
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 6:

Texturing Part II:
Texture Compression and

GPU Latency Hiding Mechanisms

 CMU 15-869, Fall 2014

Review: mechanisms to reduce aliasing in
the graphics pipeline

▪ When sampling visibility?
!

!

▪ When sampling shading? (appearance)

- Supersampling: sample coverage signal densely (multiple times per pixel)

- Prefiltering: remove high frequencies from texture signal prior to shading

 CMU 15-869, Fall 2014

Review: operations in a texture fetch
For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
2. Compute mip-map level: d (for tri-linear filtering)
3. Convert normalized texture coordinate uv to texel coordinates: tu,tv
4. Compute required texels **
5. If texture data in filter footprint (eight texels for trilinear filtering) is not in cache:

- Load compressed texel data from DRAM

- Decompress texel data
6. Perform tri-linear interpolation according to (tu,tv,d) to get filtered texture sample

** May involve wrap, clamp, etc. of texel coordinates according to sampling mode configuration

A texture fetch involves both data access and also significant amounts
of computation: all modern GPUs have dedicated fixed-function
hardware support for texture sampling and texture decompression.

 CMU 15-869, Fall 2014

Texture data access characteristics
▪ Key metric: unique texel-to-fragment ratio

- Number of unique texels accessed when rendering a scene divided by number of
fragments processed [see Igeny reading for stats: often less than < 1]

- What is the worst-case ratio? (assuming trilinear filtering)
- How can incorrect computation of texture miplevel (d) affect this?

▪ In practice, caching behavior is good, but not CPU workload good
- [Montrym & Moreton 95] design for 90% hits
- Why? (only so much spatial locality)

▪ Implications
- GPU must provide high memory bandwidth for texture data access
- GPU must have solution for hiding memory access latency
- GPU must reduce its bandwidth requirements using caching and texture compression

 CMU 15-869, Fall 2014

Texture compression

 CMU 15-869, Fall 2014

Texture compression
▪ Goal: reduce bandwidth requirements of texture access

▪ Texture is read-only data
- Compression can be performed off-line, so compression algorithms can take

significantly longer than decompression (decompression must be fast!)
- Lossy compression schemes are permissible

▪ Design requirements
- Support random texel access (constant time access to any texel)
- High-performance decompression
- Simple algorithms (low-cost hardware implementation)
- High compression ratio
- High visual quality (lossy is okay, but cannot lose too much!)

 CMU 15-869, Fall 2014

Simple scheme: color palette (indexed color)
▪ Lossless (if image contains a small

number of unique colors)

0 1 2 3 4 5 6 7

Color palette (eight colors)

Image encoding in this example:
3 bits per texel + eight RGB values in palette (8x24 bits)

0 1 3 6

0 2 6 7

1 4 6 7

4 5 6 7 What is the compression ratio?

 CMU 15-869, Fall 2014

Per-block palette
▪ Block-based compression scheme on 4x4 texel blocks

- Idea: there might be many unique colors across an entire image, but can
approximate all values in any 4x4 texel region using only a few unique colors

▪ Per-block palette (e.g., four colors in palette)
- 12 bytes for palette (assume 24 bits per RGB color: 8-8-8)
- 2 bits per texel (4 bytes for per-texel indices)

- 16 bytes (3x compression on original data: 16x3=48 bytes)
!

▪ Can we do better?

 CMU 15-869, Fall 2014

S3TC
(Called BC1 or DXTC by Direct3D)

▪ Palette of four colors encoded in four bytes:
- Two low-precision base colors: C0 and C1 (2 bytes each: RGB 5-6-5 format)
- Other two colors computed from base values

- 1/3C0 + 2/3C1
- 2/3C0 + 1/3C1

▪ Total footprint of 4x4 texel block: 8 bytes
- 4 bytes for palette, 4 bytes of color ids (16 texels, 2 bits per texel)
- 4 bpp effective rate, 6:1 compression ratio (fixed ratio: independent of data values)

▪ S3TC assumption:
- All texels in a 4x4 block lie on a line in RGB color space

▪ Additional mode:
- If C0 < C1, then third color is 1/2C0 + 1/2C1 and fourth color is transparent black

