
Visual Computing Systems 
CMU 15-869, Fall 2014

Lecture 1:

Course Introduction + 
Review of the Real-Time Graphics Pipeline
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Why does this course exist?
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First thing that comes to mind: 3D “AAA” games 
Efficiency gets you: more advanced graphics at 
30 fps 
Result: multi-TFLOP GPUs 

Many applications that drive the need for high efficiency 
computing involve visual computing tasks

Destiny (Bungie)

Mirror’s Edge 2 (DICE)

Simple mobile games 
Efficiency gets you: don’t run down the battery 
Result: different rendering algorithms



 CMU 15-869, Fall 2014

Many applications that drive the need for high efficiency 
computing involve visual computing tasks

Record/play HD Video 2D rendering to “Retina” resolution displays*: maps, browsers, 60 fps touch UIs
* Maps apps and web content have 3D rendering capabilities as well.
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Nokia Lumina smartphone camera: 
41 megapixel (MP) sensor 

Nexus 10 Tablet: 2560 x 1600 pixel display (~ 4MP) 
(higher pixel count than 27’’ Apple display on my desk)

High pixel count sensors and displays

4K TV

Rendering for VR and light-field displays: need for 
much higher pixel counts 
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Computational photography:  
Current focus: achieve high-quality pictures with a lower-quality smart phone lenses/sensors 
through the use of image analysis and processing.

Automatic panorama: High dynamic range (HDR) imaging:

Traditional photograph: part of image is 
saturated due to overexposure

Remove camera shake:

HDR image: combine multiple exposures so image 
detail in both light and dark areas is preserved
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Auto-tagging, face (and smile) detection Kinect: character pose estimation

Google Goggles: object identification search by image

Image interpretation and understanding: 
Extracting information from images recorded by ubiquitous image sensors 
Big area of interest at both mobile device and data-center scales.

Collision anticipation, obstacle detection
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Enabling current and future visual computing 
applications requires focus on system efficiency
In this class we are going to think like architects.  Which means we’re going to talk a lot 
about a system’s goals and about its constraints.

Example goals: 
- Real-time rendering of a one-million polygon scene at 30 fps on a high-res display  
- Provide interactive user feedback when acquiring a panorama 
- 1080p video recording for one hour per phone charge

Example constraints: 
- Chip die area (chip manufacturing cost) 
- System design complexity 
- Preserve easy application development effort 
- Backward compatibility with existing software 
- Power
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Parallelism and specialization in HW design
Example: NVIDIA Tegra K1

Other modern examples: 

Apple A6X 
Qualcomm Snapdragon

Four high-performance ARM Cortex A15 CPU cores for applications 

One low performance (low power) ARM CPU core 

One Kepler SMX core (to run graphics shaders and CUDA programs) 

Fixed-function HW blocks for 3D graphics and image/video compression 
and camera image processing (image signal processor = ISP)

Design philosophy: 
Run important workloads on the most efficient 
hardware for the job. 
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Specialized hardware is efficient!

[Chung et al. MICRO 2010]

lg2(N)  (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N)  (data set size)

ASIC delivers same performance as one CPU 
core with ~ 1/1000th the chip area. 
  
GPU cores: ~ 5-7 times more area efficient 
than CPU cores. 

ASIC delivers same performance as one 
CPU core with only ~ 1/100th the power.
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Limits on chip power consumption
▪ General rule: the longer a task runs the less power it can use 

- Processor’s power consumption (think: performance) is limited by heat 
generated (efficiency is required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit:  max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp 
(chip can run at high power for short period of time before chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold 
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power 
consumption to sustain long battery life for given task

Credit: slide adopted by original slide from M. Shebanow 

iPhone 5 battery: 5.4 watt-hours 
4th gen iPad battery: 42.5 watt-hours 
15in Macbook Pro: 95 watt-hours
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What this course is about

VISUAL COMPUTING 
WORKLOADS 

Algorithms for 3D graphics, image 
processing, compression, etc.

