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Voxelization to regular grid
▪ Input: scene triangles
▪ Output: surface information at each voxel in 3D grid

- Simple case: voxel stores presence (does voxel contain geometry) 
- More complex case: voxel stores shading parameters (e.g., normal, albedo)

[Image credit: Crassin and Green, OpenGL Insights]
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Voxelization as conservative 3D-rasterization
▪ Fragment generation:

- 2D point-in-projected triangle coverage test  ➞  triangle-3D-box intersection test

26-separating
(fully conservative)

6-separating
(“thin” voxelization)

Simpler example:

Image credits:
[Crassin and Green, OpenGL Insights]
[Schwarz and Sidel 2010]
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Basics: voxelization using GPU rasterizer

Rough algorithm sketch: rasterize scene with orthographic projection, and without Z-cull 

∆z
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Voxel containing fragment = (frag.x, frag.y, !oor(frag.z / ∆z));  

∆z

Rough algorithm sketch: rasterize scene with orthographic projection, and without Z-cull 

Resulting fragments
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∆z

Voxelization using GPU rasterizer
Consider case: triangle normal near-orthogonal from axis of projection
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∆z

Rasterization generates one fragment per triangle per screen pixel
Problem: discontinuous voxelized representation of surface 

Resulting fragments
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Dominant axis determination
▪ Single pass geometry shader implementation:

- Use dot product of triangle’s normal and each of three 
potential axes to choose dominant axis (per triangle 
operation)

- Project triangle orthogaphically along chosen axis
(emit projected vertices to rasterizer)

Geometry Shader

Rasterizer
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Fragment may overlap up to multiple voxels

∆z

Compute voxel overlap given Z(x,y) (depth at pixel center), dZdx, dZdy
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Writing to 3D voxel data structure
▪ Fragment must update voxel data structure with surface color, normal, etc. information

- frag.xy + axis of projection identi"es column of voxels
- fragment depth identi"es overlapped voxels

▪ Multiple fragments will overlap same voxels

▪ Arbitrary memory access:
- Use new GLSL Shader Model 5 

image load/store operations or 
load/store to “buffer textures”

▪ Synchronization:
- Ensure atomicity of updates using 

compare_and_swap

▪ Many-to-one reduction:
- Average surface attributes over 

all fragments contributing to 
each voxel

- Occupancy: OR
- Albedo: average
- Normal?
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Problem
▪ Rasterizer only point-samples coverage: if projected triangle does not cover pixel 

center, no fragments will be generated

▪ Particularly pronounced with thin geometry

Three-plane
rasterization

[Schwarz and Sidel 2010]
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Conservative rasterization by enlarging triangle
▪ Current GPU hardware solution:

- Generate bounding polygon in geometry shader
- Extend bounds by up to one pixel
- Fragment shader “kills” fragments that lie outside clipping region

▪ “Conservative rasterization” to accelerate voxelization is an attractive 
feature for future hardware rasterizers

[Credit: Crassin and Green, OpenGL Insights]
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Basic GPU rasterizer-accelerated voxelization
▪ Single-pass geometry shader implementation:

- Use dot product of triangle’s normal and each of three potential 
axes to choose dominant axis (per triangle operation)

- Enlarge triangle to enable conservative voxelization 
- Project triangle along chosen axis

(emit projected vertices to rasterizer)

▪ Rasterizer generates fragments (performs part of triangle-voxel 
overlap computation)

▪ Fragment shader computes covered voxels and samples surface 
attributes

▪ Fragment shader updates 3D voxel grid data structure in parallel 
using global synchronization constructs
- Note: "xed-function GL frame-buffer functionality NOT used

▪ Alternative: implement voxelization entirely in software (using 
CUDA or compute shader)

Geometry Shader

Rasterizer

Fragment Shader

voxel grid
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Problem: storage cost of 3D representation
▪ Modest size 512 x 512 x 512 voxel grid, 8 bytes per pixel (albedo + normal)

- 1 GB footprint

▪ Solutions for reducing footprint:
- Compress data stored in voxels (e.g., lossy compress using low bit precision... 

think G-buffer packing techniques for deferred renderer)
- Use sparse representation of voxel grid (only store voxels where surfaces 

actually exist)
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Sparse voxel octree (SVO)
- Compact, multi-resolution voxel data-structure
- Each node corresponds to axis-aligned region in space (root node = the entire scene)
- Each node maintains pre-"ltered representation of it’s region of space (below: a 3x3 dense voxel grid 

called a “brick”) 
- 3D space: each node subdivided uniformly into eight child nodes (child only allocated if it exists)

Simpli"ed illustration: Only two nodes for each interior node shown.