 CMU 15-869, Fall 2014

S3TC artifacts

Original data Compressed result

Cannot interpolate red and blue to get green
(here compressor chose blue and yellow as base
colors to minimize overall error)
!
!
But scheme works well in practice on “real-world”
images. (see images at right)

Image credit:
http://renderingpipeline.com/2012/07/texture-compression/

S3TCOriginal (Zoom)Original

[Strom et al. 2007]

 CMU 15-869, Fall 2014

Y’CbCr color space
Y’ = luma: perceived (gamma corrected) luminance
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

Conversion from R’G’B’ to Y’CbCr:

 CMU 15-869, Fall 2014

Demo

Original picture of Kayvon

 CMU 15-869, Fall 2014

Demo

Color channels downsampled by a factor of 20 in each dimension
(400x reduction in number of samples)

 CMU 15-869, Fall 2014

Demo

Full resolution sampling of luminance

 CMU 15-869, Fall 2014

Demo

Reconstructed result

 CMU 15-869, Fall 2014

Chroma subsampling
Y’CbCr is an efficient representation for storage (and transmission) because Y’ can be
stored at higher resolution than CbCr without significant loss in perceived visual quality

4:2:2 representation:

Store Y’ at full resolution
Store Cb, Cr at full vertical resolution,
but only half horizontal resolution

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31
Cb01 Cb21
Cr01 Cr21

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

4:2:0 representation:

Store Y’ at full resolution
Store Cb, Cr at half resolution in both
dimensions.

 CMU 15-869, Fall 2014

PACKMAN
▪ Block-based compression on 2x4 texel blocks

- Idea: vary luminance per texel, but specify color per block

▪ Each block encoded as:
- A single base color per block (12 bits: RGB 4-4-4)
- 4-bit index identifying one of 16 predefined luminance modulation tables
- Per-texel 2-bit index into luminance modulation table (8x2=16 bits)
- Total block size = 12 + 4 + 16 = 32 bits (6:1 compression ratio)

▪ Decompression:
-­‐texel[i]	
 =	
 	
 base_color	
 +	
 table[table_id][table_index[i]];

Example codebook for modulation tables (8 of 16 tables shown)

[Strom et al. 2004]

 CMU 15-869, Fall 2014

▪ Improves on problems of heavily quantized and sparsely
represented chrominance in PACKMAN
- Higher resolution base color + differential color represents color more accurately

▪ Operates on 4x4 texel blocks
- Optionally represent 4x4 block as two eight-texel subblocks with differentials

(else use PACKMAN for two subblocks)
- 1 bit designates whether differential scheme is in use

- Base color for first block (RGB 5-5-5: 15 bits)
- Color differential for second block (RGB 3-3-3: 9 bits)
- 1 bit designating if subblocks are 4x2 or 2x4
- 3-bit index identifying modulation table per subblock (2x3 bits)
- Per-texel modulation table index (2x16 bits)
- Total compressed block size: 1 + 15 + 9 + 1 + 6 + 32 = 64 bits (6:1 ratio)

iPackman (ETC)

BaseRGB555 DeltaRGB333

[Strom et al. 2005]

 CMU 15-869, Fall 2014

PACKMAN vs. iPACKMAN quality comparison
iPACKMANPACMANOriginal

Chrominance banding

Chrominance block artifact

Image credit: Strom et al. 2005

 CMU 15-869, Fall 2014

PVRTC (Power VR texture compression)
▪ Not a block-based format

- Used in Imagination PowerVR GPUs
▪ Store low-frequency base images A and B

- Base images downsampled by factor of 4 in each dimension (1/16 fewer texels)
- Store base image pixels in RGB 5:5:5 format (+ 1 bit alpha)

▪ Store 2-bit modulation factor per texel
▪ Total footprint: 4 bpp (6:1 ratio)

[Fenney et al. 2003]

 CMU 15-869, Fall 2014

PVRTC
▪ Decompression algorithm:

- Bilinear interpolate samples from A and B (upsample) to get value at desired texel
- Interpolate upsampled values according to 2-bit modulation factor

[Fenney et al. 2003]

 CMU 15-869, Fall 2014

PVRTC avoids blocking artifacts

Image credit: Fenney et al. 2003

PVRTC

Because it is not block-based!
!

Recall: decompression algorithm involves
bilinear upsampling of low-resolution base
images
!