MACHINE 
ORGANIZATION

High-throughput hardware designs: 
Parallel and heterogeneous

mapping/scheduling

Parallelism 
Exploiting locality 

Minimizing communication

DESIGN OF GOOD ABSTRACTIONS 
FOR VISUAL COMPUTING 

choice of programming primitives 
level of abstraction

1. The characteristics/requirements of important visual computing workloads 
2. Techniques used to achieve efficient system implementations
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In other words

It is about understanding the fundamental structure of problems 
in the visual computing domain… 

To design better algorithms 

To build the most efficient hardware to run these applications 

To design the right programming systems to make developing new 
applications simpler and also highly performant.
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What this course is NOT about

▪ This is not an [OpenGL, CUDA, OpenCL] programming course 
- But we will be analyzing and critiquing the design of these systems in detail 

- I expect you know these systems or pick them up as you go.

Many excellent references...
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Course Logistics
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Major course themes/topics

Rendering systems: 
Primarily real-time 3D graphics as 
implemented by modern games

High-performance image processing 
Camera image pipeline (for photography) 
Image processing for computer vision at scale.

Miscellaneous topics (may change)
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Logistics
▪ Course web site: 

- http://15869.courses.cs.cmu.edu 

▪ All announcements will go out via Piazza 
- https://piazza.com/cmu/fall2014/15869/home  

▪ Kayvon’s office hours: drop in or by appointment (EDSH 225) 

▪ Your knowledgable TA: Yong He (GHC 7117)
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Expectations of you
▪ 30% participation 

- There will be ~1-2 assigned paper readings per class 
- Everyone is expected to come to class and participate in discussions based on readings 
- You are encouraged discuss papers and or my lectures on the course discussion board. 
- If you form a weekly course reading/study group, I will buy Pizza. 

▪ 25% mini-assignments (2-3 short programming assignments) 
- Implement a basic parallel triangle renderer 
- Implement a RAW image processing pipeline 

▪ 45% self-selected final project 
- I suggest you start talking to me now (can be teams of up to two) 

▪ We have toys to play around with throughout the semester: 
- You are encouraged to experiment with them and report what you learn back to the class 
- Two Oculus DK2s  
- Two NVIDIA Shields, one Jetson K1
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Somewhat philosophical question: 
What is an “architecture”?
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An architecture is an abstraction
It defines: 
▪ Entities (state) 

- Registers, buffers, vectors, triangles, lights, pixels, images 

▪ Operations (that manipulate state) 
- Add registers, copy buffers, multiply vectors, blur images, draw triangles 

▪ Mechanisms for creating/destroying entities, expressing operations 
- Execute machine instruction, make C++ API call, express logic in programming language

Notice the different levels of granularity/abstraction in my examples 
Key course theme: choosing the right level of abstraction for system’s needs 

Choice impacts system’s expressiveness/scope and its suitability for efficient implementation.
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The 3D rendering problem

Image credit: Henrik Wann Jensen

Input: description of a scene 
3D surface geometry (e.g., triangle meshes) 

surface materials 
lights 

camera 

Output: image 

Main problem statement: How does each geometric element contribute to the 
appearance of each output pixel in the image, given a description of surface 
properties and lighting conditions.
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The real-time graphics pipeline architecture
(A review of the GPU-accelerated OpenGL/D3D graphics pipeline, from a systems perspective)
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Real-time graphics pipeline entities

Vertices Primitives 
(triangles, points, lines)

Fragments Pixels

1

2

3

4
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Real-time graphics pipeline operations

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation 
(Rasterization)

Fragment Processing

Pixel Operations

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Triangles positioned on screen

Fragments (one per pixel covered by triangle *)

Shaded fragments

Output image (pixels)

Vertices in positioned on screen

Vertices in 3D space1

2

3
4

* Imprecise definition: will give precise definition in later lecture  
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Real-time graphics pipeline state

Primitive Generation

Vertex Generation

Fragment Generation 
(Rasterization)

Pixel Operations

Output image buffer

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Vertex data buffers1

2

3
4

Memory Buffers (system state)

Buffers, textures

Buffers, textures

Buffers, textures

Vertex Processing

Fragment Processing

Primitive Processing
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3D graphics system stack
Application 

(e.g, a computer game)

Scene graph 
(application’s database representing the scene: geometry, materials, lights, etc.)

Graphics pipeline 
(OpenGL/Direct3D)

Graphics pipeline implementation 
(software driver + GPU)

the abstraction we 
are discussing now

implements the 
abstraction

clients to the system 
(use the abstraction)
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Issues to keep in mind during this review *

▪ Level of abstraction 
!

