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What is a programming model?
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Programming models impose structure
▪ A programming model provides a set of primitives/abstractions 

that impose structure on programs written using it 
- The structure captures the salient features of this class of programs 
- “Here’s how a programmer should think of problems of this type…” 
- Powerful/efficient: write less code, system performs key optimizations 

▪ Analogy: in data analysis, what does choosing the right model 
for a data set entail? 
- Fits the structure of the data (the phenomenon) being described well 
- Powerful/efficient: few parameters left up to user 
- Generalizes to describe new data/phenomenon of similar types
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THE QUESTION to ask yourself when trying to 
assess the value of a programming model

▪ What does imposing this particular structure do for the 
programmer? 
!

▪ In other words: what services does the system provide as a 
result of the structure? 
- Is certain boilerplate code (or difficult to implement algorithms) provided in a 

convenient library or primitive? 
- Is a certain part of the code parallelized automatically? 
- Is the code mapped to a certain type of specialized hardware?
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Stream programming model

▪ Streams 
- Encapsulate per-element independence (every element can be processed in parallel) 
- Encapsulate producer-consumer locality 

▪ Kernels 
- Side-effect-free functions operating on stream elements 
- Encapsulate locality (kernel’s working set defined by inputs, outputs, and temporaries) 
- Encapsulate instruction-stream coherence (same kernel applied to each stream element) 

▪ Many implementations (e.g., StreaMIT, StreamC/KernelC, SDF) rely on static scheduling by the 
compiler to achieve very high performance

Kernel 1 Kernel 2

Kernel 3

Stream 1 Stream 2

Stream 4 Stream 5

Stream 
3

Emits programs structured as a series of kernels operating on elements of data streams 
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Stream programming model: kernels

kernel	
  void	
  scale(float	
  amount,	
  float	
  a,	
  out	
  float	
  b)	
  
{	
  
	
  	
  	
  b	
  =	
  amount	
  *	
  a;	
  
}	
  
!
//	
  note:	
  omitting	
  initialization	
  
float	
  scale_amount;	
  
stream<float>	
  input_stream(1000);	
  
stream<float>	
  intermediate_stream;	
  
stream<float>	
  output_stream(1000);	
  
!
//	
  map	
  kernel	
  onto	
  streams	
  	
  
scale(scale_amount,	
  input_stream,	
  intermediate_stream);	
  
scale(scale_amount,	
  intermediate_stream,	
  output_stream);

No loops, array indexing, or explicit 
parallelism in code.

Semantics of kernel calls are to invoke 
kernel once per output stream element  
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Graphics pipeline has many streaming aspects
▪ Streams: elements between pipeline stages 

(e.g., implemented using statically allocated 
on-chip buffers) 

▪ Kernels: pipeline stages (implemented by 
fixed-function logic or shader code) 

▪ What are aspects of the graphics pipeline 
that are NOT streaming in nature? 
- Texture fetch (unpredictable array access) 
- Frame-buffer update (not independent)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Basic Graphics Pipeline
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Research question in early 2000’s
▪ What programming models can make is easy to write 

applications that efficiently use emerging high-throughput 
parallel processors. 
- Topic of computer architecture, supercomputing, programming language 

communities (stream programming was a major focus) 
- Note: still a Ph.D. level research question in 2014 

▪ Real-time graphics folks: 
- Even if you ignore all the fixed-function stuff in a GPU, the programmable 

cores in a GPU are a very high performance parallel processor (that’s cheap 
and widely available today!)  

- It’s unfortunate that the only way to use these processors is to rasterize 
triangles (recall: fixed-function units control programmable units of GPU)
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▪ Alternative architecture definition for Tesla-class GPU hardware) 
- “Compute mode” interface 
- Tesla was first “unified shading” GPU 

▪ Low-level abstraction that reflects capabilities of hardware 
- Recall arguments in Cg paper: do not have abstraction get in the way of using 

hardware, even if it makes it more tedious to write code) 
- Combines some elements of streaming and multi-threading (like HW does) 

▪ Open standards embodiment of this programming model is OpenCL 
(Microsoft’s embodiment is D3D Compute Shader)

NVIDIA’s CUDA [Designed by Ian Buck at NVIDIA, circa 2007]
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CUDA constructs (the “kernel”)
//	
  CUDA	
  kernel	
  definition	
  
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id	
  
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];	
  
}	
  
!
//	
  note:	
  omitting	
  array	
  initialization	
  via	
  cudaMalloc()	
  
float	
  scale_amount;	
  
float*	
  input_array;	
  
float*	
  output_array;	
  
