Lecture 27:

Flexible Graphics Pipelines

(programmable global structure, not just programmable stages)

Visual Computing Systems
CMU 15-869, Fall 2013

Graphics pipeline pre Direct3D 10

=9 Pixel Ops

(MU 15-869, Fall 2013

Graphics pipeline circa 2007 Blythe, Direct3D 10

vertices
IIIIEIII—>

triangles triangles fragments
- I+ - 11111~ Rasterlzatlon »DEB»M-»M-» Pixel Ops

Memory

Added new stage

Added ability to dump intermediate results out to memory for reuse

(MU 15-869, Fall 2013

Pipeline circa 2010 Direct3D 11, OpenGL4

smd Compute

|

Memory

Added three new stages (new data flows needed to support high-quality surfaces)

Forked off a separate 1-stage pipeline (a.k.a.“0pencL/cuDA)
(with relaxed data-access and communication/sync rules)

(MU 15-869, Fall 2013

Modern graphics pipeline: highly configurable structure

R R R B W
o D e Em

oD e 2= om e
e

D == e e
== 3 e
=

—

—

Data-Parallel
Compute

Direct3D 11, OpenGL 4 pipeline configurations

CMU 15-869, Fall 2013

Current trends in interactive graphics

B Rapid parallel algorithm development in community

B [ncreasing machine performance and flexibility (e.g., heterogeneous capabilities)
- “Traditional” discrete GPU designs
- Most modern systems are hybrid CPU + GPU platforms

Space of candidate algorithms for future real-time use is growing rapidly

CMU 15-869, Fall 2013

Example: global illumination algorithms

Credit: NVIDIA

Credit: Cyril Crassin
(MU 15-869, Fall 2013

Alternative shading structures cuereressmading:

g PixelOps Imme

P
- o
.........
-

ALNESC e
2 N5 9
......

1000 lights, [Andersson 09]

(MU 15-869, Fall 2013

Game physics / simulation / procedural geometry

Credit: Inigo Quilez

CMU 15-869, Fall 2013

Parallel programming model challenge

B Future interactive systems — broad application scope
- Not all algorithms map elegantly to current pipeline structure

- Pipeline structure could be extended further, but complexity is growing
unmanageable

B Must retain high efficiency typical of current systems

- Future hardware platforms (especially CPU+accelerator hybrids) will have the
combination of resources for executing these workloads efficiently

- Continue to leverage fixed-function processing when appropriate

- How to abstract?

Option 1: discard pipeline structure, drop to lower-level frameworks

Data-Parallel
Compute

CUDA, OpenCL, ComputeShader, (++ /w libraries

CMU 15-869, Fall 2013

Challenge

B Future interactive systems — broad application scope
- Not a great fit for current pipeline structure

= Pipeline structure could be extended further, but complexity is growing
unmanageable

m Must retain high efficiency of current systems

= Future hardware platforms (especially CPU+accelerator hybrids) will be
designed to run these workloads well

= Continue to leverage fixed-function processing when appropriate

CMU 15-869, Fall 2013

A unique (undesirable?) property of GPU design

m The fixed-function components on a GPU control the operation
of the programmable components

- Fixed function logic generates work (e.g., input assembler, tessellator, rasterizer
all generate elements for processing by programmable cores)

- Programmable logic processes elements

m |n other words... application-programmable logic forms the
inner loops of the rendering computation, not the outer loops!

m Ongoing research question: can we flip this design around?

- Maintain efficiency of heterogeneous hardware implementation, but give
programmers control of how hardware is used and managed.

