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What is a programming model?
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Programming models impose structure

m A programming model provides a set of primitives/abstractions
that impose structure on programs written using it

- The structure captures the salient features of this class of programs
- “Here’s how a programmer should think of problems of this type...”

- Powerful/efficient: write less code, system performs key optimizations

® Analogy: in data analysis, what does choosing the right model
for a data set entail?

- Fits the structure of the data (the phenomenon) being described well
- Powerful/efficient: few parameters left up to user

- Generalizes to describe new data/phenomenon of similar types
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THE QUESTION to ask yourself when trying to
assess the value of a programming model

m What does imposing this particular structure do for the
programmer?

m |n other words: what services does the system provide as a
result of the structure?

- Is certain boilerplate code (or difficult to implement algorithms) provided ina
convenient library or primitive?

- Is a certain part of the code parallelized automatically?

- Is the code mapped to a certain type of specialized hardware?
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Stream programming model

Emits programs structured as a series of kernels operating on elements of data streams
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B Streams
- Encapsulate per-element independence (every element can be processed in parallel)
- Encapsulate producer-consumer locality

B Kernels
- Side-effect-free functions operating on stream elements
- Encapsulate locality (kernel’s working set defined by inputs, outputs, and temporaries)
- Encapsulate instruction-stream coherence (same kernel applied to each stream element)

B Many implementations (e.g., StreaMIT, Stream(C/KernelC, SDF) rely on static scheduling by the
compiler to achieve very high performance
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Stream programming model: kernels

No loops, array indexing, or explicit
parallelism in code.

\\\\\\\\\\\‘ kernel void scale(float amount, float a, out float b)
{

b = amount * a;
}

// note: omitting initialization
float scale amount;

stream<float> input stream(1000);
stream<float> intermediate_ stream;
stream<float> output stream(1000);

// map kernel onto streams
scale(scale_amount, input stream, intermediate_stream);

//////V scale(scale amount, intermediate_stream, output _stream);

Semantics of kernel calls are to invoke
kernel once per output stream element

CMU 15-869, Fall 2014



Graphics pipeline has many streaming aspects

Basic Graphics Pipeline
B Streams: elements between pipeline stages

(e.g., implemented using statically allocated
on-chip buffers) Vertices

- Vertexprocesing
m  Kernels: pipeline stages (implemented by I
fixed-function |OgiC or shader COdE) Primitive Generation

Primitives

B What are aspects of the graphics pipeline
that are NOT streaming in nature?

- Texture fetch (unpredictable array access) Rasterization
- Frame-buffer update (not independent) S SR

Fragments

 Fragment Processing
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Research question in early 2000’s

m What programming models can make is easy to write
applications that efficiently use emerging high-throughput
parallel processors.

- Topic of computer architecture, supercomputing, programming language
communities (stream programming was a major focus)

- Note: still a Ph.D. level research question in 2014

m Real-time graphics folks:

- Evenif you ignore all the fixed-function stuff in a GPU, the programmable
cores in a GPU are a very high performance parallel processor (that’s cheap
and widely available today!)

- It's unfortunate that the only way to use these processors is to rasterize
triangles (recall: fixed-function units control programmable units of GPU)
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NVI D IA’S CU DA [Designed by lan Buck at NVIDIA, circa 2007]

B Alternative architecture definition for Tesla-class GPU hardware)

- “Compute mode” interface
- Tesla was first “unified shading” GPU
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m Low-level abstraction that reflects capabilities of hardware

- Recall arguments in Cg paper: do not have abstraction get in the way of using
hardware, even if it makes it more tedious to write code)

- Combines some elements of streaming and multi-threading (like HW does)

m (Open standards embodiment of this programming model is OpenCL
(Microsoft’s embodiment is D3D Compute Shader)
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CUDA constructs (the “kernel”)

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads
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What is the behavior of this kernel?

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[@] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads
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Can system discover producer-consumer locality?

// CUDA kernel definition
__global  void scale(float amount, float* a, float* b)
{
int i = threadIdx.Xx; // CUDA builtin: get thread id
b[i] = amount * a[1];

}

// note: omitting array initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

float* tmp_array;

scale<<1,N>>(scale _amount, input _array, tmp_array);
scale<<1,N>>(scale _amount, tmp array, output_array);

Kernel (scale) Kernel (scale)

U J & J

t | t |
| v | v

input_array tmp_array output_array
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CUDA constructs (the kernel)

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?
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CUDA constructs (the kernel)

// CUDA kernel definition Given this implementation: each invocation
J * * o o
__global _ void scale(float amount, float* a, float* b) of scale kernel is independent.

