Lecture 8:

Compute-mode GPU
Programming Interfaces

Visual Computing Systems
CMU 15-869, Fall 2014

What is a programming model?

CMU 15-869, Fall 2014

Programming models impose structure

m A programming model provides a set of primitives/abstractions
that impose structure on programs written using it

- The structure captures the salient features of this class of programs
- “Here’s how a programmer should think of problems of this type...”

- Powerful/efficient: write less code, system performs key optimizations

® Analogy: in data analysis, what does choosing the right model
for a data set entail?

- Fits the structure of the data (the phenomenon) being described well
- Powerful/efficient: few parameters left up to user

- Generalizes to describe new data/phenomenon of similar types

CMU 15-869, Fall 2014

THE QUESTION to ask yourself when trying to
assess the value of a programming model

m What does imposing this particular structure do for the
programmer?

m |n other words: what services does the system provide as a
result of the structure?

- Is certain boilerplate code (or difficult to implement algorithms) provided ina
convenient library or primitive?

- Is a certain part of the code parallelized automatically?

- Is the code mapped to a certain type of specialized hardware?

CMU 15-869, Fall 2014

Stream programming model

Emits programs structured as a series of kernels operating on elements of data streams

4) 4)
— Kernel 1 — Kernel 2 &
Stream 1 Stream 2 %

8 J 8 J O

Stmm\?, .
3
Kernel 3
Stream 4 g) Stream 5

B Streams
- Encapsulate per-element independence (every element can be processed in parallel)
- Encapsulate producer-consumer locality

B Kernels
- Side-effect-free functions operating on stream elements
- Encapsulate locality (kernel’s working set defined by inputs, outputs, and temporaries)
- Encapsulate instruction-stream coherence (same kernel applied to each stream element)

B Many implementations (e.g., StreaMIT, Stream(C/KernelC, SDF) rely on static scheduling by the
compiler to achieve very high performance

(MU 15-869, Fall 2014

Stream programming model: kernels

No loops, array indexing, or explicit
parallelism in code.

\\\\\\\\\\\‘ kernel void scale(float amount, float a, out float b)
{

b = amount * a;
}

// note: omitting initialization
float scale amount;

stream<float> input stream(1000);
stream<float> intermediate_ stream;
stream<float> output stream(1000);

// map kernel onto streams
scale(scale_amount, input stream, intermediate_stream);

//////V scale(scale amount, intermediate_stream, output _stream);

Semantics of kernel calls are to invoke
kernel once per output stream element

CMU 15-869, Fall 2014

Graphics pipeline has many streaming aspects

Basic Graphics Pipeline
B Streams: elements between pipeline stages

(e.g., implemented using statically allocated
on-chip buffers) Vertices

- Vertexprocesing
m Kernels: pipeline stages (implemented by I
fixed-function |OgiC or shader COdE) Primitive Generation

Primitives

B What are aspects of the graphics pipeline
that are NOT streaming in nature?

- Texture fetch (unpredictable array access) Rasterization
- Frame-buffer update (not independent) S SR

Fragments

 Fragment Processing

(MU 15-869, Fall 2014

Research question in early 2000’s

m What programming models can make is easy to write
applications that efficiently use emerging high-throughput
parallel processors.

- Topic of computer architecture, supercomputing, programming language
communities (stream programming was a major focus)

- Note: still a Ph.D. level research question in 2014

m Real-time graphics folks:

- Evenif you ignore all the fixed-function stuff in a GPU, the programmable
cores in a GPU are a very high performance parallel processor (that’s cheap
and widely available today!)

- It's unfortunate that the only way to use these processors is to rasterize
triangles (recall: fixed-function units control programmable units of GPU)

CMU 15-869, Fall 2014

NVI D IA’S CU DA [Designed by lan Buck at NVIDIA, circa 2007]

B Alternative architecture definition for Tesla-class GPU hardware)

