
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 8:

Compute-mode GPU
Programming Interfaces

 CMU 15-869, Fall 2014

What is a programming model?

 CMU 15-869, Fall 2014

Programming models impose structure
▪ A programming model provides a set of primitives/abstractions

that impose structure on programs written using it
- The structure captures the salient features of this class of programs
- “Here’s how a programmer should think of problems of this type…”
- Powerful/efficient: write less code, system performs key optimizations

▪ Analogy: in data analysis, what does choosing the right model
for a data set entail?
- Fits the structure of the data (the phenomenon) being described well
- Powerful/efficient: few parameters left up to user
- Generalizes to describe new data/phenomenon of similar types

 CMU 15-869, Fall 2014

THE QUESTION to ask yourself when trying to
assess the value of a programming model

▪ What does imposing this particular structure do for the
programmer?
!

▪ In other words: what services does the system provide as a
result of the structure?
- Is certain boilerplate code (or difficult to implement algorithms) provided in a

convenient library or primitive?
- Is a certain part of the code parallelized automatically?
- Is the code mapped to a certain type of specialized hardware?

 CMU 15-869, Fall 2014

Stream programming model

▪ Streams
- Encapsulate per-element independence (every element can be processed in parallel)
- Encapsulate producer-consumer locality

▪ Kernels
- Side-effect-free functions operating on stream elements
- Encapsulate locality (kernel’s working set defined by inputs, outputs, and temporaries)
- Encapsulate instruction-stream coherence (same kernel applied to each stream element)

▪ Many implementations (e.g., StreaMIT, StreamC/KernelC, SDF) rely on static scheduling by the
compiler to achieve very high performance

Kernel 1 Kernel 2

Kernel 3

Stream 1 Stream 2

Stream 4 Stream 5

Stream
3

Emits programs structured as a series of kernels operating on elements of data streams

 CMU 15-869, Fall 2014

Stream programming model: kernels

kernel	
 void	
 scale(float	
 amount,	
 float	
 a,	
 out	
 float	
 b)	

{	

	
 	
 	
 b	
 =	
 amount	
 *	
 a;	

}	

!
//	
 note:	
 omitting	
 initialization	

float	
 scale_amount;	

stream<float>	
 input_stream(1000);	

stream<float>	
 intermediate_stream;	

stream<float>	
 output_stream(1000);	

!
//	
 map	
 kernel	
 onto	
 streams	
 	

scale(scale_amount,	
 input_stream,	
 intermediate_stream);	

scale(scale_amount,	
 intermediate_stream,	
 output_stream);

No loops, array indexing, or explicit
parallelism in code.

Semantics of kernel calls are to invoke
kernel once per output stream element

 CMU 15-869, Fall 2014

Graphics pipeline has many streaming aspects
▪ Streams: elements between pipeline stages

(e.g., implemented using statically allocated
on-chip buffers)

▪ Kernels: pipeline stages (implemented by
fixed-function logic or shader code)

▪ What are aspects of the graphics pipeline
that are NOT streaming in nature?
- Texture fetch (unpredictable array access)
- Frame-buffer update (not independent)

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Basic Graphics Pipeline

 CMU 15-869, Fall 2014

Research question in early 2000’s
▪ What programming models can make is easy to write

applications that efficiently use emerging high-throughput
parallel processors.
- Topic of computer architecture, supercomputing, programming language

communities (stream programming was a major focus)
- Note: still a Ph.D. level research question in 2014

▪ Real-time graphics folks:
- Even if you ignore all the fixed-function stuff in a GPU, the programmable

cores in a GPU are a very high performance parallel processor (that’s cheap
and widely available today!)

- It’s unfortunate that the only way to use these processors is to rasterize
triangles (recall: fixed-function units control programmable units of GPU)

 CMU 15-869, Fall 2014

▪ Alternative architecture definition for Tesla-class GPU hardware)
- “Compute mode” interface
- Tesla was first “unified shading” GPU

▪ Low-level abstraction that reflects capabilities of hardware
- Recall arguments in Cg paper: do not have abstraction get in the way of using

hardware, even if it makes it more tedious to write code)
- Combines some elements of streaming and multi-threading (like HW does)

▪ Open standards embodiment of this programming model is OpenCL
(Microsoft’s embodiment is D3D Compute Shader)

NVIDIA’s CUDA [Designed by Ian Buck at NVIDIA, circa 2007]

 CMU 15-869, Fall 2014

CUDA constructs (the “kernel”)
//	
 CUDA	
 kernel	
 definition	

__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id	

	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];	