▪ Orthogonality of abstractions 
!

▪ How is pipeline designed for performance/scalability? 
!

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system we discuss in this course
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory
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“Assembling” vertices

Vertex Generation

Vertex Processing

V0 V1 VN-1

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer); 
glDrawArrays(GL_TRIANGLES, 0, N); 

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer); 
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,                      
               my_vtx_indices); 

V0 V1 VN-1

1 3 2 1 5 6

Indexed access version (“gather”)

Contiguous version data version

my_vtx_buffer

my_vtx_indices

my_vtx_buffer

Vertex records
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“Assembling” vertices

Vertex Generation

Vertex Processing

XYZ0 XYZ1 XYZN-1

Contiguous vertex buffer

UV0 UV1 UVN-1

N0 N1 NN-1

Output of vertex generation is a collection of vertex records. 
!

Current pipelines set a limit of 32 float4 attributes per vertex. (512 bytes)  
Why? (to be answered in a later lecture)

Vertex records
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Vertex processing inputs

Vertex Generation

Vertex Processing

Memory

Uniform 
data

Uniform data: constant read-only data provided as 
input to every instance of the vertex shader 
e.g., object-to-clip-space vertex transform matrix

Vertex processing operates on a stream of 
vertex records + read-only “uniform” inputs.

Vertex records
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Vertex processing inputs and outputs

Vertex Processing

Memory

Uniform 
data

struct	
  input_vertex	
  
{	
  
	
  	
  	
  float3	
  pos;	
  	
  //	
  object	
  space	
  	
  
};	
  

struct	
  output_vertex	
  
{	
  
	
  	
  	
  float3	
  pos;	
  //	
  NDC	
  space	
  
};	
  

uniform	
  mat4	
  my_transform;	
  
!
output_vertex	
  my_vertex_program(input_vertex	
  in)	
  
{	
  
	
  	
  	
  	
  output_vertex	
  out;	
  
	
  	
  	
  	
  out.pos	
  =	
  my_transform	
  *	
  in.pos;	
  //	
  matrix-­‐vector	
  mult	
  
	
  	
  	
  	
  return	
  out;	
  
}

(* Note: this is pseudocode, not valid GLSL syntax)

Vertex Shader Program *

1 input vertex              1 output vertex 
independent processing of each vertex
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Example: per-vertex lighting

Per-vertex data: surface normal, surface color

Uniform data: light direction, light color

Per-vertex lighting computation Per-vertex normal computation, per pixel lighting
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Example: vertex skinning

Image credit: http://www.okino.com/conv/skinning.htm

Per-vertex data: base vertex position (Vbase) + blend coefficients (wb) 

Uniform data: “bone” matrices (Mb) for current animation frame
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

Uniform 
data

1 in / 1 out

3 in / 1 out 
(for tris)
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Primitive processing *

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Memory

Uniform 
data

Uniform 
data

input vertices for 1 prim               output vertices for N prims ** 
independent processing of each INPUT primitive

** Pipeline caps output at 1024 floats of output
* “Geometry shader” in OpenGL/Direct3D terminology
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform 
data

1 in / 1 out

3 in / 1 out 
(for tris)

Uniform 
data1 in / small N out

Output image buffer
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Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Primitive Processing

1 input prim            N output fragments 
!

N is unbounded 
(size of triangles varies greatly)

struct	
  fragment	
  //	
  note	
  similarity	
  to	
  output_vertex	
  from	
  before	
  
{	
  
	
  	
  	
  float	
  	
  x,y;	
  	
  //	
  screen	
  pixel	
  coordinates	
  (sample	
  point	
  location)	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  //	
  depth	
  of	
  triangle	
  at	
  sample	
  point	
  
!
	
  	
  	
  float3	
  normal;	
  	
  	
  	
  //	
  interpolated	
  application-­‐defined	
  attribs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  float2	
  texcoord;	
  	
  //	
  (e.g.,	
  texture	
  coordinates,	
  surface	
  normal)	
  
};	
  



 CMU 15-869, Fall 2014

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Primitive Processing

Compute covered pixels 
Sample vertex attributes once per covered pixel

struct	
  fragment	
  //	
  note	
  similarity	
  to	
  output_vertex	
  from	
  before	
  
{	
  
	
  	
  	
  float	
  	
  x,y;	
  	
  //	
  screen	
  pixel	
  coordinates	
  (sample	
  point	
  location)	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  //	
  depth	
  of	
  triangle	
  at	
  sample	
  point	
  
!
	