- “Compute mode” interface
- Tesla was first “unified shading” GPU

=
setup/r
§
| | [|
TPC PC TH(TPC
[] 11] 1|
[] 1| |] 1|t
SM SM SM SM SM SM SM A SM SM SM
[
[
—r— gr— g— r—— [r— — [g— f— gr—p— —— [r—— gr—p—
(][] [[s2][s] 13| 3 12 3 o [s2][] [=][=]l]l I [=][+]
e R EEEE EEEE ER e EEER CEEE EE R
[s#][s2]l [[s2] =] =[] ([E=]=] = ()] =|l[=][=] E3|E3|[E3|E2 |{|[E2 | E3 | E3(E3
I (EIE 1T | EIE (B | (= (EE] (| [EIC] 1]
E’g#:ﬁ r‘igﬁ%‘ﬂy Ek“muu SM'E:J)- Elﬁ:z":;J "Q‘;m Eygd’ug‘ 'gl:qu:d Sl‘::ﬂmud {ij;mvuc E’uluﬁ‘ SLY:\}UG S::‘*‘I:g Eéiztly Shared rg;ﬂvucj
Texture unit Texture Texture unit Texture unit Texture unit Texture unit Texture unit Texture unit
I [| | [[[| | I [I [I I [
(Interconnection network)
DRAM DRAM DRAM DRAM DRAM DRAM

m Low-level abstraction that reflects capabilities of hardware

- Recall arguments in Cg paper: do not have abstraction get in the way of using
hardware, even if it makes it more tedious to write code)

- Combines some elements of streaming and multi-threading (like HW does)

m (Open standards embodiment of this programming model is OpenCL
(Microsoft’s embodiment is D3D Compute Shader)

CMU 15-869, Fall 2014

CUDA constructs (the “kernel”)

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

(MU 15-869, Fall 2014

What is the behavior of this kernel?

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[@] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

CMU 15-869, Fall 2014

Can system discover producer-consumer locality?

// CUDA kernel definition
__global void scale(float amount, float* a, float* b)
{
int i = threadIdx.Xx; // CUDA builtin: get thread id
b[i] = amount * a[1];

}

// note: omitting array initialization via cudaMalloc()
float scale_amount;

float* input_array;

float* output_array;

float* tmp_array;

scale<<1,N>>(scale _amount, input _array, tmp_array);
scale<<1,N>>(scale _amount, tmp array, output_array);

Kernel (scale) Kernel (scale)

U J & J

t | t |
| v | v

input_array tmp_array output_array

(MU 15-869, Fall 2014

CUDA constructs (the kernel)

// CUDA kernel definition
__global _ void scale(float amount, float* a, float* b)

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i];

}

// note: omitting array initialization via cudaMalloc()
float scale _amount;

float* input_array;

float* output_array;

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?

(MU 15-869, Fall 2014

CUDA constructs (the kernel)

// CUDA kernel definition Given this implementation: each invocation
J * * o o
__global _ void scale(float amount, float* a, float* b) of scale kernel is independent.

{
int i = threadIdx.Xx; // CUDA builtin: get thread id

b[i] = amount * a[i]; (bulk thread launch semantics no different
} than sequential semantics)

// note: omitting array initialization via cudaMalloc()

float scale_amount; CUDA system has flexibility to parallelize any
float* input_array; wav it bleases
float* output_array; yiep :

// launch N threads, each thread executes kernel ‘scale’
scale<<1,N>>(scale_amount, input_array, output_array);

In many cases, such as in the example above, thinking about a CUDA
kernel as a stream processing kernel, and CUDA arrays as streams is
perfectly reasonable, ALTHOUGH THIS STRUCTURE IS NOT IMPOSED BY
THE CUDA PROGRAMMING MODEL.

(Programmer just has to do a little indexing in the kernel to geta
reference to stream inputs/outputs)

CMU 15-869, Fall 2014

Convolution example

// assume len(A) = len(B) + 2
__global void convolve(float* a, float* b)

{

int i = threadIdx.Xx;
b[i] = a[i] + a[i+l] + a[i+2];
}

Note “adjacent” threads load same data.

Here: 3x input reuse (reuse increases with increasing width of convolution filter)

A[0] | | A[1]

A[2]

A[3]

Al4]

N>

B[0]

B[1]

B[2]

CMU 15-869, Fall 2014

CUDA thread hierarchy

#define BLOCK_SIZE 4

__global void convolve(float* a, float* b)

{
__shared__ float input[BLOCK_SIZE + 2];

int bi
int ti

blockIdx.x;
threadIdx.Xx;

input[bi] = A[ti];
if (bi < 2)

{
input[BLOCK_SIZE+bi] = A[ti+BLOCK_SIZE];

}

__syncthreads(); // barrier

b[ti] = input[bi] + input[bi+l] + input[bi+2];
}

// allocation omitted
// assume len(A) = N+2, len(B)=N
float* A, *B;

convolve<<BLOCK_SIZE, N/BLOCK _SIZE>>(A, B);

CUDA threads are grouped into thread blocks

Threads in a block are not independent.
They can cooperate to process shared data.