!
//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’	
  
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads
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What is the behavior of this kernel?
//	
  CUDA	
  kernel	
  definition	
  
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id	
  
	
  	
  	
  b[0]	
  =	
  amount	
  *	
  a[i];	
  
}	
  
!
//	
  note:	
  omitting	
  array	
  initialization	
  via	
  cudaMalloc()	
  
float	
  scale_amount;	
  
float*	
  input_array;	
  
float*	
  output_array;	
  
!
//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’	
  
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads
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Can system discover producer-consumer locality?
//	
  CUDA	
  kernel	
  definition	
  
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id	
  
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];	
  
}	
  
!
//	
  note:	
  omitting	
  array	
  initialization	
  via	
  cudaMalloc()	
  
float	
  scale_amount;	
  
float*	
  input_array;	
  
float*	
  output_array;	
  
float*	
  tmp_array;	
  
!
scale<<1,N>>(scale_amount,	
  input_array,	
  tmp_array);	
  
scale<<1,N>>(scale_amount,	
  tmp_array,	
  output_array);

Kernel (scale) Kernel (scale)

input_array tmp_array output_array
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CUDA constructs (the kernel)
//	
  CUDA	
  kernel	
  definition	
  
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id	
  
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];	
  
}	
  
!
//	
  note:	
  omitting	
  array	
  initialization	
  via	
  cudaMalloc()	
  
float	
  scale_amount;	
  
float*	
  input_array;	
  
float*	
  output_array;	
  
!
//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’	
  
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Bulk thread launch: logically spawns N threads

Question:  What should N be?
Question:  Do you normally think of “threads” this way?
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CUDA constructs (the kernel)
//	
  CUDA	
  kernel	
  definition	
  
__global__	
  void	
  scale(float	
  amount,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  //	
  CUDA	
  builtin:	
  get	
  thread	
  id	
  
	
  	
  	
  b[i]	
  =	
  amount	
  *	
  a[i];	
  
}	
  
!
//	
  note:	
  omitting	
  array	
  initialization	
  via	
  cudaMalloc()	
  
float	
  scale_amount;	
  
float*	
  input_array;	
  
float*	
  output_array;	
  
!
//	
  launch	
  N	
  threads,	
  each	
  thread	
  executes	
  kernel	
  ‘scale’	
  
scale<<1,N>>(scale_amount,	
  input_array,	
  output_array);

Given this implementation: each invocation 
of scale kernel is independent. 
!
(bulk thread launch semantics no different 
than sequential semantics) 
!
CUDA system has flexibility to parallelize any 
way it pleases.

In many cases, such as in the example above, thinking about a CUDA 
kernel as a stream processing kernel, and CUDA arrays as streams is 
perfectly reasonable, ALTHOUGH THIS STRUCTURE IS NOT IMPOSED BY 
THE CUDA PROGRAMMING MODEL. 
!
(Programmer just has to do a little indexing in the kernel to get a 
reference to stream inputs/outputs)
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Convolution example
//	
  assume	
  len(A)	
  =	
  len(B)	
  +	
  2	
  
__global__	
  void	
  convolve(float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  int	
  i	
  =	
  threadIdx.x;	
  	
  	
  	
  
	
  	
  	
  b[i]	
  =	
  a[i]	
  +	
  a[i+1]	
  +	
  a[i+2];	
  
}	
  
!
!
!

Note “adjacent” threads load same data. 
Here: 3x input reuse

B[0] B[1] B[2]

A[0] A[1] A[2] A[4]A[3]

 (reuse increases with increasing width of convolution filter)
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CUDA thread hierarchy
#define	
  BLOCK_SIZE	
  4	
  
!
__global__	
  void	
  convolve(float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  __shared__	
  float	
  input[BLOCK_SIZE	
  +	
  2];	
  
!
	
  	
  	
  int	
  bi	
  =	
  blockIdx.x;	
  	
  
	
  	
  	
  int	
  ti	
  =	
  threadIdx.x;	
  
!
	
  	
  	
  input[bi]	
  =	
  A[ti];	
  
	
  	
  	
  if	
  (bi	
  <	
  2)	
  
	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  input[BLOCK_SIZE+bi]	
  =	
  A[ti+BLOCK_SIZE];	
  
	
  	
  	
  }	
  	
  	
  
!
	
  	
  	
  __syncthreads();	
  	
  	
  //	
  barrier	
  
!
	
