
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 26:

Real-Time Voxelization
for Global Illumination

 CMU 15-869, Fall 2013

Voxelization to regular grid
▪ Input: scene triangles
▪ Output: surface information at each voxel in 3D grid

- Simple case: voxel stores presence (does voxel contain geometry)
- More complex case: voxel stores shading parameters (e.g., normal, albedo)

[Image credit: Crassin and Green, OpenGL Insights]

 CMU 15-869, Fall 2013

Voxelization as conservative 3D-rasterization
▪ Fragment generation:

- 2D point-in-projected triangle coverage test ➞ triangle-3D-box intersection test

26-separating
(fully conservative)

6-separating
(“thin” voxelization)

Simpler example:

Image credits:
[Crassin and Green, OpenGL Insights]
[Schwarz and Sidel 2010]

 CMU 15-869, Fall 2013

Basics: voxelization using GPU rasterizer

Rough algorithm sketch: rasterize scene with orthographic projection, and without Z-cull

∆z

 CMU 15-869, Fall 2013

Voxel containing fragment = (frag.x, frag.y, !oor(frag.z / ∆z));

∆z

Rough algorithm sketch: rasterize scene with orthographic projection, and without Z-cull

Resulting fragments

 CMU 15-869, Fall 2013

∆z

Voxelization using GPU rasterizer
Consider case: triangle normal near-orthogonal from axis of projection

 CMU 15-869, Fall 2013

∆z

Rasterization generates one fragment per triangle per screen pixel
Problem: discontinuous voxelized representation of surface

Resulting fragments

 CMU 15-869, Fall 2013

Dominant axis determination
▪ Single pass geometry shader implementation:

- Use dot product of triangle’s normal and each of three
potential axes to choose dominant axis (per triangle
operation)

- Project triangle orthogaphically along chosen axis
(emit projected vertices to rasterizer)

Geometry Shader

Rasterizer

 CMU 15-869, Fall 2013

Fragment may overlap up to multiple voxels

∆z

Compute voxel overlap given Z(x,y) (depth at pixel center), dZdx, dZdy

 CMU 15-869, Fall 2013

Writing to 3D voxel data structure
▪ Fragment must update voxel data structure with surface color, normal, etc. information

- frag.xy + axis of projection identi"es column of voxels
- fragment depth identi"es overlapped voxels

▪ Multiple fragments will overlap same voxels

▪ Arbitrary memory access:
- Use new GLSL Shader Model 5

image load/store operations or
load/store to “buffer textures”

▪ Synchronization:
- Ensure atomicity of updates using

compare_and_swap

▪ Many-to-one reduction:
- Average surface attributes over

all fragments contributing to
each voxel

- Occupancy: OR
- Albedo: average
- Normal?

 CMU 15-869, Fall 2013

Problem
▪ Rasterizer only point-samples coverage: if projected triangle does not cover pixel

center, no fragments will be generated

▪ Particularly pronounced with thin geometry

Three-plane
rasterization

[Schwarz and Sidel 2010]

 CMU 15-869, Fall 2013

Conservative rasterization by enlarging triangle
▪ Current GPU hardware solution:

- Generate bounding polygon in geometry shader
- Extend bounds by up to one pixel
- Fragment shader “kills” fragments that lie outside clipping region

▪ “Conservative rasterization” to accelerate voxelization is an attractive
feature for future hardware rasterizers

[Credit: Crassin and Green, OpenGL Insights]

 CMU 15-869, Fall 2013

Basic GPU rasterizer-accelerated voxelization
▪ Single-pass geometry shader implementation:

- Use dot product of triangle’s normal and each of three potential
axes to choose dominant axis (per triangle operation)

- Enlarge triangle to enable conservative voxelization
- Project triangle along chosen axis

(emit projected vertices to rasterizer)

▪ Rasterizer generates fragments (performs part of triangle-voxel
overlap computation)

▪ Fragment shader computes covered voxels and samples surface
attributes

▪ Fragment shader updates 3D voxel grid data structure in parallel
using global synchronization constructs
- Note: "xed-function GL frame-buffer functionality NOT used

▪ Alternative: implement voxelization entirely in software (using
CUDA or compute shader)

Geometry Shader

Rasterizer

Fragment Shader

voxel grid

 CMU 15-869, Fall 2013

Problem: storage cost of 3D representation
▪ Modest size 512 x 512 x 512 voxel grid, 8 bytes per pixel (albedo + normal)

- 1 GB footprint

▪ Solutions for reducing footprint:
- Compress data stored in voxels (e.g., lossy compress using low bit precision...

think G-buffer packing techniques for deferred renderer)
- Use sparse representation of voxel grid (only store voxels where surfaces

actually exist)

 CMU 15-869, Fall 2013

Sparse voxel octree (SVO)
- Compact, multi-resolution voxel data-structure
- Each node corresponds to axis-aligned region in space (root node = the entire scene)
- Each node maintains pre-"ltered representation of it’s region of space (below: a 3x3 dense voxel grid

called a “brick”)
- 3D space: each node subdivided uniformly into eight child nodes (child only allocated if it exists)

Simpli"ed illustration: Only two nodes for each interior node shown.