}	

!
//	
 note:	
 omitting	
 array	
 initialization	
 via	
 cudaMalloc()	

float	
 scale_amount;	

float*	
 input_array;	

float*	
 output_array;	

!
//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’	

scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

 CMU 15-869, Fall 2014

What is the behavior of this kernel?
//	
 CUDA	
 kernel	
 definition	

__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id	

	
 	
 	
 b[0]	
 =	
 amount	
 *	
 a[i];	

}	

!
//	
 note:	
 omitting	
 array	
 initialization	
 via	
 cudaMalloc()	

float	
 scale_amount;	

float*	
 input_array;	

float*	
 output_array;	

!
//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’	

scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

 CMU 15-869, Fall 2014

Can system discover producer-consumer locality?
//	
 CUDA	
 kernel	
 definition	

__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id	

	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];	

}	

!
//	
 note:	
 omitting	
 array	
 initialization	
 via	
 cudaMalloc()	

float	
 scale_amount;	

float*	
 input_array;	

float*	
 output_array;	

float*	
 tmp_array;	

!
scale<<1,N>>(scale_amount,	
 input_array,	
 tmp_array);	

scale<<1,N>>(scale_amount,	
 tmp_array,	
 output_array);

Kernel (scale) Kernel (scale)

input_array tmp_array output_array

 CMU 15-869, Fall 2014

CUDA constructs (the kernel)
//	
 CUDA	
 kernel	
 definition	

__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id	

	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];	

}	

!
//	
 note:	
 omitting	
 array	
 initialization	
 via	
 cudaMalloc()	

float	
 scale_amount;	

float*	
 input_array;	

float*	
 output_array;	

!
//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’	

scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Bulk thread launch: logically spawns N threads

Question: What should N be?
Question: Do you normally think of “threads” this way?

 CMU 15-869, Fall 2014

CUDA constructs (the kernel)
//	
 CUDA	
 kernel	
 definition	

__global__	
 void	
 scale(float	
 amount,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 //	
 CUDA	
 builtin:	
 get	
 thread	
 id	

	
 	
 	
 b[i]	
 =	
 amount	
 *	
 a[i];	

}	

!
//	
 note:	
 omitting	
 array	
 initialization	
 via	
 cudaMalloc()	

float	
 scale_amount;	

float*	
 input_array;	

float*	
 output_array;	

!
//	
 launch	
 N	
 threads,	
 each	
 thread	
 executes	
 kernel	
 ‘scale’	

scale<<1,N>>(scale_amount,	
 input_array,	
 output_array);

Given this implementation: each invocation
of scale kernel is independent.
!
(bulk thread launch semantics no different
than sequential semantics)
!
CUDA system has flexibility to parallelize any
way it pleases.

In many cases, such as in the example above, thinking about a CUDA
kernel as a stream processing kernel, and CUDA arrays as streams is
perfectly reasonable, ALTHOUGH THIS STRUCTURE IS NOT IMPOSED BY
THE CUDA PROGRAMMING MODEL.
!
(Programmer just has to do a little indexing in the kernel to get a
reference to stream inputs/outputs)

 CMU 15-869, Fall 2014

Convolution example
//	
 assume	
 len(A)	
 =	
 len(B)	
 +	
 2	

__global__	
 void	
 convolve(float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 int	
 i	
 =	
 threadIdx.x;	
 	
 	
 	

	
 	
 	
 b[i]	
 =	
 a[i]	
 +	
 a[i+1]	
 +	
 a[i+2];	

}	

!
!
!

Note “adjacent” threads load same data.
Here: 3x input reuse

B[0] B[1] B[2]

A[0] A[1] A[2] A[4]A[3]

 (reuse increases with increasing width of convolution filter)

 CMU 15-869, Fall 2014

CUDA thread hierarchy
#define	
 BLOCK_SIZE	
 4	

!
__global__	
 void	
 convolve(float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 __shared__	
 float	
 input[BLOCK_SIZE	
 +	
 2];	

!
	
 	
 	
 int	
 bi	
 =	
 blockIdx.x;	
 	

	
 	
 	
 int	
 ti	
 =	
 threadIdx.x;	

!
	
 	
 	
 input[bi]	
 =	
 A[ti];	

	
 	
 	
 if	
 (bi	
 <	
 2)	

	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 input[BLOCK_SIZE+bi]	
 =	
 A[ti+BLOCK_SIZE];	

	
 	
 	
 }	
 	
 	

!
	
 	
 	
 __syncthreads();	
 	
 	
 //	
 barrier	

!
	