  	
  	
  float3	
  normal;	
  	
  	
  	
  //	
  interpolated	
  application-­‐defined	
  attribs	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  float2	
  texcoord;	
  	
  //	
  (e.g.,	
  texture	
  coordinates,	
  surface	
  normal)	
  
!
}	
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

screen space

Object/world/camera space

Output image buffer
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The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform 
data

1 in / 1 out

3 in / 1 out 
(for tris)

Uniform 
data1 in / small N out

1 in / N out

Output image buffer
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Fragment processing

Fragment Processing

Memory

Uniform 
data

struct	
  input_fragment	
  
{	
  
	
  	
  	
  float	
  	
  x,y;	
  	
  	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  	
  
	
  	
  	
  float3	
  normal;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  float2	
  texcoord;	
  	
  
};

struct	
  output_fragment	
  
{	
  
	
  	
  	
  int	
  	
  	
  	
  x,y;	
  //	
  pixel	
  	
  	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  	
  
	
  	
  	
  float4	
  color;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
};	
  

Texture Buffer 0

Texture Buffer N

. . . !

texture	
  my_texture;	
  
!
output_vertex	
  my_fragment_program(input_fragment	
  in)	
  
{	
  
	
  	
  	
  	
  output_fragment	
  out;	
  
	
  	
  	
  	
  float4	
  material_color	
  =	
  sample(my_texture,	
  in.texcoord);	
  
!
	
  	
  	
  	
  for	
  (each	
  light	
  L	
  in	
  scene)	
  
	
  	
  	
  	
  {	
  
	
  	
  	
  	
  	
  	
  	
  	
  out.color	
  +=	
  shade(L)	
  //	
  compute	
  reflectance	
  towards	
  camera	
  due	
  to	
  L	
  
	
  	
  	
  	
  }	
  
	
  	
  	
  	
  return	
  out;	
  
}



 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

** 1 in / 1 out Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

** can be 0 out

Output image buffer
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Frame-buffer operations

Pixel Operations

Frame Buffer

Memorystruct	
  output_fragment	
  
{	
  
	
  	
  	
  int	
  	
  	
  	
  x,y;	
  	
  	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  	
  
	
  	
  	
  float4	
  color;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
};	
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Frame-buffer operations

if	
  (fragment.z	
  <	
  zbuffer[fragment.x][fragment.y])	
  
{	
  
	
  	
  	
  	
  zbuffer[fragment.x][fragment.y]	
  =	
  fragment.z;	
  
	
  	
  	
  	
  color_buffer[fragment.x][fragment.y]	
  =	
  blend(color_buffer[fragment.x][fragment.y],	
  fragment.color);	
  
}	
  

Depth test (hidden surface removal)
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Frame-buffer operations (full view)

Stencil Buffer

Memorystruct	
  output_fragment	
  
{	
  
	
  	
  	
  int	
  	
  	
  	
  x,y;	
  	
  	
  
	
  	
  	
  float	
  	
  z;	
  	
  	
  	
  	
  
	
  	
  	
  float4	
  color;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
};	
  

Alpha Test

Stencil test

Depth test

Update target

Z Buffer

Color Buffer 0

Color Buffer N

. . . !

if	
  (fragment.z	
  <	
  zbuffer[fragment.x][fragment.y])	
  
{	
  
	
  	
  	
  	
  zbuffer[fragment.x][fragment.y]	
  =	
  fragment.z;	
  
	
  	
  	
  	
  color_buffer[fragment.x][fragment.y]	
  =	
  blend(color_buffer[fragment.x][fragment.y],	
  fragment.color);	
  
}	
  

Depth test (hidden surface removal)



 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization 
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

Uniform 
data

Texture 
buffers

1 in / 0 or 1 out Output image buffer
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Programming the graphics pipeline
▪ Issue draw commands                     output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2 
Bind new shader
Draw using vertex buffer for object 3 

CommandCommand Type

State change

Change depth test function 
Bind new shader 
Draw using vertex buffer for object 4 

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations
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A series of graphics pipeline commands

State change  (set “red” shader)

Draw

State change  (set “blue” shader)

State change (change blend mode)

State change (set “yellow” shader

Draw

Draw

Draw

Draw
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Feedback loop 1: use output image as input 
texture in later draw command

Bind contents of output image as texture 1
Draw using vertex buffer for object 5
Draw using vertex buffer for object 6 

CommandCommand Type

State change
Draw
Draw

. . . !

