
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 27:

Flexible Graphics Pipelines
(programmable global structure, not just programmable stages)

 CMU 15-869, Fall 2013

Graphics pipeline pre Direct3D 10

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices

 CMU 15-869, Fall 2013

Graphics pipeline circa 2007

Vertex Rasterization Fragment Pixel Ops
triangles fragmentsvertices

Primitive
triangles

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse

[Blythe, Direct3D 10]

 CMU 15-869, Fall 2013

Pipeline circa 2010

Vertex Rasterization Fragment Pixel OpsPrimitive

Added three new stages (new data !ows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline
(with relaxed data-access and communication/sync rules)

DomainTessellateHull

Compute

Memory

[Direct3D 11, OpenGL 4]

(a.k.a. “OpenCL/CUDA)

 CMU 15-869, Fall 2013

Modern graphics pipeline: highly con!gurable structure

Vertex Rasterization Fragment Pixel OpsPrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsPrimitive

Vertex Rasterization Fragment Pixel Ops

Vertex Rasterization Pixel Ops

Vertex PrimitiveDomainTessellateHull

Vertex Rasterization Fragment Pixel OpsDomainTessellateHull

Direct3D 11, OpenGL 4 pipeline con!gurations

Vertex Primitive

Data-Parallel
Compute

 CMU 15-869, Fall 2013

Current trends in interactive graphics

▪ Rapid parallel algorithm development in community

▪ Increasing machine performance and !exibility (e.g., heterogeneous capabilities)
- “Traditional” discrete GPU designs
- Most modern systems are hybrid CPU + GPU platforms

Space of candidate algorithms for future real-time use is growing rapidly

 CMU 15-869, Fall 2013

Example: global illumination algorithms

Credit: NVIDIA

Credit: Ingo Wald

Credit: Bratincevic

Credit: Cyril Crassin

 CMU 15-869, Fall 2013

Alternative shading structures (“deferred shading”)

Vertex FragmentPixel OpsRast

1000 lights, [Andersson 09]

 CMU 15-869, Fall 2013

Game physics / simulation / procedural geometry

Credit: Inigo Quilez

 CMU 15-869, Fall 2013

Parallel programming model challenge
▪ Future interactive systems → broad application scope

- Not all algorithms map elegantly to current pipeline structure
- Pipeline structure could be extended further, but complexity is growing

unmanageable

▪ Must retain high efficiency typical of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will have the

combination of resources for executing these workloads efficiently
- Continue to leverage $xed-function processing when appropriate
- How to abstract?

Option 1: discard pipeline structure, drop to lower-level frameworks

CUDA, OpenCL, ComputeShader, C++ /w libraries

Data-Parallel
Compute

 CMU 15-869, Fall 2013

Challenge
▪ Future interactive systems → broad application scope

- Not a great $t for current pipeline structure

- Pipeline structure could be extended further, but complexity is growing
unmanageable

▪ Must retain high efficiency of current systems
- Future hardware platforms (especially CPU+accelerator hybrids) will be

designed to run these workloads well

- Continue to leverage $xed-function processing when appropriate

 CMU 15-869, Fall 2013

A unique (undesirable?) property of GPU design
▪ The $xed-function components on a GPU control the operation

of the programmable components
- Fixed function logic generates work (e.g., input assembler, tessellator, rasterizer

all generate elements for processing by programmable cores)
- Programmable logic processes elements

▪ In other words... application-programmable logic forms the
inner loops of the rendering computation, not the outer loops!

▪ Ongoing research question: can we !ip this design around?
- Maintain efficiency of heterogeneous hardware implementation, but give

programmers control of how hardware is used and managed.

 CMU 15-869, Fall 2013

Today -- GRAMPS: one example of "ipping
the pipeline around

GRAMPS: A Programming Model for Graphics Pipelines
[Sugerman, Fatahalian, Boulos, Akeley, Hanrahan 2009]

 CMU 15-869, Fall 2013

GRAMPS programming system: goals
▪ Enable development of application-de$ned graphics pipelines

- Producer-consumer locality is important
- Accommodate heterogeneity in workload

- Many algorithms feature both regular data parallelism and irregular
parallelism (recall: current graphics pipelines encapsulate irregularity in non-
programmable parts of pipeline)

▪ High performance: target future CPU+GPUs (embrace heterogeneity)
- Throughput (“accelerator”) processing cores
- Traditional CPU-like processing cores
- Fixed-function units

 CMU 15-869, Fall 2013

GRAMPS overview
▪ Programs are graphs of stages and queues

- Expose program structure
- Leave stage internals largely unconstrained

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

GRAMPS primitives

 CMU 15-869, Fall 2013

Writing a GRAMPS program
1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

RasterizerVertex Fragment Pixel Ops

Memory

Frame bufferVertex buffers Light descriptions

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

Assembly

 CMU 15-869, Fall 2013

Queues

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Bounded size, operate at granularity of “packets” (structs)
- Packets have one of two formats:

1. Blob of data: completely opaque to system
2. Header + array of opaque elements

▪ Queues can be ordered (FIFOs) or unordered FIFOs

Assembly

 CMU 15-869, Fall 2013

“Thread” and custom HW stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Preemptible, long-lived and stateful (think pthreads)
- Threads orchestrate computation: merge, compare repack inputs

▪ Manipulate queues via in-place reserve/commit
▪ Custom HW stages are logically just threads, but implemented by HW

