Lecture 25:

Retrieval using binary codes

Visual Computing Systems
CMU 15-869, Fall 2013
Bitcode representation of images *

* Actually: images, image tiles, or keypoints, etc.
Simple example: Hamming embedding using locality sensitive hashing

- Step 1: compute **full descriptor**
 - Examples:
 - BOW representation, HOG, SIFT, etc.
 - Full-image descriptors: tiny images, GIST, etc.

- Step 2: embed descriptor in b-bit hamming space using b random projections
 - For each input query, compute 1 bit per projection (e.g., side of hyper-plane)
 - Query is now represented as a b-bit string

Note: a better way to determine a better set of hash functions than random projection is to learn them from the database
Fast image retrieval using bitcodes

1. Query image
2. Compute full descriptor
3. Compute b-bit binary descriptor (embedding in Hamming space)
4. Search database of binary descriptors
Benefits of NN search in hamming space

1. Efficient distance computation:
 - Hamming distance: number of bits that differ between two b-bit codes

   ```c
   int hamming_distance(bitstring x, bitstring y) {
       return count_bits( xor(x, y) );
   }
   ```

2. Compact database representation:
 - bn bits to store bitcodes for n images in database
 - Recall SIFT descriptor: 512 bits per keypoint, hundreds/thousands of keypoints per image!
K-NN search (K=5) in hamming space:

- 12.9M elements in database
 - Each element corresponds to full-image descriptor
- Quad-core CPU
- **Brute-force** search for top 5 nearest neighbors:
 - 30-bit codes: 400 MB of memory, 74 ms
 - 256-bit codes: 3.2 GB of memory, 0.23 sec

- Two orders of magnitude faster than brute force (and also K-NN tree search) on database containing full-representation GIST descriptors *

* Unfair comparison: should have compared to approximate k-NN implementation to be more fair since bitcode search results are not the same (see next slide)
Bitcode search “performance”

- Baseline: GIST full image descriptor (384 floats)
- Experiment (left): compute top 50 NN in GIST-space, then measure how many of these NN appeared in the NN results in hamming space
- Experiment (right): object detection by transferring class label (person) from NN’s to query image (does query picture contain a person?)

[Torralba et al. 2008]

Graphs:
- Left graph: Proportion of 50 NN within retrieved set vs. Number of retrieved images (out of 12900000).
 - Curves for 256bits, 128bits, 64bits, 30bits.

- Right graph: Precision vs. Recall.
 - Curves for 30-bit RBM, 64-bit RBM, 128-bit RBM, 256-bit RBM, Full gist.
Benefits of NN search in hamming space

1. **Efficient distance metric computation:**
 - Hamming distance: number of bits that differ between two b-bit codes

2. **Compact database representation:**
 - bn bits to store bitcodes for n images in database

3. **Potential for using binary code directly as hash table index for $O(1)$ search**
Simple problem formulation

- Find all images within hamming distance r from query
- Search process: (assume 2^b indices in hash table)

 Compute b-bit key for query

 For all indices within distance r from query:

 Add images in hashtable[index] to result set

- Simple example: $r=0$, just check one bucket
Problem

- Number of buckets to check increases rapidly with r
 - Volume of the “hamming ball” of radius r

- Number of candidate buckets:
 \[L(b, r) = \sum_{k=0}^{r} \binom{b}{k} \]

- Example: $b=64$, then about 1B buckets for $r=7$
 - If database is smaller than 1B elements, most of these indices will be empty
 - Consider database of millions of elements: faster to just run brute-force linear search through database!
Multi-index hashing to improve k-NN search in hamming space

- **Basic intuition:**
 - Divide query bit string into m disjoint b/m-bit substrings
 - Bit strings that are close in one of the substrings might be close overall

- **Key idea:**
 - If binary codes x and y differ by less than r bits, then in one of their m substrings they must differ by less than $\text{floor}(r/m)$ bits.
 - Proof by pigeon-hole principle (if they differed by more than r/m bits in each substring, then overall x and y must differ by more than r bits

[Norouzi et al. 2012]
Efficient k-NN using multi-index hashing

- For each set of length-m substrings, find substrings of within Hamming radius of $\text{floor}(r/m)$

- This is a much easier problem!
 - Previously: search needed to examine $L(b, r)$ hash buckets
 - Now need to examine only $L(b/m, \lfloor r/m \rfloor)$ buckets in m different hash tables
 - E.g., $r=7$, $m=4$, then only need to search with radius 1 in each of the substrings
Full algorithm

- Build m hashtables using the length b/m substrings of elements in the original database

- Given b-bit query:
 - For each of the m substrings of the query:
 - Find radius floor(r/m) neighbors and add them to candidate set (using hashtable corresponding to current substring)
 - The candidate set is a superset of the true set of elements within hamming distance r, so compute actual set by executing full Hamming distance computation for all elements in candidate set (brute force linear scan)

- Storage cost:
 - bn bits to represent all descriptors in hash table
 - m hash tables referring to these descriptors ($mnl\log_2n$)
 - In practice, optimal $m = b/\log_2n$ so overall storage cost near linear in n
How to choose m?

- Trade-off between having large substrings (and thus a tight candidate set, but many bucket lookups in substring searches) and having small substrings (cheap substring search but very loose candidate set)
 - Consider $m=b$, substrings are of length 1, but all neighbors in candidate set!