 	
 	
 b[ti]	
 =	
 input[bi]	
 +	
 input[bi+1]	
 +	
 input[bi+2];	

}	

!
//	
 allocation	
 omitted	
 	

//	
 assume	
 len(A)	
 =	
 N+2,	
 len(B)=N	

float*	
 A,	
 *B;	

!
convolve<<BLOCK_SIZE,	
 N/BLOCK_SIZE>>(A,	
 B);	

!
!
!

CUDA threads are grouped into thread blocks
!
Threads in a block are not independent.
They can cooperate to process shared data.
!
1. Threads communicate through

__shared__ variables

2. Threads barrier via __syncthreads()

“shared” scratch storage: float input[6]

bi=0 bi=1 bi=2 bi=3

A[0] A[1] A[2] A[3] A[4] A[5] A[6]

B[0] B[1] B[2] B[3]

 CMU 15-869, Fall 2014

CUDA thread hierarchy
//	
 this	
 code	
 will	
 launch	
 96	
 threads	

//	
 6	
 blocks	
 of	
 16	
 threads	
 each	

!
dim2	
 threadsPerBlock(4,4);	

dim2	
 blocks(3,2);	
 	

myKernel<<blocks,	
 threadsPerBlock>>();

Thread blocks (and the overall “grid” of blocks) can be organized
in 1D, 2D, or 3D arrangements of threads
(Convenience: many CUDA programs operate on n-D grids)
!
Thread blocks (often) represent independent execution.
!
Threads in a thread block executed simultaneously on same
GPU core

Why on the same core?
Why simultaneously?

Source: CUDA Programming Manual

 CMU 15-869, Fall 2014

The common way to think about CUDA
(thread centric view of the programming model)

▪ CUDA is a multi-threaded programming model

▪ Threads are logically grouped together into blocks and gang scheduled
onto cores. This grouping is a locality hint.

▪ Threads in a block are allowed to synchronize and communicate through
barriers and shared local memory

▪ Note: Lack of communication between threads in different blocks gives
scheduler some flexibility (can “stream” blocks through the system)**

!

!

!

!

** Global memory atomic operations provide a form of inter-thread block communication (more on this in a second)

 CMU 15-869, Fall 2014

Another way to think about CUDA
(like a streaming system: stream of thread blocks view)

▪ CUDA is a stream programming model (recall Brook)
- Kernels are CUDA thread blocks
- Stream elements are now blocks of data accessed by kernel

(larger working sets than just individual elements)
!

▪ Kernel invocations independent, but logic is multi-threaded
- Multi-threading exposed additional fine-grained parallelism
!

▪ Think: implicitly parallel across thread blocks
!

▪ Think: explicitly parallel within a thread block (explicit
synchronization of individual threads via barriers)

Canonical CUDA thread block program:

Threads cooperatively load block of
data from input arrays into shared mem

Threads cooperatively write block of
data to output arrays

__syncThreads();	
 //	
 barrier

__syncThreads();	
 //	
 barrier

Threads perform computation,
accessing shared mem

 CMU 15-869, Fall 2014

Choosing thread-block sizes
Question: how many CUDA threads should be in a CUDA thread block?
!

Recall from GPU core lecture:
How many threads per core?
How much shared local memory per core?

 CMU 15-869, Fall 2014

Another CUDA programming style: “persistent” threads
▪ No attempt to maintain streaming structure at all any more

▪ Programmer is always “thinking” about explicitly parallel code, and writing code that is
aware of the number of processors in the machine (very much like a pthread programmer)

▪ Threads use atomic global memory operations to cooperatively implement work
assignment to thread blocks
//	
 “Persistent	
 thread”	
 implementation:	
 Run	
 thread	
 block	
 until	
 all	
 work	
 is	
 done,	
 	

//	
 processing	
 multiple	
 work	
 elements,	
 rather	
 than	
 just	
 one	
 per	
 block.	
 Thread	
 block	

//	
 terminates	
 when	
 no	
 more	
 work	
 is	
 available	

!
__global__	
 void	
 persistent(int*	
 head,	
 int	
 count,	
 float*	
 a,	
 float*	
 b)	

{	

	
 	
 	
 	
 int	
 index;	

	
 	
 	
 	
 while	
 (
 (index	
 =	
 read_and_increment(head,	
 1))	
 <	
 count)	

	
 	
 	
 	
 {	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 load	
 a[index];	

!
	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 do	
 work	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 write	
 result	
 to	
 b[index]	

	
 	
 	
 	
 }	

}	

!
//	
 launch	
 exactly	
 enough	
 thread	
 blocks	
 to	
 fill	
 up	
 machine	

//	
 (to	
 achieve	
 sufficient	
 parallelism	
 and	
 latency	
 hiding)	

!
int	
 head	
 =	
 0;	

persistent<<numBlocks,	
 blockSize>>(&head,	
 total_count,	
 A,	
 B);

 CMU 15-869, Fall 2014

Questions:
!