  	
  	
  b[ti]	
  =	
  input[bi]	
  +	
  input[bi+1]	
  +	
  input[bi+2];	
  
}	
  
!
//	
  allocation	
  omitted	
  	
  
//	
  assume	
  len(A)	
  =	
  N+2,	
  len(B)=N	
  
float*	
  A,	
  *B;	
  
!
convolve<<BLOCK_SIZE,	
  N/BLOCK_SIZE>>(A,	
  B);	
  
!
!
!

CUDA threads are grouped into thread blocks 
!
Threads in a block are not independent. 
They can cooperate to process shared data. 
!
1. Threads communicate through 

__shared__ variables 

2. Threads barrier via __syncthreads()

“shared” scratch storage: float input[6]

bi=0 bi=1 bi=2 bi=3

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

B[0] B[1] B[2] B[3]
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CUDA thread hierarchy
//	
  this	
  code	
  will	
  launch	
  96	
  threads	
  
//	
  6	
  blocks	
  of	
  16	
  threads	
  each	
  
!
dim2	
  threadsPerBlock(4,4);	
  
dim2	
  blocks(3,2);	
  	
  
myKernel<<blocks,	
  threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be organized 
in 1D, 2D, or 3D arrangements of threads 
(Convenience: many CUDA programs operate on n-D grids) 
!
Thread blocks (often) represent independent execution. 
!
Threads in a thread block executed simultaneously on same 
GPU core 

Why on the same core? 
Why simultaneously?

Source: CUDA Programming Manual
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The common way to think about CUDA 
(thread centric view of the programming model)

▪ CUDA is a multi-threaded programming model 

▪ Threads are logically grouped together into blocks and gang scheduled 
onto cores. This grouping is a locality hint. 

▪ Threads in a block are allowed to synchronize and communicate through 
barriers and shared local memory 

▪ Note: Lack of communication between threads in different blocks gives 
scheduler some flexibility (can “stream” blocks through the system)** 

!

!

!

!

** Global memory atomic operations provide a form of inter-thread block communication (more on this in a second)
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Another way to think about CUDA 
(like a streaming system: stream of thread blocks view)

▪ CUDA is a stream programming model (recall Brook) 
- Kernels are CUDA thread blocks  
- Stream elements are now blocks of data accessed by kernel 

(larger working sets than just individual elements) 
!

▪ Kernel invocations independent, but logic is multi-threaded 
- Multi-threading exposed additional fine-grained parallelism 
!

▪ Think: implicitly parallel across thread blocks 
!

▪ Think: explicitly parallel within a thread block (explicit 
synchronization of individual threads via barriers)

Canonical CUDA thread block program:

Threads cooperatively load block of 
data from input arrays into shared mem

Threads cooperatively write block of 
data to output arrays

__syncThreads();	
  //	
  barrier

__syncThreads();	
  //	
  barrier

Threads perform computation, 
accessing shared mem
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Choosing thread-block sizes
Question: how many CUDA threads should be in a CUDA thread block? 
!

Recall from GPU core lecture: 
How many threads per core? 
How much shared local memory per core?
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Another CUDA programming style: “persistent” threads
▪ No attempt to maintain streaming structure at all any more 

▪ Programmer is always “thinking” about explicitly parallel code, and writing code that is 
aware of the number of processors in the machine (very much like a pthread programmer) 

▪ Threads use atomic global memory operations to cooperatively implement work 
assignment to thread blocks
//	
  “Persistent	
  thread”	
  implementation:	
  Run	
  thread	
  block	
  until	
  all	
  work	
  is	
  done,	
  	
  
//	
  processing	
  multiple	
  work	
  elements,	
  rather	
  than	
  just	
  one	
  per	
  block.	
  Thread	
  block	
  
//	
  terminates	
  when	
  no	
  more	
  work	
  is	
  available	
  
!
__global__	
  void	
  persistent(int*	
  head,	
  int	
  count,	
  float*	
  a,	
  float*	
  b)	
  
{	
  
	
  	
  	
  	
  int	
  index;	
  
	
  	
  	
  	
  while	
  (	
  (index	
  =	
  read_and_increment(head,	
  1))	
  <	
  count)	
  
	
  	
  	
  	
  {	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  load	
  a[index];	
  
!
	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  do	
  work	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  write	
  result	
  to	
  b[index]	
  
	
  	
  	
  	
  }	
  
}	
  
!
//	
  launch	
  exactly	
  enough	
  thread	
  blocks	
  to	
  fill	
  up	
  machine	
  
//	
  (to	
  achieve	
  sufficient	
  parallelism	
  and	
  latency	
  hiding)	
  
!
int	
  head	
  =	
  0;	
  
persistent<<numBlocks,	
  blockSize>>(&head,	
  total_count,	
  A,	
  B);
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Questions: 
!