Figure at right:
- Database size: 1B descriptors
- 128-bit codes ($b=128$)
How to determine r from k?

- Algorithm finds all database elements within Hamming distance r, but we often want k nearest neighbors to a query (not all elements within a fixed distance)
- Problem: binary codes not uniformly distributed across Hamming space, so cannot just pick an r corresponding to k (r required to contain kNN depends on query)

- Solution: progressively increase r until k-NN are found.
Fast image retrieval using bitcodes

Query image ➔ Compute full descriptor
 SIFT
 SURF
 HOG
 etc.

 ➔ Compute b-bit binary descriptor (embedding in hamming space)
 Matrix-vector multiplication
 Neural network evaluation
 etc.

 ➔ search database of binary descriptors
 10’s of thousands of hamming distance computations

Compute intensive

memory intensive
Accelerating binary code generation

- Option 1: use faster-to-compute full descriptors: e.g., SURF
- Option 2: compute binary code directly from image (not via binarization of full descriptor)

Diagram:
- Query image
- Compute full descriptor
- Compute b-bit binary descriptor (embedding in hamming space)
- Search database of binary descriptors
BRIEF descriptor

- Idea: compute binary descriptor for image directly (rather than binarize a full descriptor)
- Want descriptor computation to be fast (avoiding cost of full descriptor computation is the motivation for direct computation)
- BRIEF is a patch-based descriptor:
 - For each S x S image patch \(p \), consider binary function \(f(p, x, y) \)
 - \(x \) and \(y \) are pixel coordinates in patch
 - \(f(p, x, y) = 1 \) if \(p(x) < p(y) \), 0 otherwise
 - Algorithm:
 - Step 1: smooth image patch using 9x9 pixel gaussian kernel
 - Step 2: to compute each bit \(b \), evaluate \(f(p, x_b, y_b) \)
 - \((x,y)_b\) point pairs chosen at random from gaussian distribution centered at patch center

[Calonder 2010]
BRIEF “performance”

- Experiment: find % of NN that match ground truth NN
- Note: BRIEF-64 is eight times more compact than full SURF descriptor (64 floats)
Fast image retrieval using bitcodes

- Example: Hamming distance for 64-bit code
 - 64 bit xor
 - 64-bit pop count (popcnt)
 - 16 bytes of input, 2 CPU instructions
- 4 cores at 3 GHz: 6B distance computations per second
 - 96 GB/sec of required bandwidth
Bandwidth cost of search

- Back-of-the-envelope calculation
 - 30 fps video, 1000 descriptors per frame
 - 64 bit descriptors (small)
 - 100M element database (800MB database)
 - 100,000 Hamming distances per frame (.1% of database touched per query)

- System must compute 3B hamming distances per second
 - 8 bytes per distance computation (assume query is cached)
 - 24 GB/sec of bandwidth
 - 150 pJ per byte (LPDDR memory)
 - \textbf{Approximately 3.84 watts just to read the data!} (not counting cost of Hamming distance math or math to compute the query bitcode)
 - Modern smartphone: 5.5 watt-hour battery
 - Typically budget for mobile GPU: \sim 1 watt
Optimizations

- Caching: Exploit locality of queries
 - Hopefully back-to-back access same hash buckets (cache benefit)

- Algorithmic: batch queries
 - Execute N queries at a time
 - Requires database reuse across queries (certainly true for brute-force search, less clear when hashing techniques uses -- see point 1 above)
 - Increases query latency, to gain higher overall throughput

- Improved machine organizations?
 - Move computation closer to memory
Increasing interest in avoiding transfer of all this data to CPU.
Example: hybrid memory cube

- Stacked layers of DRAM
 - Through-silicon vias (TSV) connect layers
- Bottom layer is logic layer
 - Currently handles logic for managing memory cube, serving memory requests
 - What if it had a Hamming distance engine on it?

Diagram:

- Processor Core
- Cache

Arrows:

(query bitcode, r)

(memory addresses of results)
Tutorial: DRAM operation (load one byte)

1. Activate row
2. Transfer row
3. Transfer byte onto bus
RowClone: in-DRAM operations

Idea: offload simple bandwidth-heavy operations (bulk data copy and bulk data initialize) from CPU to DRAM.

1. Activate row A
2. Transfer row
3. Activate row B
4. Transfer row

DRAM array

Row Buffer (4 Kbits)

Data pins (8 bits)

Memory Bus

[Seshadri et al 13]
RowClone: in-DRAM operations

Idea: offload simple bandwidth-heavy operations (bulk data copy and bulk data initialize) from CPU to DRAM. (The operations do not require computation.)

- Accelerates bulk copy by 11.5x
- Eliminates memory bus traffic: reduces energy cost by 1.5 to 74.4x

Next step: move from copy (no computation) to simple computations (e.g., bit-wise operations)
- XOR + count bits is a Hamming distance
- XOR seems possible, count bits much trickier
- Memory requests: load, store, bulk copy, bulk initialize, filter by predicate
Heterogeneous parallel architecture view

- CPU core
- CPU core
- CPU core
- CPU core
- mini-CPU core
- video core
- imaging core
- GPU (throughput) core
- GPU (throughput) core
- GPU (throughput) core
- GPU (throughput) core
- LLC
- Memory Controller
- Memory Bus
- Memory
- Specialized compute-capability in memory
Summary

- Image retrieval as a core building block of compelling visual computing applications
- We will need very efficient implementations to enable advanced new applications