-diodes)

“Optically black” region

Exposed region

Output bus

Pixel

 CMU 15-869, Fall 2014

Color filter array (Bayer mosaic)
▪ Color filter array placed over sensor

▪ Result: each pixel measures incident red, green, or blue light

▪ 50% of pixels are green pixels
- Human visual perception most sensitive to green light (in normal light levels)

Traditional Bayer mosaic Human eye: cone spectral response
(other filter patterns exist: e.g., Sony’s RGBE)

Image credit: Wikipedia

 CMU 15-869, Fall 2014

CMOS sensor pixel

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

Fill factor: fraction of surface area
used for light gathering

Microlens (a.k.a. lenslet) steers light
toward photo-sensitive region
(increases light-gathering capability)

Microlens also serves to prefilter
signal. Why?

Quantum efficiency of photodiode in
typical digital camera ~ 50%

Color filter attenuates light

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 CMU 15-869, Fall 2014

Full-well capacity

Graph credit: clarkvision.com

Pixel saturates when capacity is exceeded
Oversaturated pixels

 CMU 15-869, Fall 2014

Bigger sensors = bigger pixels (or more pixels?)

▪ iPhone 5s (1.5 micron pixels, 8 MP)

▪ My Nikon D7000 (APS-C)
(4.8 micron pixels, 16 MP)

▪ Nikon D4 (full frame)
(7.3 micron pixels, 16 MP)

▪ Implication: very high pixel count sensors
can be built with current CMOS technology
- Full frame sensor with iPhone 5s pixel

size = 380 MP sensor

24x16mm

Nokia Lumia
(41 MP)

36x24mm

Image credit: Wikipedia

 CMU 15-869, Fall 2014

Reading sensed signal

Row select
Register

ADCAmplify
Bits

Row buffer
(shift register)

…

 CMU 15-869, Fall 2014

Capturing an image
1. Clear sensor pixels
2. Open camera mechanical shutter (exposure begins)
3. Optional: fire flash
4. Close camera mechanical shutter (exposure ends)
5. Read results

- For each row:
- Read pixel for all columns in parallel
- Pass data stream through amplifier and DAC

 CMU 15-869, Fall 2014

Aside: when to fire flash?

First curtain sync

Second curtain sync
Image credit: Michael R. Beeman

 CMU 15-869, Fall 2014

1. Clear sensor pixels for row i (exposure begins)
2. Clear sensor pixels for row i+1 (exposure begins)
...
3. Read row i (exposure ends)
4. Read row i+1 (exposure ends)

Each image row exposed for the same amount of time (same exposure)
Each image row exposed over different interval of time
(time offset determined by row read speed)

Electronic rolling shutter
Many cameras do not have a mechanical shutter
(e.g., smart-phone cameras)

Photo of red square, moving to right

Ex
po

su
re

 CMU 15-869, Fall 2014

Rolling shutter effects
Demo: everyone take out camera phones

Image credit: Wikipedia

Image credit: Point Grey Research

 CMU 15-869, Fall 2014

Measurement noise

 CMU 15-869, Fall 2014

Measurement noise

Illustration credit: Molecular Expressions (http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html)

▪ Photon shot noise:
- Photon arrival rates feature poisson

distribution
- Standard deviation = sqrt(N)

- Signal-to-noise ratio: N/sqrt(N)

▪ Dark-shot noise
- Due to leakage current

▪ Non-uniformity of pixel sensitivity

▪ Read noise
- e.g., due to amplification

Addressed by: subtract dark image

Addressed by: flat field image

http://micro.magnet.fsu.edu/primer/digitalimaging/cmosimagesensors.html

 CMU 15-869, Fall 2014

Read noise

Image credit: clarkvision.com

Read noise is largely independent of pixel size
Large pixels, bright scene: noise determined largely by photon shot noise

 CMU 15-869, Fall 2014

Noise
Black image examples: Nikon D7000, High ISO

1/60 sec exposure 1 sec exposure

 CMU 15-869, Fall 2014

Maximize light gathering capability
▪ Goal: increase signal-to-noise ratio

- Dynamic range of a pixel determined by noise floor (minimum signal) and full-
well capacity (maximum signal)

▪ Big pixels
- Nikon D4: 7.3 um
- iPhone 5s: 1.5 um

▪ Sensitive pixels
- Good materials
- High fill factor

 CMU 15-869, Fall 2014

Backside illumination sensor
▪ Traditional CMOS: electronics block light

▪ Idea: move electronics underneath light gathering region
- Increases fill factor
- Implication 1: better light sensitivity at fixed sensor size
- Implication 2: equal light sensitivity at smaller sensor size (shrink sensor)

Illustration credit: Sony

 CMU 15-869, Fall 2014

Vignetting
Image of white wall (contrast enhanced to show effect)

 CMU 15-869, Fall 2014

Types of vignetting

Image credit: Mark Butterworth

Optical vignetting: less light reaches edges of sensor due to physical obstruction in lens