CMU 15-869, Fall 2013

Today -- GRAMPS: one example of flipping

the pipeline around

(MU 15-869, Fall 2013

GRAMPS programming system: goals

m Enable development of application-defined graphics pipelines

- Producer-consumer locality is important
- Accommodate heterogeneity in workload

- Many algorithms feature both reqgular data parallelism and irreqular
parallelism (recall: current graphics pipelines encapsulate irregularity in non-
programmable parts of pipeline)

m High performance: target future CPU+GPUs (embrace heterogeneity)

- Throughput (“accelerator”) processing cores

- Traditional CPU-like processing cores

- Fixed-function units

CMU 15-869, Fall 2013

GRAMPS overview

m Programs are graphs of stages and queues

- Expose program structure

- Leave stage internals largely unconstrained

('

Shader

GRAMPS primitives

Thread Stage » 0

Queue Queue Set
o
Custom HW Push Queue
Stage

CMU 15-869, Fall 2013

Writing a GRAMPS program

1. Design application graph and queues
2. Implement the stages
3. Instantiate graph and launch

) Jertex
[wy H[jertex M W H ;!‘;J!)lll't’ll! W pld?'t):}l %
A S = > < x

n I N |

Vertex buffers Light descriptions Frame buffer

Memory

Custom HW- Push Queue :
l Stage l 5 (MU 15-869, Fall 2013

Queues

B Bounded size, operate at granularity of “packets” (structs)

— Packets have one of two formats:
1. Blob of data: completely opaque to system
2. Header + array of opaque elements

B Queues can be ordered (FIFOs) or unordered FIFOs

Accamhliv /ertex
[Assembly H 1]”P[Rasterizer H ragment W ixel Ops Jjﬂ

Stage : CMU 15-869, Fall 2013

“Thread” and custom HW stages

B Preemptible, long-lived and stateful (think pthreads)

— Threads orchestrate computation: merge, compare repack inputs
® Manipulate queues via in-place reserve/commit

m Custom HW stages are logically just threads, but implemented by HW

[mu;u mp] —— 9
Queue Queue Set
[.n«yl-u "u'y% ::
[Custom HW Push Queue .
Stage E (MU 15-869, Fall 2013

“Shader” stages

m System support for data-parallel execution
— Logicis defined per element (like graphics shaders today)

— Automatically instanced and parallelized by GRAMPS

B Non-preemptible and stateless
— System has preserved queue storage for inputs/outputs

B Push:allows shader stage invocation to output variable number of elements to
output queue

— GRAMPS coalesces output into full packets (of header + array type)

Accemblv Jertex
[de.lJ.L'Jj/ H | M ﬁtﬂﬂjhﬂj H -fagment W C1Xel Ups %

CMU 15-869, Fall 2013

Queue sets (for mutual exclusion)

B Like N independent serial subqueues (but attached to a single instanced stage)
— Subqueues can be created statically or “on-demand” on first output
— (Can be sparsely indexed (can think of subqueue index as a key)

1 a . Y “'. ,?A
[Assembly H Jertex M Rasterizer H ‘ragment W PIxel Ops %

Stage : CMU 15-869, Fall 2013

Graphics pipelines in GRAMPS

Rasterization Pipeline (with ray tracing extension)

Frame Buffer

Vertex Buffers

ﬁ—/

Ray Tracing Extension

Ray Tracing Graph

o
&=
=
o0
)
S
L)
—
(U

CMU 15-869, Fall 2013

Key challenge: scheduling GRAMPS pipelines

B Naive scheduler:

- Use graph structure to set simple stage priorities

- Only preempt Thread Stages on reserve/commit operations

T)
e

Stage numbers are scheduling priorities (lowest number = highest priority)
Always execute lowest-numbered stage that has work.
Result: “breadth-first” scheduler

[Frame Buffer]

CMU 15-869, Fall 2013

Key challenge: scheduling GRAMPS pipelines

B (Other scheduling policies:
- “Breadth first” always schedule lowest numbered stage with work
- Maximizes parallelism
- Maximizes queue lengths
= Minimizes switching overheads
- “Depth first” always schedule lowest priority stage with work
- Minimizes queue lengths (produce, then immediately consume)
- Potentially higher switching overheads due to frequent switching
- Dynamic priorities based on queue lengths:

