
Visual Computing Systems
CMU 15-869, Fall 2014

Lecture 1:

Course Introduction +
Review of the Real-Time Graphics Pipeline

 CMU 15-869, Fall 2014

Why does this course exist?

 CMU 15-869, Fall 2014

First thing that comes to mind: 3D “AAA” games
Efficiency gets you: more advanced graphics at
30 fps
Result: multi-TFLOP GPUs

Many applications that drive the need for high efficiency
computing involve visual computing tasks

Destiny (Bungie)

Mirror’s Edge 2 (DICE)

Simple mobile games
Efficiency gets you: don’t run down the battery
Result: different rendering algorithms

 CMU 15-869, Fall 2014

Many applications that drive the need for high efficiency
computing involve visual computing tasks

Record/play HD Video 2D rendering to “Retina” resolution displays*: maps, browsers, 60 fps touch UIs
* Maps apps and web content have 3D rendering capabilities as well.

 CMU 15-869, Fall 2014

Nokia Lumina smartphone camera:
41 megapixel (MP) sensor

Nexus 10 Tablet: 2560 x 1600 pixel display (~ 4MP)
(higher pixel count than 27’’ Apple display on my desk)

High pixel count sensors and displays

4K TV

Rendering for VR and light-field displays: need for
much higher pixel counts

 CMU 15-869, Fall 2014

Computational photography:
Current focus: achieve high-quality pictures with a lower-quality smart phone lenses/sensors
through the use of image analysis and processing.

Automatic panorama: High dynamic range (HDR) imaging:

Traditional photograph: part of image is
saturated due to overexposure

Remove camera shake:

HDR image: combine multiple exposures so image
detail in both light and dark areas is preserved

 CMU 15-869, Fall 2014

Auto-tagging, face (and smile) detection Kinect: character pose estimation

Google Goggles: object identification search by image

Image interpretation and understanding:
Extracting information from images recorded by ubiquitous image sensors
Big area of interest at both mobile device and data-center scales.

Collision anticipation, obstacle detection

 CMU 15-869, Fall 2014

Enabling current and future visual computing
applications requires focus on system efficiency
In this class we are going to think like architects. Which means we’re going to talk a lot
about a system’s goals and about its constraints.

Example goals:
- Real-time rendering of a one-million polygon scene at 30 fps on a high-res display
- Provide interactive user feedback when acquiring a panorama
- 1080p video recording for one hour per phone charge

Example constraints:
- Chip die area (chip manufacturing cost)
- System design complexity
- Preserve easy application development effort
- Backward compatibility with existing software
- Power

 CMU 15-869, Fall 2014

Parallelism and specialization in HW design
Example: NVIDIA Tegra K1

Other modern examples:

Apple A6X
Qualcomm Snapdragon

Four high-performance ARM Cortex A15 CPU cores for applications

One low performance (low power) ARM CPU core

One Kepler SMX core (to run graphics shaders and CUDA programs)

Fixed-function HW blocks for 3D graphics and image/video compression
and camera image processing (image signal processor = ISP)

Design philosophy:
Run important workloads on the most efficient
hardware for the job.

 CMU 15-869, Fall 2014

Specialized hardware is efficient!

[Chung et al. MICRO 2010]

lg2(N) (data set size)

FPGA
GPUs

FPGA
GPUs

lg2(N) (data set size)

ASIC delivers same performance as one CPU
core with ~ 1/1000th the chip area.

GPU cores: ~ 5-7 times more area efficient
than CPU cores.

ASIC delivers same performance as one
CPU core with only ~ 1/100th the power.