(Followed by a weighted combination of the
two images)

 CMU 15-869, Fall 2014

Summary: texture compression
▪ Many schemes target 6:1 fixed compression ratio (4 bpp)

- Predictable performance
- 8 bytes per 4x4-texel block is desirable for memory transfers

▪ Lossy compression techniques
- Exploit characteristics of the human visual system to minimize perceived error
- Texture data is read only, so “drift” due to multiple reads/writes is not a concern

▪ Block-based vs. not-block based
- Block-based: S3TC/DXTC/BC1, iPACKMAN/ETC/ETC2, ASTC (not discussed today)
- Not-block-based: PVRTC

▪ We only discussed decompression today:
- Compression can be performed off-line (except when textures are generated at

runtime… e.g., reflectance maps)

 CMU 15-869, Fall 2014

Hiding the latency of texture sampling
and texel data access

 CMU 15-869, Fall 2014

Texture sampling is a high-latency operation
For each texture fetch in a shader program:

1. Compute du/dx, du/dy, dv/dx, dv/dy differentials from quad fragment
2. Compute mip-map level: d (for tri-linear filtering)
3. Convert normalized texture coordinate uv to texel coordinates: (tu,tv)
4. Compute required texel addresses
5. If texture data in filter footprint is not in cache (recall: GPUs miss cache often)

- Fetch texel data from DRAM

- Decompress texel data for storage in texture cache
6. Perform tri-linear interpolation according to (tu,tv,d) to get filtered texture sample

!

Latency of texture fetch involves time to perform math for texel address
computation, decompression, and filtering (not just latency of fetching data
from memory)

 CMU 15-869, Fall 2014

Addressing texture sampling latency
▪ Processor requests filtered texture data → processor waits hundreds of cycles

(significant loss of performance)
!

▪ Solution prior to programmable GPU cores: texture data prefetching
- Today’s reading: Igehy et al. Prefetching in a Texture Cache Architecture
!

▪ Solution in all modern GPUs: multi-threaded processor cores
- Will omit today, but will discuss in detail in a future lecture

 CMU 15-869, Fall 2014

Prefetching example: large fragment FIFOs
Texture prefetching (from Igehy 1998)

Rasterization

Texture Filtering

Texel cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel cache data

Fragment FIFO
(coverage, Z, attribs)
!
Note: fragment FIFO
must be large! Why?

Texel addresses

Cache addresses

Cache addresses

Texel data

 CMU 15-869, Fall 2014

A more modern design

Texel
cache tags
(texel ids)

Memory
request fifo

Memory
reorder buffer

Memory
System

Texel
cache data

Texture
request fifo

Texel addresses

Cache addresses

Cache
addresses

Texel data

Programmable
GPU Core

Texel address
computation

Texel Filtering

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

Texture Sampling Unit

 CMU 15-869, Fall 2014

Modern GPUs: texture latency is hidden via
hardware multi-threading

Exec Context 0
Exec Context 1
Exec Context 2

Exec Context 63

. . .

Multi-threaded
GPU Core

Memory
System

Texture
Sampling

Unit

texture request:
(u,v, du, dv, lod)

filtered texture
result: rgba

texel data

texel data
request

GPU executes instructions from runnable fragments when other fragments are waiting
on texture sampling responses.
!
Fragment FIFO from Igehy prefetching design is now represented by live fragment state
in the programmable core.

 CMU 15-869, Fall 2014

Texture system summary
▪ A texture lookup is a lot more than a 2D array access

- Significant computational and bandwidth expense
- Implemented in specialized fixed-function hardware

▪ Bandwidth reduction mechanism: GPU texture caches
- Primarily serve to amplify limited DRAM bandwidth, not reduce latency to off-chip memory
- Small capacity compared to CPU caches, but high BW (need eight texels at once)
- Tiled rasterization order + tiled texture layout optimizations increase cache hits

▪ Bandwidth reduction mechanism: texture compression
- Lossy compression schemes
- Fixed-compression ratio encodings (e.g, 6:1 ratio, 4 bpp is common for RGB data)
- Schemes permit random access into compressed representation

!

▪ Latency avoidance/hiding mechanisms:
- Prefetching (in the old days)
- Multi-threading (in modern GPUs)