- Keep queue lengths above low watermark, below high watermark

SN N
(o W

[Frame Buffer]

CMU 15-869, Fall 2013

GRAMPS recap

m Key abstraction is the computation graph: typed stages and queues

- Thread, fixed-function, and “shader” stages

- Afew types of queues: ordered, unordered, queuesets

m Key underlying ideas:
- Enforcing structure on computations is useful for system optimization

- Embrace heterogeneity in application and machine architecture

- Interesting graphics applications have tightly coupled irregular parallelism
and reqular data parallelism (this should be encoded in structure)

m Alternative to current design of CUDA/OpenCL

- These systems enforce very little global structure (very flexible, but provide
few mechanisms for programmer to indicate intent to the system)

- Result: these systems can only make simple mapping/scheduling decisions

CMU 15-869, Fall 2013

GRAMPS postmortem

Initial goal: make the graphics pipeline structure programmable

We ended up with a lower level abstraction than today’s pipeline:
GRAMPS lost domain knowledge of graphics (graphics pipelines are
implemented on top of GRAMPS abstractions)

- Good: now programmable logic controls the fixed-function logic
(in the current graphics pipeline it is the other way around)

- Good: system is not graphics-domain-specific, but remains aware of program’s overall
structure (GRAMPS graph)

Reality: mapping graphics abstractions to GRAMPS abstractions
efficiently requires a near expert graphics programmer

- Coming up with the right graph is hard (setting packet sizes, queue sizes has some
machine dependence, some key optimizations are global)

CMU 15-869, Fall 2013

Graphics programming abstractions today

® (CPU+GPU fusion is begging for improvements to high-level frameworks for
interactive graphics

- Example: AMD’s Mantle
- Alternative interface to AMD GPUs (few public details at this time)
- Example: NVIDIA Optix: new framework for ray tracing

- Application provides key kernels, Optix compiler/runtimes schedules
= Built on top of CUDA

B Unresolved challenge: no clear, good solution yet

- Echoes to broader trend in computer science: how to enable software development for
parallel, heterogeneous systems

- Mobile SoC designers are particularly interested in this problem (even more functional blocks:
DSPs, camera image processors, misc sensor processors, ...)

CMU 15-869, Fall 2013

Visual computing systems:
ongoing/future systems research challenges
(ideas from the course)

Visual computing:
systems research challenges

1. Tighter integration of graphics pipeline and non-graphics
pipeline workloads

- Many different types of computations are required to generate a frame, and not all are best carried out
using the graphics pipeline

- Geometry synthesis (tessellation, procedural geometry)
- Parallel construction of data structures: e.g., geometry buckets, light lists, sparse voxel octree, BVH
- Shading (data-parallel, compute intensive)

- Image post-processing: image filtering operations such as MLAA, motion/defocus blur, tone mapping

3 £ CD 0D 0D == 03 Cn

@ Stream triangles

to rasterizer

(MU 15-869, Fall 2013

Visual computing:
systems research challenges

2. Hardware support for software-controlled fixed-function units

- What specialized hardware building blocks could be implemented to help with scheduling?

essellate Tessellate

Tessellate Tessellate

Clip/Cull Clip/Cull

Rasterize Rasterize

Clip/Cull Clip/Cull
m m | cacne || | cache

CMU 15-869, Fall 2013

Visual computing:
systems research challenges

3. Isthere a need for distinct programmable hardware for

computational photography and image understanding tasks?

- Orisitbest to implement a few basic primitives in silicon (convolution, feature
extraction, histogram generation, etc.)

- And then rely on GPU-like throughput processors for programmability

CMU 15-869, Fall 2013

Visual computing:
systems research challenges

K

3. Unique rendering challenges for virtual reality o =
- (Sadly, left out of this course) see Michael Abrash’s GDC Keynote JaF&H &

4. New abstractions/architectures for analyzing images and video

at scale
- Content-based retrieval as a key computational primitive

CMU 15-869, Fall 2013