 CMU 15-869, Fall 2014

Limits on chip power consumption
▪ General rule: the longer a task runs the less power it can use

- Processor’s power consumption (think: performance) is limited by heat
generated (efficiency is required for more than just maximizing battery life)

Po
we

r

Time

Electrical limit: max power that can be supplied to chip

Die temp: (junction temp -- Tj): chip becomes unreliable above this temp
(chip can run at high power for short period of time before chip heats to Tj)

Case temp: mobile device gets too hot for user to comfortably hold
(chip is at suitable operating temp, but heat is dissipating into case)

Battery life: chip and case are cool, but want to reduce power
consumption to sustain long battery life for given task

Credit: slide adopted by original slide from M. Shebanow

iPhone 5 battery: 5.4 watt-hours
4th gen iPad battery: 42.5 watt-hours
15in Macbook Pro: 95 watt-hours

 CMU 15-869, Fall 2014

What this course is about

VISUAL COMPUTING
WORKLOADS

Algorithms for 3D graphics, image
processing, compression, etc.

MACHINE
ORGANIZATION

High-throughput hardware designs:
Parallel and heterogeneous

mapping/scheduling

Parallelism
Exploiting locality

Minimizing communication

DESIGN OF GOOD ABSTRACTIONS
FOR VISUAL COMPUTING

choice of programming primitives
level of abstraction

1. The characteristics/requirements of important visual computing workloads
2. Techniques used to achieve efficient system implementations

 CMU 15-869, Fall 2014

In other words

It is about understanding the fundamental structure of problems
in the visual computing domain…

To design better algorithms

To build the most efficient hardware to run these applications

To design the right programming systems to make developing new
applications simpler and also highly performant.

 CMU 15-869, Fall 2014

What this course is NOT about

▪ This is not an [OpenGL, CUDA, OpenCL] programming course
- But we will be analyzing and critiquing the design of these systems in detail

- I expect you know these systems or pick them up as you go.

Many excellent references...

 CMU 15-869, Fall 2014

Course Logistics

 CMU 15-869, Fall 2014

Major course themes/topics

Rendering systems:
Primarily real-time 3D graphics as
implemented by modern games

High-performance image processing
Camera image pipeline (for photography)
Image processing for computer vision at scale.

Miscellaneous topics (may change)

 CMU 15-869, Fall 2014

Logistics
▪ Course web site:

- http://15869.courses.cs.cmu.edu

▪ All announcements will go out via Piazza
- https://piazza.com/cmu/fall2014/15869/home

▪ Kayvon’s office hours: drop in or by appointment (EDSH 225)

▪ Your knowledgable TA: Yong He (GHC 7117)

 CMU 15-869, Fall 2014

Expectations of you
▪ 30% participation

- There will be ~1-2 assigned paper readings per class
- Everyone is expected to come to class and participate in discussions based on readings
- You are encouraged discuss papers and or my lectures on the course discussion board.
- If you form a weekly course reading/study group, I will buy Pizza.

▪ 25% mini-assignments (2-3 short programming assignments)
- Implement a basic parallel triangle renderer
- Implement a RAW image processing pipeline

▪ 45% self-selected final project
- I suggest you start talking to me now (can be teams of up to two)

▪ We have toys to play around with throughout the semester:
- You are encouraged to experiment with them and report what you learn back to the class
- Two Oculus DK2s
- Two NVIDIA Shields, one Jetson K1

 CMU 15-869, Fall 2014

Somewhat philosophical question:
What is an “architecture”?

 CMU 15-869, Fall 2014

An architecture is an abstraction
It defines:
▪ Entities (state)

- Registers, buffers, vectors, triangles, lights, pixels, images

▪ Operations (that manipulate state)
- Add registers, copy buffers, multiply vectors, blur images, draw triangles

▪ Mechanisms for creating/destroying entities, expressing operations
- Execute machine instruction, make C++ API call, express logic in programming language

Notice the different levels of granularity/abstraction in my examples
Key course theme: choosing the right level of abstraction for system’s needs

Choice impacts system’s expressiveness/scope and its suitability for efficient implementation.