1. Threads communicate through
__shared__ variables

2. Threads barriervia __syncthreads()

A[O] A[1] A[2] A[3] A[4] A[5] A[6]

“shared” scratch storage: float input[6]

CMU 15-869, Fall 2014

CUDA thread hierarchy

// this code will launch 96 threads
// 6 blocks of 16 threads each

dim2 threadsPerBlock(4,4); Grid

dim2 blocks(3,2);
myKernel<<blocks, threadsPerBlock>>(); Block (0,0) Block (1,0) Block (2, 0)

Thread blocks (and the overall “grid” of blocks) can be organized
in 1D, 2D, or 3D arrangements of threads
(Convenience: many CUDA programs operate on n-D grids) ’

Block (0, 1) Block (1, 1) ;:“ﬂock (2,1)

Thread blocks (often) represent independent execution.

Block (1, 1)

Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?

Why simultaneously?

Source: CUDA Programming Manual

(MU 15-869, Fall 2014

The common way to think about CUDA

(thread centric view of the programming model)

®m CUDAis a multi-threaded programming model

m Threads are logically grouped together into blocks and gang scheduled
onto cores. This grouping is a locality hint.

B Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

m Note: Lack of communication between threads in different blocks gives
scheduler some flexibility (can “stream” blocks through the system)**

** Global memory atomic operations provide a form of inter-thread block communication (more on this in a second)

CMU 15-869, Fall 2014

Another way to think about CUDA

(like a streaming system: stream of thread blocks view)

B CUDAis a stream programming model (recall Brook)
- Kernels are CUDA thread blocks .

- Stream elements are now blocks of data accessed by kernel —
(larger working sets than just individual elements)

B Kernel invocations independent, but logic is multi-threaded

- Multi-threading exposed additional fine-grained parallelism

B Think: implicitly parallel across thread blocks

B Think: explicitly parallel within a thread block (explicit
synchronization of individual threads via barriers)

Canonical CUDA thread block program:

r

~N

Threads cooperatively load block of
data from input arrays into shared mem

__syncThreads(); // barrier

Threads perform computation,
accessing shared mem
__syncThreads(); // barrier

Threads cooperatively write block of
data to output arrays

CMU 15-869, Fall 2014

Choosing thread-block sizes

Question: how many CUDA threads should be in a CUDA thread block?

Recall from GPU core lecture:
How many threads per core?
How much shared local memory per core?

CMU 15-869, Fall 2014

Another CUDA programming style: “persistent” threads

B No attempt to maintain streaming structure at all any more

B Programmer is always “thinking” about explicitly parallel code, and writing code that is
aware of the number of processors in the machine (very much like a pthread programmer)

B Threads use atomic global memory operations to cooperatively implement work
assignment to thread blocks

// “Persistent thread” implementation: Run thread block until all work is done,
// processing multiple work elements, rather than just one per block. Thread block
// terminates when no more work is available

__global _ void persistent(int* head, int count, float* a, float* b)

{
int index;
while ((index = read _and_increment(head, 1)) < count)
{
// load a[index];
// do work
// write result to b[index]
}
}

// launch exactly enough thread blocks to fill up machine
// (to achieve sufficient parallelism and latency hiding)

int head = 0;
persistent<<numBlocks, blockSize>>(&head, total_count, A, B);

(MU 15-869, Fall 2014

Questions:

What does CUDA system do for the programmer?

How does it compare to OpenGL?

5-869, Fall 2014

Quick aside: why did CUDA become popular?