Assembly

 CMU 15-869, Fall 2013

“Shader” stages

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ System support for data-parallel execution
- Logic is de$ned per element (like graphics shaders today)
- Automatically instanced and parallelized by GRAMPS

▪ Non-preemptible and stateless
- System has preserved queue storage for inputs/outputs

▪ Push: allows shader stage invocation to output variable number of elements to
output queue
- GRAMPS coalesces output into full packets (of header + array type)

Assembly

 CMU 15-869, Fall 2013

Queue sets (for mutual exclusion)

RasterizerVertex Fragment Pixel Ops

Thread Stage

Shader Stage

Custom HW
Stage

Queue

Push Queue

Queue Set

▪ Like N independent serial subqueues (but attached to a single instanced stage)
- Subqueues can be created statically or “on-demand” on $rst output
- Can be sparsely indexed (can think of subqueue index as a key)

Assembly

 CMU 15-869, Fall 2013

Graphics pipelines in GRAMPS

Ray$Tracing$Extension$

Rasteriza2on$Pipeline$(withraytracing$extension)$

Ray$Tracing$Graph$

 CMU 15-869, Fall 2013

Key challenge: scheduling GRAMPS pipelines
▪ Naive scheduler:

- Use graph structure to set simple stage priorities
- Only preempt Thread Stages on reserve/commit operations

Stage numbers are scheduling priorities (lowest number = highest priority)
Always execute lowest-numbered stage that has work.
Result: “breadth-!rst” scheduler

 CMU 15-869, Fall 2013

Key challenge: scheduling GRAMPS pipelines
▪ Other scheduling policies:

- “Breadth !rst” always schedule lowest numbered stage with work
- Maximizes parallelism
- Maximizes queue lengths
- Minimizes switching overheads

- “Depth !rst” always schedule lowest priority stage with work
- Minimizes queue lengths (produce, then immediately consume)
- Potentially higher switching overheads due to frequent switching

- Dynamic priorities based on queue lengths:
- Keep queue lengths above low watermark, below high watermark

 CMU 15-869, Fall 2013

GRAMPS recap
▪ Key abstraction is the computation graph: typed stages and queues

- Thread, $xed-function, and “shader” stages
- A few types of queues: ordered, unordered, queuesets

▪ Key underlying ideas:
- Enforcing structure on computations is useful for system optimization
- Embrace heterogeneity in application and machine architecture

- Interesting graphics applications have tightly coupled irregular parallelism
and regular data parallelism (this should be encoded in structure)

▪ Alternative to current design of CUDA/OpenCL
- These systems enforce very little global structure (very !exible, but provide

few mechanisms for programmer to indicate intent to the system)
- Result: these systems can only make simple mapping/scheduling decisions

 CMU 15-869, Fall 2013

GRAMPS postmortem
▪ Initial goal: make the graphics pipeline structure programmable

▪ We ended up with a lower level abstraction than today’s pipeline:
GRAMPS lost domain knowledge of graphics (graphics pipelines are
implemented on top of GRAMPS abstractions)
- Good: now programmable logic controls the !xed-function logic

(in the current graphics pipeline it is the other way around)
- Good: system is not graphics-domain-speci!c, but remains aware of program’s overall

structure (GRAMPS graph)

▪ Reality: mapping graphics abstractions to GRAMPS abstractions
efficiently requires a near expert graphics programmer
- Coming up with the right graph is hard (setting packet sizes, queue sizes has some

machine dependence, some key optimizations are global)

 CMU 15-869, Fall 2013

Graphics programming abstractions today
▪ CPU+GPU fusion is begging for improvements to high-level frameworks for

interactive graphics
- Example: AMD’s Mantle

- Alternative interface to AMD GPUs (few public details at this time)
- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules
- Built on top of CUDA

▪ Unresolved challenge: no clear, good solution yet
- Echoes to broader trend in computer science: how to enable software development for

parallel, heterogeneous systems
- Mobile SoC designers are particularly interested in this problem (even more functional blocks:

DSPs, camera image processors, misc sensor processors, ...)

 CMU 15-869, Fall 2013

Visual computing systems:
ongoing/future systems research challenges

(ideas from the course)

 CMU 15-869, Fall 2013

Visual computing:
systems research challenges

1. Tighter integration of graphics pipeline and non-graphics
pipeline workloads
- Many different types of computations are required to generate a frame, and not all are best carried out

using the graphics pipeline

- Geometry synthesis (tessellation, procedural geometry)

- Parallel construction of data structures: e.g., geometry buckets, light lists, sparse voxel octree, BVH

- Shading (data-parallel, compute intensive)

- Image post-processing: image !ltering operations such as MLAA, motion/defocus blur, tone mapping

Compute Stream triangles
to rasterizer

 CMU 15-869, Fall 2013

Visual computing:
systems research challenges

2. Hardware support for software-controlled $xed-function units
- What specialized hardware building blocks could be implemented to help with scheduling?

CPU core

CPU core CPU core

CPU core

 CMU 15-869, Fall 2013

Visual computing:
systems research challenges

3. Is there a need for distinct programmable hardware for
computational photography and image understanding tasks?
- Or is it best to implement a few basic primitives in silicon (convolution, feature

extraction, histogram generation, etc.)
- And then rely on GPU-like throughput processors for programmability

 CMU 15-869, Fall 2013

Visual computing:
systems research challenges

3. Unique rendering challenges for virtual reality
- (Sadly, left out of this course) see Michael Abrash’s GDC Keynote

4. New abstractions/architectures for analyzing images and video
at scale
- Content-based retrieval as a key computational primitive