 CMU 15-869, Fall 2014

The 3D rendering problem

Image credit: Henrik Wann Jensen

Input: description of a scene
3D surface geometry (e.g., triangle meshes)

surface materials
lights

camera

Output: image

Main problem statement: How does each geometric element contribute to the
appearance of each output pixel in the image, given a description of surface
properties and lighting conditions.

 CMU 15-869, Fall 2014

The real-time graphics pipeline architecture
(A review of the GPU-accelerated OpenGL/D3D graphics pipeline, from a systems perspective)

 CMU 15-869, Fall 2014

Real-time graphics pipeline entities

Vertices Primitives
(triangles, points, lines)

Fragments Pixels

1

2

3

4

 CMU 15-869, Fall 2014

Real-time graphics pipeline operations

Primitive Generation

Vertex Generation

Vertex Processing

Fragment Generation
(Rasterization)

Fragment Processing

Pixel Operations

Primitive Processing

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Triangles positioned on screen

Fragments (one per pixel covered by triangle *)

Shaded fragments

Output image (pixels)

Vertices in positioned on screen

Vertices in 3D space1

2

3
4

* Imprecise definition: will give precise definition in later lecture

 CMU 15-869, Fall 2014

Real-time graphics pipeline state

Primitive Generation

Vertex Generation

Fragment Generation
(Rasterization)

Pixel Operations

Output image buffer

Vertex stream

Vertex stream

Primitive stream

Primitive stream

Fragment stream

Fragment stream

Vertices

Primitives

Fragments

Pixels

Vertex data buffers1

2

3
4

Memory Buffers (system state)

Buffers, textures

Buffers, textures

Buffers, textures

Vertex Processing

Fragment Processing

Primitive Processing

 CMU 15-869, Fall 2014

3D graphics system stack
Application

(e.g, a computer game)

Scene graph
(application’s database representing the scene: geometry, materials, lights, etc.)

Graphics pipeline
(OpenGL/Direct3D)

Graphics pipeline implementation
(software driver + GPU)

the abstraction we
are discussing now

implements the
abstraction

clients to the system
(use the abstraction)

 CMU 15-869, Fall 2014

Issues to keep in mind during this review *

▪ Level of abstraction
!

▪ Orthogonality of abstractions
!

▪ How is pipeline designed for performance/scalability?
!

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system we discuss in this course

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

 CMU 15-869, Fall 2014

“Assembling” vertices

Vertex Generation

Vertex Processing

V0 V1 VN-1

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawArrays(GL_TRIANGLES, 0, N);

glBindBuffer(GL_ARRAY_BUFFER, my_vtx_buffer);
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
 my_vtx_indices);

V0 V1 VN-1

1 3 2 1 5 6

Indexed access version (“gather”)

Contiguous version data version

my_vtx_buffer

my_vtx_indices

my_vtx_buffer

Vertex records

 CMU 15-869, Fall 2014

“Assembling” vertices

Vertex Generation

Vertex Processing

XYZ0 XYZ1 XYZN-1

Contiguous vertex buffer

UV0 UV1 UVN-1

N0 N1 NN-1

Output of vertex generation is a collection of vertex records.
!

Current pipelines set a limit of 32 float4 attributes per vertex. (512 bytes)
Why? (to be answered in a later lecture)

Vertex records

 CMU 15-869, Fall 2014

Vertex processing inputs

Vertex Generation

Vertex Processing

Memory

Uniform
data

Uniform data: constant read-only data provided as
input to every instance of the vertex shader
e.g., object-to-clip-space vertex transform matrix

Vertex processing operates on a stream of
vertex records + read-only “uniform” inputs.