(Kayvon’s personal opinion: ignoring marketing reasons)

1. Provides access to a cheap, fast machine (GPU’s programmable cores and high-
bandwidth memory system)

2. SPMD programming abstraction allows programmer to write scalar code, have

it mapped to wide SIMD hardware

- (PUvendors were adamant about mapping arbitrary (/C++ code to vector instructions (not
willing to constrain program structure to make problem easier)

- Even today, generating explicit vector code for CPUs remain shockingly hard to do (OpenCL is
exceptionally heavyweight, see Intel’s ISPC for a useful tool)

3. Programming model was familiar: much more like thread programming than
stream programming — it allowed arbitrary in-kernel array indexing (because
GPU’s had hardware multi-threading to hide memory latency)

- More familiar, convenient, and flexible in comparison to previous data-parallel or streaming
systems [Stream(C/Kernel(, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others]

- 1-to-1 with hardware behavior (HW had latency-hiding support already, no reliance on
“sophisticated” compiler technology to achieve high performance)

CMU 15-869, Fall 2014

Current and future graphics/GPU compute
programming model trends

Problem: CPU bottleneck

CPU cores

Core 1

Core 2

graphics/compute

GPU

cores

Qooooopoooooooan (el alalalalelalalalalalelalala] [s]sis]s]alelelolololalololola]o)
hnﬂﬂﬂhﬁnﬂﬂﬂﬁﬁﬂﬁn -- [=lelelelalalelelalalelelelelela] - =lelalalalelelelalalalelelalels)
[=]alaalaTa e aTalulalaTalalale] [=]=a]ulala aTalalulalelaTalaa] gEoopoooooooooon
[58885688RaRRAAA0 B Stocoaatnonoo00n B cooooosanonooonn
DOOODEoOooDEENog el s]alale e aTalaTaTeTaTaTaTe]
R ©oC0uRoooEanREans] E“EEBEUEHHB‘;SE‘HE SooonoooooDoooan

EQEEEQ- |s]e]sis]e]s]e]e]

BHBHEERAEARRREEE

Qooooooa
BN ooooonooooooooon I ooonnoononoooon .

OO0ODDoO00000000 O000DDOO00000000]
poooDBoDOOooooOD QoooDBoOooooooog

Go000po000000000 Go000co000000000

n

u

]

=

EHEEEE” EEEEESEE

Tl =TT == = =T] [— =TTl T[T = = = =]

NN 555RRREEGannn0aa W 585ERRRERRRRnan0 NI FE5ERERE6000a000

[=l=]=]e[a[eaTe e luluTaTala au poooppoooOnooOon [=1e[e]elele aTaTa e e e aTaTaTe]

PEASAL S LS LS I cocooooooonooonn IR ctoooossoonoooon B cccooossoonnoonn
r Dnuunnunuuuuuuuu [#]s][u]u]u ulaaTalalaTaTaTaTa] [=]s]s[s]s]sjs]s]a]a]a]e]a]s]a]s]
. R 2-SuuooaoatG N ©C0080008EEEaaaa [ettt
i BREARER DDDDD]DD o oopooooo BHHABBRESEaaga
3 oHoonooonn BBHEBBEEEE888888 sl lalelalalalc]
1 NN -noonnoonooooonn NN noooooononononn NN onooooooonooonn
1 0O0000D0000000000 {s[s[sls]s s]s[sls]s]sls]slxls] 0O0000B0000D00000
" pooopEooNoopEooon [Sl=]=le el = = e = === = = = poooopoNooDENooD
L DoooooooooDDooon ooooooooooDDooon ””"“”"""DUU"DUUE’

llIIIIIIIIIIIIIIIIIIIIIIIIIII‘ o

Core 3

Core 4

Command Processor

BEGaBRREaRR0AGaE BESOBBNoooBoaaa HEBaBBREOoBoooaa
Emmm S8868588555565080 e S8E8EE885aR55a5G Emmm 2888858858655
mE EEHEEEIE?HEBE‘SIHE‘S mmmm SEE8BE588EEER888 mmmm SES88E88EEEER888

BBEHBBEEEEEERREE EEJE"E” D”EEEE}EE EB:’E"E”“EEUEEED“

gooooooooonoooon
0DO00DO000000000

poogooooooooooog
o o

[e]e]e]e]ele] oonooonn
E‘“UDEnEjUDLEﬂﬁE

poooopooooooooog
oooonoooooooooon

[oe]elele ejelelelalelele]a]
EﬂﬂgDEHﬂﬂﬂDHEDuD
ﬁDQUDDDQDDDDDGDE

[T = e = = =T [— pEoonnEonnaaannEa
BESEEREERRRRREER W 5855EERE58E58888 SboooaBaooooa000
goooopogoaoooaon Qoo Qoooooon [=]=] [s]es]s]alalalsls]e]a]la]
B Sooooooononooonn [] BEEaaEaaaaaa0a88 B cocooatsononoooon
[e[e[alulalaTaluluTaalaTaTu] [els[s]alale e aTalaTuTeTaTaTa e}
__ ooooooooooooooon __ EEEEEEﬁEgggggggg __ Qooooooooooooooo
EEQEEEQ- ooppRoog BEEEEERASSR88588 EBZEHE”DUUDEDHDB
_I- o uJoooooooo [slajalalalalalal |-|- uunooooaoo
oooonnooooooooon [N rooonooooooooonn ooooopoooonoooon
ooo 1rn--n'\ri‘\;_t:|u_v [lalalnlals slalalnlslslslsns] 0O0O00DO000000000
poooppoooopEooon o pooooDoNooDENoog
efete e aete afa alatafata(at Lt e state o s fatatatatalat 0O000000000000000

B Problem: graphics application is bottlenecked by CPU thread performance

- Consider: 5,000 objects, 60Hz, 5 draws per frame (different materials per object, objects drawn multiple
times (shadow maps, reflection maps), etc.) —> ~1.5 million draws per frame

- State of the art engines are in the range of 10’s of thousands.

- Graphics application must iterate through scene database and make appropriate graphics calls (for each
scene object: set graphics state based on material, etc. “if object features wood material is lit by three
lights, and is close to the camera, bind these textures and shaders”)

- Graphics driver (running on CPU) can only process a fixed number of draw calls per frame: limited by
performance of building GPU command buffer from sequence of graphics API calls

CMU 15-869, Fall 2014

Trend: “to-the-metal” APlIs

B AMD Mantle, Apple Metal, Direct3D 12 (announced)

m [dea: pull responsibility for resource management and command buffer generation
from monolithic graphics driver back into graphics application

Application-facing graphics APl changes from issuing draw calls to building GPU command buffers

Note 1: the graphics pipeline abstraction is largely unchanged (but now applications have access to a
lower-level interface for generating work for the same pipeline abstraction)

Note 2: this interface was already the status-quo for game consoles, so PC graphics is just catching up
(consoles have low-performance CPUs, and console games are written to a specific GPU architecture, so
a lower-level of abstraction has made sense for some time)

MANILE | aMpa N\

CMU 15-869, Fall 2014

graphics cmd buffer

graphics cmd buffer

GPU cores

.]
. | I BEEERRRRARRRRERR IS 5555RRRERRRRRRRR I BRRERRREGERG6500
[=]=]=[e[a[ealalaTuTaTaTalaTau] . . oo
mmmm 8E89888955535558 mmmm 8H8988855553558 mmmm B598888959883954
* BE8SRERARAE88888 goooooooooooooog [=]s]=]s]s]uju]uls]uTe]alala]uTe]
< e R CCConnoooonaaang BB ScoonooonaaEaaag
.‘-................... ooy .' .‘............................., EEEHEEEHEEEEEEEE BEEEHBBRERR8R88888 EEEEBE” EEEEEEEE
» Y (- gooonooononononn NI oo0nooononoooon NI oo0noooooooooon
: | - : .] BooonooonononoDo poognononoDonoon e
-
] game t rea e ™ 1 game t rea E .0 ooo0noooo0ooooonn ooooooooooooooon poooooooooooooon
"]
1 : . 1 . o* BREEEESR2ESSEEaE SESEEEERRESEEEEE SH2SEEESRRSEEEEE
' U . L
*ann snmmn senun snmnnma® - ®aun semmm snmmn snmnns® "
. o*
L (! “ b =
co re 1 “ r e® * ° | BESERARB0aRRRaaN BAA8 NI FE5ERRREaaRna000
PEooppoonooooonn
. .® . m B cooooooanoonoooon Bes] LRIt slslata aist
NSNS EsEEsEESEEEEEEEEEEEEED [eqala a]n e o s =]a|o == e " "]
y A i —— —] ——
3 i ; (<)) EHEEEEQHDUDDDQDD noooDoooon poooDoooon
i E BN ooogooog EHESBE Huuuuuuuu EBEHSE Huuuuuuuu
: rlver re W 00000000000000 N onooooonoonoonn NN Dooooopoooonn
3 E —— 888688a000080000 B888888885555888 BH868E0a60080000
BooooEoooooEooon [Slel= == = == = = e = = = =
1 E ° oooonooooopoooon BRAARRAAAaRBAGEE oooonnooooppooon
*
S BEESSEEERESEREEE HRSEEESNSESmE=EE
o]]
* . c
L 4
m ﬂ] ETEe= = =T]
... oy ﬂraphlcs c d bu er = NI 58 RRRRRGRRRnaon BRI RE3REBRER8538888 R
[=1=]=]e|a|= alelala[aTaTalaTaTu] oo Doo:
ne. - m I coccoocaoonoooo0 . BEEERE8858R00880] B8886588000RA000
~ samaam sasan mmnam . [s[s]«la[a[wlalalaTu[aTaTalaTau 0OOODDoUNoDEoooD [esle]elale aTalalululeTaTaTaT]
E [R ettt atabatata -- slststatststslstststst=t=t=1=1=] R CCConnooSonogang
oonpogoon .
allle th read ; _> E BHBEEBRAEEREEEEE BEEEBBBBEEEREEEE EBEEBE BEBEE88E
- NN ooooooononooonn] . noooooooon
. g = S oooonpoononooono 88086Ba000000000 B88886000a000000
L] " gooooooooooooooo [=]=]=]=]=]= =]saTaale el aTx] [=]=]=]=]=]= = aaTaaleTa o aTa]
E% & ooo0000o000DD000a ooooooooooDoooon aooonoonooononaoon
. .
EEEEEEEEEEEEEEEEEEEEEEEEEEE ° guamEEnnEEsasEEs
Tel=T==] pooonpaon =
Boo60 W HEEEEEEEEER5G000 NN 5EE5ERREaa000000
nooooo 5 - - s
mmmm 8E89888953539598 mmmm 8H89888555539558 — T
[s]s[s]s[s]u a]u]elale]alale]ale] uuauunauuuuuuuuu 00000D00gooogoog
-- DUUQDUDUEEES;“““ -- B000000000Ro0a0| -- 0000000000ao0a00
Qopppoon o
BHBEBBRAEEREEEEE EESEEE”SUBEEEEU EEEEEE EEEEEEEE
I ooonnoononoooon NN rnoonooonononn BN oooooo nooopoooon
B88886a000000000 et atata et ata e ats S080800a0008aaaa
pooopEoooopEnonn nooo! opoooon
ooo00noooo00Dooonn gggggggggggggggg gngﬂﬂggggﬂﬂggﬂﬂﬂ

Example: parallel command buffer generation by
multiple CPU threads

m Efficiency improvements:

- Parallel command buffer generation (APl handed command buffers that are constructed in parallel)

- Management of command buffer resources can be specialized to application

(MU 15-869, Fall 2014

Future trend: compute-mode, graphics-mode integration

B (Currently there are two distinct “worlds” for GPU programming

- Graphics mode: send commands to GPU pipeline, update graphics buffers
- Compute mode: send commands for CUDA/compute shader processing, update compute buffers
- Buffer transfer/copy routines make compute buffers visible to graphics (and vice-versa)

B Better fusion of these two programming models is desirable

Example 1: compute mode computations Example 2: graphics pipeline
.) Vertex Generation

generate geometry directly for graphics generates fragments that are

pipeline shaded by compute mode kernel ./ 1icec l

[Compute]\ { /ertex Frocessing]
Shader ‘

Primitives *
{ Primitive Processing }

Rasterization

(Fragment Generation)

Fragments

[Fragment Frocessing]

* Rasterization

Pixels Frame-Buffer Ops (Fragment Generation)
Fragments
Compute Shader: J
(shading operations)

(MU 15-869, Fall 2014

Reading

® T Foley etal. Spark: Modular, Composable Shaders for Graphics Hardware. SIGGRAPH 2011

B). Nickolls et al. Scalable Parallel Programming with CUDA. ACM Queue 2008

B See website for a number of interesting blog posts...

CMU 15-869, Fall 2014