[Figure credit: Crassin and Green, OpenGL Insights]

 CMU 15-869, Fall 2013

Constructing a SVO on the GPU
▪ Step 1: build list of fragments (voxelize to "nest resolution)

- Fragment shader appends voxel fragment to list
- Append synchronization via atomic counter (“next” pointer)

▪ Step 2: for each level of octree: from top to bottom
- For each fragment in list, mark child cell containing fragment as occupied
- Allocate occupied child cells
- Initialize child cells

[Figure credit: Crassin and Green, OpenGL Insights]

 CMU 15-869, Fall 2013

Constructing a SVO on the GPU
▪ Step 3: initialize octree values

- Initialize leaf bricks (copy surface attributes from voxel fragment list)
- For each interior node:

- Resample values from (up to eight) children nodes to construct brick values
for current node

- Note: resampling of binary occupancy at leaves yields opacity

Visualization of surface albedo stored at three difference voxel grid resolutions

[Figure credit: Crassin and Green, OpenGL Insights]

 CMU 15-869, Fall 2013

More examples

[Credit: Cyril Crassin BPS 2012]

 CMU 15-869, Fall 2013

▪ Ray: p(t) = o + dt

▪ Ray intersects plane perpendicular to x axis at:

▪ Let x0 be x-aligned plane of box closest to ray origin, x1 be farthest

▪ Range of t values for which ray is in cube (x0,y0,z0), (x1,y1,z1):
- tmin = max(tx(x0),ty(y0),tz(z0))
- tmax = min(tx(x1),ty(y1),tz(z1))

Ray casting through voxel grid

(x0, y0)

(x1, y1)

▪ Advancing to next box at same same level of grid:
- Compare tx(x1),ty(y1),tz(z1) with tmax, advance cell index

in all dimensions value is equal
- In octree: just !ip bits of index for each dimension!
- Incompatibility between bit !ip direction and ray

direction indices out of octree node (must pop up a level)

▪ Descending to lower levels:
- Determine starting voxel by checking tmin

against node midpoint planes

 CMU 15-869, Fall 2013

Voxel cone tracing
▪ Main idea: rather than compute integrals during rendering by stochastic point

sampling (requiring tracing of many rays through scene to produce low variance
estimates), efficiently estimate integral over “cone” of rays traced through
pre"ltered voxel representation of geometry

▪ Treat pre"ltered geometry as a
participating media (density "eld)
rather a de"nite surface

[Credit: Cyril Crassin BPS 2012]

 CMU 15-869, Fall 2013

Review: attenuation along a ray

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Integrate over bundle of rays

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Discretize integrals along rays

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Pre-integrate volumes
▪ Move integration over bundle of rays into summation over voxels
▪ Sum emission over all voxels, modulated by attenuation due to opacity

- Makes de-correlation assumption (of energy and opacity)

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Voxel cone tracing: integration over cone of rays

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Ambient Occlusion

Scene model courtesy of Guillermo M. Leal Llaguno

▪ Fraction of distant incoming irradiance attenuated by occluders (integration of
occlusion over hemisphere)

▪ Coarse proxy for shadowing of ambient indirect illumination
[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Ambient occlusion via voxel cone tracing

▪ Store pre"ltered occlusion value at each octree node
▪ Step cone from surface point through octree:
▪ Octree depth and determined from cone width

- Use deep voxels near starting surface point, higher (larger) voxels farther away
[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Comparison with ray traced AO solution

Voxel cone tracing using three cones

[Credit: Crassin et al. 2011]

 CMU 15-869, Fall 2013

Indirect illumination using voxel cone tracing
▪ Step 1: compute direct illumination due to light source at every leaf voxel

- Render W x H “light-view-map” image from light.
- For every fragment sample, trace through SVO, deposit irradiance in leaf
- Requires atomic update of data structure (similar to SVO construction)

▪ Step 2: "lter irradiance values to higher levels of octree
- Store Gaussian lobes in voxels: direction + variance

▪ Step 3: (Gather phase) In standard forward or deferred rendering use cone
tracing to compute indirect illumination at every fragment
-

- cvoxel is radiance from voxel re!ected in direction of gathering surface
(cone origin)

 CMU 15-869, Fall 2013

Examples

S
ce

ne
 m

od
el

 c
ou

rte
sy

 o
f G

ui
lle

rm
o

M
. L

ea
l L

la
gu

no

[Credit: Crassin et al.]

 CMU 15-869, Fall 2013

Discussion
▪ Increasing use of voxelization techniques in interactive rendering

▪ When are voxelization techniques applicable?
- When the cost of pre-"ltering can be amortized!

- Amortize construction/pre-"ltering over many queries in a frame (e.g., GI)
- Or over many frames (e.g., static geometry)

▪ Why not just drop triangles all together?
- e.g. Ray cast through voxel representation for primary rays

 CMU 15-869, Fall 2013

Credits
▪ This lecture used "gures from:

- Crassin et al. 2011
- Cyril Crassin’s BPS 2012 talk
- Crassin and Green’s Chapter 22 of OpenGL Insights (Cozzi and Riccio)