Vertex records

 CMU 15-869, Fall 2014

Vertex processing inputs and outputs

Vertex Processing

Memory

Uniform
data

struct	
 input_vertex	

{	

	
 	
 	
 float3	
 pos;	
 	
 //	
 object	
 space	
 	

};	

struct	
 output_vertex	

{	

	
 	
 	
 float3	
 pos;	
 //	
 NDC	
 space	

};	

uniform	
 mat4	
 my_transform;	

!
output_vertex	
 my_vertex_program(input_vertex	
 in)	

{	

	
 	
 	
 	
 output_vertex	
 out;	

	
 	
 	
 	
 out.pos	
 =	
 my_transform	
 *	
 in.pos;	
 //	
 matrix-­‐vector	
 mult	

	
 	
 	
 	
 return	
 out;	

}

(* Note: this is pseudocode, not valid GLSL syntax)

Vertex Shader Program *

1 input vertex 1 output vertex
independent processing of each vertex

 CMU 15-869, Fall 2014

Example: per-vertex lighting

Per-vertex data: surface normal, surface color

Uniform data: light direction, light color

Per-vertex lighting computation Per-vertex normal computation, per pixel lighting

 CMU 15-869, Fall 2014

Example: vertex skinning

Image credit: http://www.okino.com/conv/skinning.htm

Per-vertex data: base vertex position (Vbase) + blend coefficients (wb)

Uniform data: “bone” matrices (Mb) for current animation frame

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Output image buffer

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

 CMU 15-869, Fall 2014

Primitive processing *

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Memory

Uniform
data

Uniform
data

input vertices for 1 prim output vertices for N prims **
independent processing of each INPUT primitive

** Pipeline caps output at 1024 floats of output
* “Geometry shader” in OpenGL/Direct3D terminology

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

Output image buffer

 CMU 15-869, Fall 2014

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

1 input prim N output fragments
!

N is unbounded
(size of triangles varies greatly)

struct	
 fragment	
 //	
 note	
 similarity	
 to	
 output_vertex	
 from	
 before	

{	

	
 	
 	
 float	
 	
 x,y;	
 	
 //	
 screen	
 pixel	
 coordinates	
 (sample	
 point	
 location)	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 //	
 depth	
 of	
 triangle	
 at	
 sample	
 point	

!
	
 	
 	
 float3	
 normal;	
 	
 	
 	
 //	
 interpolated	
 application-­‐defined	
 attribs	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	
 	
 //	
 (e.g.,	
 texture	
 coordinates,	
 surface	
 normal)	

};	

 CMU 15-869, Fall 2014

Rasterization

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Primitive Processing

Compute covered pixels
Sample vertex attributes once per covered pixel

struct	
 fragment	
 //	
 note	
 similarity	
 to	
 output_vertex	
 from	
 before	

{	

	
 	
 	
 float	
 	
 x,y;	
 	
 //	
 screen	
 pixel	
 coordinates	
 (sample	
 point	
 location)	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 //	
 depth	
 of	
 triangle	
 at	
 sample	
 point	

!
	
 	
 	
 float3	
 normal;	
 	
 	
 	
 //	
 interpolated	
 application-­‐defined	
 attribs	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	
 	
 //	
 (e.g.,	
 texture	
 coordinates,	
 surface	
 normal)	

!
}	

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

screen space

Object/world/camera space

Output image buffer

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

Uniform
data

1 in / 1 out

3 in / 1 out
(for tris)

Uniform
data1 in / small N out

1 in / N out

Output image buffer

 CMU 15-869, Fall 2014

Fragment processing

Fragment Processing

Memory

Uniform
data

struct	
 input_fragment	

{	

	
 	
 	
 float	
 	
 x,y;	
 	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 	

	
 	
 	
 float3	
 normal;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 float2	
 texcoord;	
 	

};

struct	
 output_fragment	

{	

	
 	
 	
 int	
 	
 	
 	
 x,y;	
 //	
 pixel	
 	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

Texture Buffer 0

Texture Buffer N

. . . !

texture	
 my_texture;	

!
output_vertex	
 my_fragment_program(input_fragment	
 in)	

{	

	
 	
 	
 	
 output_fragment	
 out;	

	
 	
 	
 	
 float4	
 material_color	
 =	
 sample(my_texture,	
 in.texcoord);	

!
	