Rendering to textures for later use is key technique when implementing: 
- Shadows 
- Environment mapping 
- Post-processing effects

Draw using vertex buffer for object 5Draw
Draw using vertex buffer for object 6 Draw
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Feedback loop 2: output intermediate 
geometry for use in later draw command

▪ Issue draw commands                  save intermediate geometry

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out 
(for tris)

1 in / small N out
Uniform 

data
Texture 
buffers

Uniform 
data

Texture 
buffers

Output vertex buffer
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Analyzing the design of the graphics pipeline

▪ Level of abstraction 
!

▪ Orthogonality of abstractions 
!

▪ How is pipeline designed for performance/scalability? 
!

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system we discuss in this course
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Level of abstraction
▪ Imperative abstraction, not declarative 

- Application code specifies: “draw these triangles, using this fragment 
shader, with depth testing on”.  

- It does not specify: “draw a cow made of marble on a sunny day” 

▪ Programmable stages provide application large amount of flexibility 
(e.g., to implement wide variety of materials and lighting techniques) 

▪ Configurable (but not programmable) pipeline structure: turn stages on 
and off, create feedback loops 

▪ Abstraction is low enough to allow application to implement many 
techniques, but high enough to abstract over radically different GPU 
implementations
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Orthogonality of abstractions
▪ All vertices treated the same regardless of primitive type 

- Result: vertex programs oblivious to primitive types 
- The same vertex program works for triangles and lines 

▪ All primitives are converted into fragments for per-pixel shading 
and frame-buffer operations 
- Fragment programs are oblivious to source primitive type and the behavior 

of the vertex program * 
- Z-buffer is a common representation used to perform occlusion for any 

primitive that can be converted into fragments

* Almost oblivious.  Vertex shader must make sure it passes along all inputs required by the fragment shader
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What the pipeline DOES NOT do (non-goals)
▪ Modern graphics pipeline has no concept of lights, materials, 

modeling transforms 
- Only vertices, primitives, fragments, pixels, and STATE 

(state = buffers, shaders, and configuration parameters) 
- Applications use these basic abstractions to implement lights, materials, etc. 

▪ The graphics pipeline has no concept of a scene 

▪ No I/O or OS window management
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Pipeline design facilitates performance/scalability

▪ [Reasonably] low level: low abstraction distance to implementation 
▪ Constraints on pipeline structure: 

- Constrained data flow between stages 
- Fixed-function stages for common and difficult to parallelize tasks 
- Shaders: independent processing of each data element (enables parallelism) 

▪ Provide frequencies of computation (per vertex, per primitive, per fragment) 
- Application can choose to perform work at the rate required 

▪ Keep it simple: 
- Only a few common intermediate representations 

- Triangles, points, lines 
- Fragments, pixels 

- Z-buffer algorithm computes visibility for any primitive type 
▪ “Immediate-mode system”: pipeline processes primitives as it receives them 

(as opposed to buffering the entire scene) 
- Leave global optimization of how to render scene to the application

Homework exercise: describe one example of a graphics pipeline design 
decision that enables high-performance implementations.
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Perspective from Kurt Akeley

▪ Does the system meet original design goals, and then do much more 
than was originally imagined? If so, the design is a good one! 

- Simple, orthogonal concepts often produce amplifier effect 
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Readings
▪ Required 

- D. Blythe. The Direct10 System. SIGGRAPH 2006 
!

▪ Suggested: 
- Chapter 2 and 3 of Real-Time Rendering, Third Edition (see link on course site) 
- D. Blythe, Rise of the Graphics Processor. Proceedings of the IEEE, 2008 
- M. Segal and K. Akeley.  The Design of the OpenGL Graphics Interface

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf