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i]; (bulk thread launch semantics no different
} than sequential semantics)

// note: omitting array initialization via cudaMalloc()

float scale_amount; CUDA system has flexibility to parallelize any
float* input_array; wav it bleases
float* output_array; yiep :

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

In many cases, such as in the example above, thinking about a CUDA
kernel as a stream processing kernel, and CUDA arrays as streams is
perfectly reasonable, ALTHOUGH THIS STRUCTURE IS NOT IMPOSED BY
THE CUDA PROGRAMMING MODEL.

(Programmer just has to do a little indexing in the kernel to geta
reference to stream inputs/outputs)
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Convolution example

// assume len(A) = len(B) + 2
__global  void convolve(float* a, float* b)

{

int i = threadIdx.Xx;
b[i] = a[i] + a[i+l] + a[i+2];
}

Note “adjacent” threads load same data.

Here: 3x input reuse (reuse increases with increasing width of convolution filter)

A[0] | | A[1]

A[2]

A[3]

Al4]

N>

B[0]

B[1]

B[2]
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CUDA thread hierarchy

#define BLOCK_SIZE 4

__global  void convolve(float* a, float* b)

{
__shared__ float input[BLOCK_SIZE + 2];

int bi
int ti

blockIdx.x;
threadIdx.Xx;

input[bi] = A[ti];
if (bi < 2)

{
input[BLOCK_SIZE+bi] = A[ti+BLOCK_SIZE];

}

__syncthreads(); // barrier

b[ti] = input[bi] + input[bi+l] + input[bi+2];
}

// allocation omitted
// assume len(A) = N+2, len(B)=N
float* A, *B;

convolve<<BLOCK_SIZE, N/BLOCK _SIZE>>(A, B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through
__shared__ variables

2. Threads barriervia __syncthreads()

A[O] A[1] A[2] A[3] A[4] A[5] A[6]

“shared” scratch storage: float input[6]

----------------------------------
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CUDA thread hierarchy

// this code will launch 96 threads
// 6 blocks of 16 threads each

dim2 threadsPerBlock(4,4); Grid

dim2 blocks(3,2);
myKernel<<blocks, threadsPerBlock>>(); Block (0,0)  Block (1,0)  Block (2, 0)

Thread blocks (and the overall “grid” of blocks) can be organized
in 1D, 2D, or 3D arrangements of threads
(Convenience: many CUDA programs operate on n-D grids) ’

Block (0, 1) Block (1, 1) ;:“ﬂock (2,1)

Thread blocks (often) represent independent execution.

Block (1, 1)

Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?

Why simultaneously?

Source: CUDA Programming Manual
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The common way to think about CUDA

(thread centric view of the programming model)

®m  CUDAis a multi-threaded programming model

m Threads are logically grouped together into blocks and gang scheduled
onto cores. This grouping is a locality hint.

B Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

m  Note: Lack of communication between threads in different blocks gives
scheduler some flexibility (can “stream” blocks through the system)**

** Global memory atomic operations provide a form of inter-thread block communication (more on this in a second)
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Another way to think about CUDA

(like a streaming system: stream of thread blocks view)

B CUDAis a stream programming model (recall Brook)
- Kernels are CUDA thread blocks .

- Stream elements are now blocks of data accessed by kernel —
(larger working sets than just individual elements)

B Kernel invocations independent, but logic is multi-threaded

- Multi-threading exposed additional fine-grained parallelism

B Think: implicitly parallel across thread blocks

B Think: explicitly parallel within a thread block (explicit
synchronization of individual threads via barriers)

Canonical CUDA thread block program:

r

~N

Threads cooperatively load block of
data from input arrays into shared mem

__syncThreads(); // barrier

Threads perform computation,
accessing shared mem
__syncThreads(); // barrier

Threads cooperatively write block of
data to output arrays

CMU 15-869, Fall 2014



Choosing thread-block sizes

Question: how many CUDA threads should be in a CUDA thread block?