 	
 	
 	
 for	
 (each	
 light	
 L	
 in	
 scene)	

	
 	
 	
 	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 out.color	
 +=	
 shade(L)	
 //	
 compute	
 reflectance	
 towards	
 camera	
 due	
 to	
 L	

	
 	
 	
 	
 }	

	
 	
 	
 	
 return	
 out;	

}

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

** 1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

** can be 0 out

Output image buffer

 CMU 15-869, Fall 2014

Frame-buffer operations

Pixel Operations

Frame Buffer

Memorystruct	
 output_fragment	

{	

	
 	
 	
 int	
 	
 	
 	
 x,y;	
 	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

 CMU 15-869, Fall 2014

Frame-buffer operations

if	
 (fragment.z	
 <	
 zbuffer[fragment.x][fragment.y])	

{	

	
 	
 	
 	
 zbuffer[fragment.x][fragment.y]	
 =	
 fragment.z;	

	
 	
 	
 	
 color_buffer[fragment.x][fragment.y]	
 =	
 blend(color_buffer[fragment.x][fragment.y],	
 fragment.color);	

}	

Depth test (hidden surface removal)

 CMU 15-869, Fall 2014

Frame-buffer operations (full view)

Stencil Buffer

Memorystruct	
 output_fragment	

{	

	
 	
 	
 int	
 	
 	
 	
 x,y;	
 	
 	

	
 	
 	
 float	
 	
 z;	
 	
 	
 	
 	

	
 	
 	
 float4	
 color;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

};	

Alpha Test

Stencil test

Depth test

Update target

Z Buffer

Color Buffer 0

Color Buffer N

. . . !

if	
 (fragment.z	
 <	
 zbuffer[fragment.x][fragment.y])	

{	

	
 	
 	
 	
 zbuffer[fragment.x][fragment.y]	
 =	
 fragment.z;	

	
 	
 	
 	
 color_buffer[fragment.x][fragment.y]	
 =	
 blend(color_buffer[fragment.x][fragment.y],	
 fragment.color);	

}	

Depth test (hidden surface removal)

 CMU 15-869, Fall 2014

The graphics pipeline

Primitive Generation

Vertex Generation

Vertex Processing

Rasterization
(Fragment Generation)

Fragment Processing

Frame-Buffer Ops

Primitive Processing

Vertices

Primitives

Fragments

Pixels

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out

1 in / N out

1 in / 1 out Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

Uniform
data

Texture
buffers

1 in / 0 or 1 out Output image buffer

 CMU 15-869, Fall 2014

Programming the graphics pipeline
▪ Issue draw commands output image contents change

Bind shaders, textures, uniforms
Draw using vertex buffer for object 1
Bind new uniforms
Draw using vertex buffer for object 2
Bind new shader
Draw using vertex buffer for object 3

CommandCommand Type

State change

Change depth test function
Bind new shader
Draw using vertex buffer for object 4

Draw
State change
Draw
State change
Draw
State change
State change
Draw

Note: efficiently managing stage changes is a major challenge in implementations

 CMU 15-869, Fall 2014

A series of graphics pipeline commands

State change (set “red” shader)

Draw

State change (set “blue” shader)

State change (change blend mode)

State change (set “yellow” shader

Draw

Draw

Draw

Draw

 CMU 15-869, Fall 2014

Feedback loop 1: use output image as input
texture in later draw command

Bind contents of output image as texture 1
Draw using vertex buffer for object 5
Draw using vertex buffer for object 6

CommandCommand Type

State change
Draw
Draw

. . . !