Pixel vignetting: light reaching pixel at an oblique is angle less likely to hit photosensitive region
than light incident from straight above (e.g., obscured by electronics)

- Microlens reduces pixel vignetting

 CMU 15-869, Fall 2014

More challenges
▪ Chromatic shifts over sensor

- Pixel light sensitivity changes over sensor due to interaction with microlens
(index of refraction depends on wavelength)

▪ Dead pixels (stuck at white or black)
▪ Lens distortion

Pincushion distortion

Captured Image Corrected Image
Image credit: PCWorld

 CMU 15-869, Fall 2014

Theme so far: directly displaying bits off the sensor would
not yield an acceptable photograph

RAW image processing

 CMU 15-869, Fall 2014

Example image processing pipeline

▪ Adopting terminology from Texas Instruments OMAP Image Signal Processor pipeline
(public documentation exists)

▪ Assume: receiving 12 bits/pixel Bayer mosaiced data from sensor

 CMU 15-869, Fall 2014

Optical clamp: remove sensor offset bias
output_pixel	
 =	
 input_pixel	
 -­‐	
 [average	
 of	
 pixels	
 from	
 optically	
 black	
 region]

Remove bias due to sensor black level

(from nearby sensor pixels at time of shot)

 CMU 15-869, Fall 2014

Step 2: correct for defective pixels
▪ Store LUT with known defect pixels

- e.g., determined on manufacturing line, during sensor calibration and test

▪ Example correction methods
- Replace defect with neighbor
- Replace defect with average of neighbors
- Correct defect by subtracting known bias for the defect

output_pixel	
 =	
 (isdefect(current_pixel_xy))	
 ?	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 average(previous_input_pixel,	
 next_input_pixel)	
 :	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 input_pixel;	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

 CMU 15-869, Fall 2014

Lens shading compensation
▪ Correct for vignetting
▪ Possible implementations:

- Use 2D buffer stored in memory
- Lower resolution buffer, upsampled on-the-fly

- Use analytic function
offset	
 =	
 upsample_compensation_offset_buffer(current_pixel_xy);	

gain	
 =	
 upsample_compensation_gain_buffer(current_pixel_xy);	

output_pixel	
 =	
 offset	
 +	
 gain	
 *	
 input_pixel;	

 CMU 15-869, Fall 2014

Optional dark-frame subtraction
▪ Similar computation to lens shading compensation

output_pixel	
 =	
 input_pixel	
 -­‐	
 dark_frame[current_pixel_xy];	

 CMU 15-869, Fall 2014

White balance
▪ Adjust relative intensity of rgb values (so neutral tones appear neutral)

▪ Determine white balance coefficients based on analysis of image contents:
- Example simple auto-white balance algorithms

- Gray world assumption: make average of all pixels gray
- Find brightest region of image, make it white

▪ Modern cameras have sophisticated (heuristic-based) white-balance algorithms

output_pixel	
 =	
 white_balance_coeff	
 *	
 input_pixel	

//	
 note:	
 in	
 this	
 example,	
 white_balance_coeff	
 is	
 vec3	

//	
 (adjusts	
 ratio	
 of	
 red-­‐blue-­‐green	
 channels)

Image credit: basedigitalphotography.com

 CMU 15-869, Fall 2014

Demosiac
▪ Produce RGB image from mosaiced input image

▪ Basic algorithm: bilinear interpolation of mosaiced values (need 4 neighbors)

▪ More advanced algorithms:
- Bibubic interpolation (wider filter support region… may overblur)
- Good implementations attempt to find and preserve edges

Image credit: Mark Levoy

 CMU 15-869, Fall 2014

Demosaicing errors
▪ Moire pattern color artifacts

- Common trigger: fine diagonal black and white stripes
- Common solution:

- Convert demosaiced value to YCbCr
- Prefilter CbCr channels
- Combine prefiltered CbCr with full resolution Y from sensor to get RGB

Image credit: http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

RAW data from sensor

Demosaiced

http://almanazir.typepad.com/almanazir/2006/11/how_a_camera_ph_1.html

 CMU 15-869, Fall 2014

Denoising
Median Filter

Bilateral filter: remove noise while preserving edges

output_pixel = median of
neighboring pixels

 CMU 15-869, Fall 2014

Simplified image processing pipeline
▪ Correct for sensor bias (using measurements of optically black pixels)

▪ Correct pixel defects

▪ Vignetting compensation

▪ Dark frame subtract (optional)

▪ White balance

▪ Demosaic

▪ Denoise / sharpen, etc.

▪ Color Space Conversion

▪ Gamma Correction

▪ Color Space Conversion (Y’CbCr)

▪ 4:4:4 to 4:2:2 chroma subsampling

▪ JPEG compress (lossy)

RAW file

JPEG file

lossless compression

Today