Recall from GPU core lecture:
How many threads per core?
How much shared local memory per core?
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Another CUDA programming style: “persistent” threads

B No attempt to maintain streaming structure at all any more

B Programmer is always “thinking” about explicitly parallel code, and writing code that is
aware of the number of processors in the machine (very much like a pthread programmer)

B Threads use atomic global memory operations to cooperatively implement work
assignment to thread blocks

// “Persistent thread” implementation: Run thread block until all work is done,
// processing multiple work elements, rather than just one per block. Thread block
// terminates when no more work is available

__global _ void persistent(int* head, int count, float* a, float* b)

{
int index;
while ( (index = read _and_increment(head, 1)) < count)
{
// load a[index];
// do work
// write result to b[index]
}
}

// launch exactly enough thread blocks to fill up machine
// (to achieve sufficient parallelism and latency hiding)

int head = 0;
persistent<<numBlocks, blockSize>>(&head, total_count, A, B);
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Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?
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Quick aside: why did CUDA become popular?

(Kayvon’s personal opinion: ignoring marketing reasons)

1. Provides access to a cheap, fast machine (GPU’s programmable cores and high-
bandwidth memory system)

2. SPMD programming abstraction allows programmer to write scalar code, have

it mapped to wide SIMD hardware

- (PUvendors were adamant about mapping arbitrary (/C++ code to vector instructions (not
willing to constrain program structure to make problem easier)

-  Even today, generating explicit vector code for CPUs remain shockingly hard to do (OpenCL is
exceptionally heavyweight, see Intel’s ISPC for a useful tool)

3. Programming model was familiar: much more like thread programming than
stream programming — it allowed arbitrary in-kernel array indexing (because
GPU’s had hardware multi-threading to hide memory latency)

- More familiar, convenient, and flexible in comparison to previous data-parallel or streaming
systems [Stream(C/Kernel(, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others]

- 1-to-1 with hardware behavior (HW had latency-hiding support already, no reliance on
“sophisticated” compiler technology to achieve high performance)

CMU 15-869, Fall 2014



Current and future graphics/GPU compute
programming model trends



Problem: CPU bottleneck

CPU cores
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B Problem: graphics application is bottlenecked by CPU thread performance

- Consider: 5,000 objects, 60Hz, 5 draws per frame (different materials per object, objects drawn multiple
times (shadow maps, reflection maps), etc.) —> ~1.5 million draws per frame

- State of the art engines are in the range of 10’s of thousands.

- Graphics application must iterate through scene database and make appropriate graphics calls (for each
scene object: set graphics state based on material, etc. “if object features wood material is lit by three
lights, and is close to the camera, bind these textures and shaders”)

- Graphics driver (running on CPU) can only process a fixed number of draw calls per frame: limited by
performance of building GPU command buffer from sequence of graphics API calls

CMU 15-869, Fall 2014



Trend: “to-the-metal” APlIs

B AMD Mantle, Apple Metal, Direct3D 12 (announced)

m [dea: pull responsibility for resource management and command buffer generation
from monolithic graphics driver back into graphics application

Application-facing graphics APl changes from issuing draw calls to building GPU command buffers

Note 1: the graphics pipeline abstraction is largely unchanged (but now applications have access to a
lower-level interface for generating work for the same pipeline abstraction)

Note 2: this interface was already the status-quo for game consoles, so PC graphics is just catching up
(consoles have low-performance CPUs, and console games are written to a specific GPU architecture, so
a lower-level of abstraction has made sense for some time)

MANILE | aMpa N\
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graphics cmd buffer

graphics cmd buffer

GPU cores

. ]
. | I BEEERRRRARRRRERR IS 5555RRRERRRRRRRR I BRRERRREGERG6500
[=]=]=[e[a[ealalaTuTaTaTalaTau] . . oo
mmmm 8E89888955535558 mmmm 8H8988855553558 mmmm B598888959883954
* BE8SRERARAE88888 goooooooooooooog [=]s]=]s]s]uju]uls]uTe]alala]uTe]
< e R CCConnoooonaaang BB ScoonooonaaEaaag
.‘-................... ooy .' .‘............................., EEEHEEEHEEEEEEEE BEEEHBBRERR8R88888 EEEEBE” EEEEEEEE
» Y (- gooonooononononn NI oo0nooononoooon NI oo0noooooooooon
: | - : . ] BooonooonononoDo poognononoDonoon e
-
] game t rea e ™ 1 game t rea E .0 ooo0noooo0ooooonn ooooooooooooooon poooooooooooooon
" ]
1 : . 1 . o* BREEEESR2ESSEEaE SESEEEERRESEEEEE SH2SEEESRRSEEEEE
' U . L
*ann snmmn senun snmnnma® - ®aun semmm snmmn snmnns® "
. o*
L ( ! “ b =
co re 1 “ r e® * ° | BESERARB0aRRRaaN BAA8 NI FE5ERRREaaRna000
PEooppoonooooonn
. .® . m B cooooooanoonoooon Bes ] LRIt slslata aist
NSNS EsEEsEESEEEEEEEEEEEEED [eqala a]n e o s =]a|o == e " "]
y A i —— — ] ——
3 i ; (<)) EHEEEEQHDUDDDQDD noooDoooon poooDoooon
i E BN ooogooog EHESBE Huuuuuuuu EBEHSE Huuuuuuuu
: rlver re W 00000000000000 N onooooonoonoonn NN Dooooopoooonn
3 E —— 888688a000080000 B888888885555888 BH868E0a60080000
BooooEoooooEooon [Slel= == = == = = e = = = =
1 E ° oooonooooopoooon BRAARRAAAaRBAGEE oooonnooooppooon
*
S BEESSEEERESEREEE HRSEEESNSESmE=EE
o ] ]
* . c
L 4
m ﬂ ] ETEe= = =T ]
... oy ﬂraphlcs c d bu er = NI 58 RRRRRGRRRnaon BRI RE3REBRER8538888 R
[=1=]=]e|a|= alelala[aTaTalaTaTu ] oo Doo:
ne. - m I coccoocaoonoooo0 . BEEERE8858R00880 ] B8886588000RA000
~ samaam sasan mmnam . [s[s]«la[a[wlalalaTu[aTaTalaTau 0OOODDoUNoDEoooD [esle]elale aTalalululeTaTaTaT ]
E [ R ettt atabatata -- slststatststslstststst=t=t=1=1=] R CCConnooSonogang
oonpogoon .
allle th read ; _> E BHBEEBRAEEREEEEE BEEEBBBBEEEREEEE EBEEBE BEBEE88E
- NN ooooooononooonn ] . noooooooon
. g = S oooonpoononooono 88086Ba000000000 B88886000a000000
L] " gooooooooooooooo [=]=]=]=]=]= =]saTaale el aTx] [=]=]=]=]=]= = aaTaaleTa o aTa]
E% & ooo0000o000DD000a ooooooooooDoooon aooonoonooononaoon
. .
EEEEEEEEEEEEEEEEEEEEEEEEEEE ° guamEEnnEEsasEEs
Tel=T==] pooonpaon =
Boo60 W HEEEEEEEEER5G000 NN 5EE5ERREaa000000
nooooo 5 - - s
mmmm 8E89888953539598 mmmm 8H89888555539558 — T
[s]s[s]s[s]u a]u]elale]alale]ale] uuauunauuuuuuuuu 00000D00gooogoog
-- DUUQDUDUEEES;“““ -- B000000000Ro0a0| -- 0000000000ao0a00
Qopppoon o
BHBEBBRAEEREEEEE EESEEE”SUBEEEEU EEEEEE EEEEEEEE
I ooonnoononoooon NN rnoonooonononn BN oooooo nooopoooon
B88886a000000000 et atata et ata e ats S080800a0008aaaa
pooopEoooopEnonn nooo! opoooon
ooo00noooo00Dooonn gggggggggggggggg gngﬂﬂggggﬂﬂggﬂﬂﬂ

Example: parallel command buffer generation by
multiple CPU threads

m  Efficiency improvements:

- Parallel command buffer generation (APl handed command buffers that are constructed in parallel)

- Management of command buffer resources can be specialized to application
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Future trend: compute-mode, graphics-mode integration

B (Currently there are two distinct “worlds” for GPU programming

- Graphics mode: send commands to GPU pipeline, update graphics buffers
- Compute mode: send commands for CUDA/compute shader processing, update compute buffers
- Buffer transfer/copy routines make compute buffers visible to graphics (and vice-versa)

B Better fusion of these two programming models is desirable

Example 1: compute mode computations Example 2: graphics pipeline
. ) Vertex Generation

generate geometry directly for graphics generates fragments that are

pipeline shaded by compute mode kernel ./ 1icec l

[ Compute ]\ { /ertex Frocessing ]
Shader ‘

Primitives *
{ Primitive Processing }

Rasterization

(Fragment Generation)

Fragments

[ Fragment Frocessing ]

* Rasterization

Pixels Frame-Buffer Ops (Fragment Generation)
Fragments
Compute Shader: J
(shading operations)
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Reading

® T Foley etal. Spark: Modular, Composable Shaders for Graphics Hardware. SIGGRAPH 2011

B ). Nickolls et al. Scalable Parallel Programming with CUDA. ACM Queue 2008

B See website for a number of interesting blog posts...
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