Rendering to textures for later use is key technique when implementing:
- Shadows
- Environment mapping
- Post-processing effects

Draw using vertex buffer for object 5Draw
Draw using vertex buffer for object 6 Draw

 CMU 15-869, Fall 2014

Feedback loop 2: output intermediate
geometry for use in later draw command

▪ Issue draw commands save intermediate geometry

Primitive Generation

Vertex Generation

Vertex Processing

Primitive Processing

Vertices

Primitives

Memory

1 in / 1 out

3 in / 1 out
(for tris)

1 in / small N out
Uniform

data
Texture
buffers

Uniform
data

Texture
buffers

Output vertex buffer

 CMU 15-869, Fall 2014

Analyzing the design of the graphics pipeline

▪ Level of abstraction
!

▪ Orthogonality of abstractions
!

▪ How is pipeline designed for performance/scalability?
!

▪ What the pipeline does and DOES NOT do

* These are great questions to ask yourself about any system we discuss in this course

 CMU 15-869, Fall 2014

Level of abstraction
▪ Imperative abstraction, not declarative

- Application code specifies: “draw these triangles, using this fragment
shader, with depth testing on”.

- It does not specify: “draw a cow made of marble on a sunny day”

▪ Programmable stages provide application large amount of flexibility
(e.g., to implement wide variety of materials and lighting techniques)

▪ Configurable (but not programmable) pipeline structure: turn stages on
and off, create feedback loops

▪ Abstraction is low enough to allow application to implement many
techniques, but high enough to abstract over radically different GPU
implementations

 CMU 15-869, Fall 2014

Orthogonality of abstractions
▪ All vertices treated the same regardless of primitive type

- Result: vertex programs oblivious to primitive types
- The same vertex program works for triangles and lines

▪ All primitives are converted into fragments for per-pixel shading
and frame-buffer operations
- Fragment programs are oblivious to source primitive type and the behavior

of the vertex program *
- Z-buffer is a common representation used to perform occlusion for any

primitive that can be converted into fragments

* Almost oblivious. Vertex shader must make sure it passes along all inputs required by the fragment shader

 CMU 15-869, Fall 2014

What the pipeline DOES NOT do (non-goals)
▪ Modern graphics pipeline has no concept of lights, materials,

modeling transforms
- Only vertices, primitives, fragments, pixels, and STATE

(state = buffers, shaders, and configuration parameters)
- Applications use these basic abstractions to implement lights, materials, etc.

▪ The graphics pipeline has no concept of a scene

▪ No I/O or OS window management

 CMU 15-869, Fall 2014

Pipeline design facilitates performance/scalability

▪ [Reasonably] low level: low abstraction distance to implementation
▪ Constraints on pipeline structure:

- Constrained data flow between stages
- Fixed-function stages for common and difficult to parallelize tasks
- Shaders: independent processing of each data element (enables parallelism)

▪ Provide frequencies of computation (per vertex, per primitive, per fragment)
- Application can choose to perform work at the rate required

▪ Keep it simple:
- Only a few common intermediate representations

- Triangles, points, lines
- Fragments, pixels

- Z-buffer algorithm computes visibility for any primitive type
▪ “Immediate-mode system”: pipeline processes primitives as it receives them

(as opposed to buffering the entire scene)
- Leave global optimization of how to render scene to the application

Homework exercise: describe one example of a graphics pipeline design
decision that enables high-performance implementations.

 CMU 15-869, Fall 2014

Perspective from Kurt Akeley

▪ Does the system meet original design goals, and then do much more
than was originally imagined? If so, the design is a good one!

- Simple, orthogonal concepts often produce amplifier effect

 CMU 15-869, Fall 2014

Readings
▪ Required

- D. Blythe. The Direct10 System. SIGGRAPH 2006
!

▪ Suggested:
- Chapter 2 and 3 of Real-Time Rendering, Third Edition (see link on course site)
- D. Blythe, Rise of the Graphics Processor. Proceedings of the IEEE, 2008
- M. Segal and K. Akeley. The Design of the OpenGL Graphics Interface

http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15869-f11/www/readings/blythe08_riseofgpu.pdf