What does CUDA system do for the programmer?
!

!

How does it compare to OpenGL?

 CMU 15-869, Fall 2014

Quick aside: why did CUDA become popular?

1. Provides access to a cheap, fast machine (GPU’s programmable cores and high-
bandwidth memory system)

2. SPMD programming abstraction allows programmer to write scalar code, have
it mapped to wide SIMD hardware
- CPU vendors were adamant about mapping arbitrary C/C++ code to vector instructions (not

willing to constrain program structure to make problem easier)
- Even today, generating explicit vector code for CPUs remain shockingly hard to do (OpenCL is

exceptionally heavyweight, see Intel’s ISPC for a useful tool)

3. Programming model was familiar: much more like thread programming than
stream programming — it allowed arbitrary in-kernel array indexing (because
GPU’s had hardware multi-threading to hide memory latency)
- More familiar, convenient, and flexible in comparison to previous data-parallel or streaming

systems [StreamC/KernelC, StreamMIT, ZPL, Nesl, synchronous data-flow, and many others]
- 1-to-1 with hardware behavior (HW had latency-hiding support already, no reliance on

“sophisticated” compiler technology to achieve high performance)

(Kayvon’s personal opinion: ignoring marketing reasons)

 CMU 15-869, Fall 2014

Current and future graphics/GPU compute
programming model trends

 CMU 15-869, Fall 2014

Problem: CPU bottleneck

Core 1 Core 2

Core 3 Core 4

CPU cores GPU cores

Co
m

m
an

d P
ro

ce
ss

orgraphics/compute
command queueOpenGL driver

▪ Problem: graphics application is bottlenecked by CPU thread performance
- Consider: 5,000 objects, 60Hz, 5 draws per frame (different materials per object, objects drawn multiple

times (shadow maps, reflection maps), etc.) —> ~1.5 million draws per frame
- State of the art engines are in the range of 10’s of thousands.

- Graphics application must iterate through scene database and make appropriate graphics calls (for each
scene object: set graphics state based on material, etc. “if object features wood material is lit by three
lights, and is close to the camera, bind these textures and shaders”)

- Graphics driver (running on CPU) can only process a fixed number of draw calls per frame: limited by
performance of building GPU command buffer from sequence of graphics API calls

 CMU 15-869, Fall 2014

Trend: “to-the-metal” APIs
▪ AMD Mantle, Apple Metal, Direct3D 12 (announced)

▪ Idea: pull responsibility for resource management and command buffer generation
from monolithic graphics driver back into graphics application
- Application-facing graphics API changes from issuing draw calls to building GPU command buffers

- Note 1: the graphics pipeline abstraction is largely unchanged (but now applications have access to a
lower-level interface for generating work for the same pipeline abstraction)

- Note 2: this interface was already the status-quo for game consoles, so PC graphics is just catching up
(consoles have low-performance CPUs, and console games are written to a specific GPU architecture, so
a lower-level of abstraction has made sense for some time)

Metal

 CMU 15-869, Fall 2014

Example: parallel command buffer generation by
multiple CPU threads

▪ Efficiency improvements:
- Parallel command buffer generation (API handed command buffers that are constructed in parallel)

- Management of command buffer resources can be specialized to application

Core 1 Core 2

Core 3 Core 4

GPU cores

Co
m

m
an

d P
ro

ce
ss

or

graphics cmd buffer

game thread game thread

game thread

driver thread

graphics cmd buffer

graphics cmd buffer

 CMU 15-869, Fall 2014

Future trend: compute-mode, graphics-mode integration
▪ Currently there are two distinct “worlds” for GPU programming

- Graphics mode: send commands to GPU pipeline, update graphics buffers
- Compute mode: send commands for CUDA/compute shader processing, update compute buffers
- Buffer transfer/copy routines make compute buffers visible to graphics (and vice-versa)

▪ Better fusion of these two programming models is desirable

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Fragments

Pixels

Compute
Shader

Example 1: compute mode computations
generate geometry directly for graphics
pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

Vertices

Primitives

Fragments

Compute Shader:
(shading operations)

Example 2: graphics pipeline
generates fragments that are
shaded by compute mode kernel

 CMU 15-869, Fall 2014

Reading

▪ T. Foley et al. Spark: Modular, Composable Shaders for Graphics Hardware. SIGGRAPH 2011
!

▪ J. Nickolls et al. Scalable Parallel Programming with CUDA. ACM Queue 2008
!

▪ See website for a number of interesting blog posts…