[Figure credit: Crassin and Green, OpenGL Insights]
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Constructing a SVO on the GPU
▪ Step 1: build list of fragments (voxelize to "nest resolution)

- Fragment shader appends voxel fragment to list
- Append synchronization via atomic counter (“next” pointer)

▪ Step 2: for each level of octree: from top to bottom
- For each fragment in list, mark child cell containing fragment as occupied
- Allocate occupied child cells
- Initialize child cells

[Figure credit: Crassin and Green, OpenGL Insights]
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Constructing a SVO on the GPU
▪ Step 3: initialize octree values 

- Initialize leaf bricks (copy surface attributes from voxel fragment list)
- For each interior node:

- Resample values from (up to eight) children nodes to construct brick values 
for current node

- Note: resampling of binary occupancy at leaves yields opacity

Visualization of surface albedo stored at three difference voxel grid resolutions

[Figure credit: Crassin and Green, OpenGL Insights]
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More examples

[Credit: Cyril Crassin BPS 2012]
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▪ Ray: p(t) = o + dt

▪ Ray intersects plane perpendicular to x axis at:

▪ Let x0 be x-aligned plane of box closest to ray origin, x1 be farthest

▪ Range of t values for which ray is in cube (x0,y0,z0), (x1,y1,z1): 
- tmin = max(tx(x0),ty(y0),tz(z0))
- tmax = min(tx(x1),ty(y1),tz(z1))

Ray casting through voxel grid

(x0, y0)

(x1, y1)

▪ Advancing to next box at same same level of grid:
- Compare tx(x1),ty(y1),tz(z1) with tmax, advance cell index 

in all dimensions value is equal
- In octree: just !ip bits of index for each dimension!
- Incompatibility between bit !ip direction and ray 

direction indices out of octree node (must pop up a level)

▪ Descending to lower levels:
- Determine starting voxel by checking tmin 

against node midpoint planes 
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Voxel cone tracing
▪ Main idea: rather than compute integrals during rendering by stochastic point 

sampling (requiring tracing of many rays through scene to produce low variance 
estimates), efficiently estimate integral over “cone” of rays traced through 
pre"ltered voxel representation of geometry 

▪ Treat pre"ltered geometry as a 
participating media (density "eld) 
rather a de"nite surface 

[Credit: Cyril Crassin BPS 2012]
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Review: attenuation along a ray

[Credit: Crassin et al. 2011]
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Integrate over bundle of rays

[Credit: Crassin et al. 2011]
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Discretize integrals along rays

[Credit: Crassin et al. 2011]
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Pre-integrate volumes 
▪ Move integration over bundle of rays into summation over voxels
▪ Sum emission over all voxels, modulated by attenuation due to opacity

- Makes de-correlation assumption (of energy and opacity)  

[Credit: Crassin et al. 2011]
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Voxel cone tracing: integration over cone of rays

[Credit: Crassin et al. 2011]
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Ambient Occlusion

Scene model courtesy of Guillermo M. Leal Llaguno 

▪ Fraction of distant incoming irradiance attenuated by occluders (integration of 
occlusion over hemisphere)

▪ Coarse proxy for shadowing of ambient indirect illumination
[Credit: Crassin et al. 2011]
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Ambient occlusion via voxel cone tracing

▪ Store pre"ltered occlusion value         at each octree node
▪ Step cone from surface point through octree:
▪ Octree depth and determined from cone width

-   Use deep voxels near starting surface point, higher (larger) voxels farther away 
[Credit: Crassin et al. 2011]
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Comparison with ray traced AO solution 

Voxel cone tracing using three cones

[Credit: Crassin et al. 2011]



 CMU 15-869, Fall 2013

Indirect illumination using voxel cone tracing
▪ Step 1: compute direct illumination due to light source at every leaf voxel

- Render W x H “light-view-map” image from light.
- For every fragment sample, trace through SVO, deposit irradiance in leaf
- Requires atomic update of data structure (similar to SVO construction)

▪ Step 2: "lter irradiance values to higher levels of octree
- Store Gaussian lobes in voxels: direction + variance

▪ Step 3: (Gather phase) In standard forward or deferred rendering use cone 
tracing to compute indirect illumination at every fragment
-  

- cvoxel is radiance from voxel re!ected in direction of gathering surface 
(cone origin)
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Examples
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[Credit: Crassin et al.]
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Discussion
▪ Increasing use of voxelization techniques in interactive rendering

▪ When are voxelization techniques applicable?
- When the cost of pre-"ltering can be amortized!

- Amortize construction/pre-"ltering over many queries in a frame (e.g., GI)
- Or over many frames (e.g., static geometry)

▪ Why not just drop triangles all together?
- e.g. Ray cast through voxel representation for primary rays
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Credits
▪ This lecture used "gures from:

- Crassin et al. 2011
- Cyril Crassin’s BPS 2012 talk
- Crassin and Green’s Chapter 22 of OpenGL Insights (Cozzi and Riccio)