What does CUDA system do for the programmer? 
!

!

How does it compare to OpenGL?
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Quick aside: why did CUDA become popular?

1. Provides access to a cheap, fast machine (GPU’s programmable cores and high-
bandwidth memory system) 

2. SPMD programming abstraction allows programmer to write scalar code, have 
it mapped to wide SIMD hardware 
- CPU vendors were adamant about mapping arbitrary C/C++ code to vector instructions (not 

willing to constrain program structure to make problem easier) 
- Even today, generating explicit vector code for CPUs remain shockingly hard to do (OpenCL is 

exceptionally heavyweight, see Intel’s ISPC for a useful tool) 

3. Programming model was familiar: much more like thread programming than 
stream programming — it allowed arbitrary in-kernel array indexing (because 
GPU’s had hardware multi-threading to hide memory latency) 
- More familiar, convenient, and flexible in comparison to previous data-parallel or streaming 

systems [StreamC/KernelC, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others] 
- 1-to-1 with hardware behavior (HW had latency-hiding support already, no reliance on 

“sophisticated” compiler technology to achieve high performance)

(Kayvon’s personal opinion: ignoring marketing reasons)
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Current and future graphics/GPU compute 
programming model trends
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Problem: CPU bottleneck

Core 1 Core 2

Core 3 Core 4

CPU cores GPU cores

Co
m

m
an

d P
ro

ce
ss

orgraphics/compute 
command queueOpenGL driver

▪ Problem: graphics application is bottlenecked by CPU thread performance 
- Consider: 5,000 objects, 60Hz, 5 draws per frame (different materials per object, objects drawn multiple 

times (shadow maps, reflection maps), etc.) —> ~1.5 million draws per frame 
- State of the art engines are in the range of 10’s of thousands. 

- Graphics application must iterate through scene database and make appropriate graphics calls (for each 
scene object: set graphics state based on material, etc. “if object features wood material is lit by three 
lights, and is close to the camera, bind these textures and shaders”)  

- Graphics driver (running on CPU) can only process a fixed number of draw calls per frame: limited by 
performance of building GPU command buffer from sequence of graphics API calls



 CMU 15-869, Fall 2014

Trend: “to-the-metal” APIs
▪ AMD Mantle, Apple Metal, Direct3D 12 (announced) 

▪ Idea: pull responsibility for resource management and command buffer generation 
from monolithic graphics driver back into graphics application 
- Application-facing graphics API changes from issuing draw calls to building GPU command buffers 

- Note 1: the graphics pipeline abstraction is largely unchanged (but now applications have access to a 
lower-level interface for generating work for the same pipeline abstraction) 

- Note 2: this interface was already the status-quo for game consoles, so PC graphics is just catching up 
(consoles have low-performance CPUs, and console games are written to a specific GPU architecture, so 
a lower-level of abstraction has made sense for some time)

Metal
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Example: parallel command buffer generation by 
multiple CPU threads 

▪ Efficiency improvements: 
- Parallel command buffer generation (API handed command buffers that are constructed in parallel) 

- Management of command buffer resources can be specialized to application 

Core 1 Core 2

Core 3 Core 4

GPU cores

Co
m

m
an

d P
ro

ce
ss

or

graphics cmd buffer

game thread game thread

game thread

driver thread

graphics cmd buffer

graphics cmd buffer
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Future trend: compute-mode, graphics-mode integration
▪ Currently there are two distinct “worlds” for GPU programming 

- Graphics mode: send commands to GPU pipeline, update graphics buffers 
- Compute mode: send commands for CUDA/compute shader processing, update compute buffers 
- Buffer transfer/copy routines make compute buffers visible to graphics (and vice-versa) 

▪ Better fusion of these two programming models is desirable

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fragments

Pixels

Compute 
Shader

Example 1: compute mode computations 
generate geometry directly for graphics 
pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Primitive Processing

Vertices

Primitives

Fragments

Compute Shader: 
(shading operations)

Example 2: graphics pipeline 
generates fragments that are 
shaded by compute mode kernel
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Reading

▪ T. Foley et al. Spark: Modular, Composable Shaders for Graphics Hardware. SIGGRAPH 2011 
!

▪ J. Nickolls et al.  Scalable Parallel Programming with CUDA. ACM Queue 2008 
!

▪ See website for a number of interesting blog posts…


