
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 25:

Retrieval using binary codes

 CMU 15-869, Fall 2013

Bitcode representation of images *

Query
image

b-bit binary
descriptor

* Actually: images, image tiles, or keypoints, etc.

 CMU 15-869, Fall 2013

Simple example: Hamming embedding using
locality sensitive hashing
▪ Step 1: compute full descriptor

- Examples:
- BOW representation, HOG, SIFT, etc.
- Full-image descriptors: tiny images, GIST, etc.

▪ Step 2: embed descriptor in b-bit hamming space using b random projections
- For each input query, compute 1 bit per projection (e.g., side of hyper-plane)
- Query is now represented as a b-bit string

Note: a better way to determine a better set of hash functions than random projection
is to learn them from the database

 CMU 15-869, Fall 2013

Fast image retrieval using bitcodes

Query
image

Compute full
descriptor

Compute b-bit
binary descriptor

(embedding in
hamming space)

search database of
binary descriptors

 CMU 15-869, Fall 2013

Bene!ts of NN search in hamming space
1. Efficient distance computation:

- Hamming distance: number of bits that differ between
two b-bit codes

2. Compact database representation:
- bn bits to store bitcodes for n images in database
- Recall SIFT descriptor: 512 bits per keypoint, hundreds/

thousands of keypoints per image!

int	
 hamming_distance(bitstring	
 x,	
 bitstring	
 y)	
 {

	
 	
 	
 	
 return	
 count_bits(
 xor(x,	
 y)	
);

}

 CMU 15-869, Fall 2013

K-NN search (K=5) in hamming space:
▪ 12.9M elements in database

- Each element corresponds to full-image descriptor

▪ Quad-core CPU
▪ Brute-force search for top 5 nearest neighbors:

- 30-bit codes: 400 MB of memory, 74 ms
- 256-bit codes: 3.2 GB of memory, 0.23 sec

▪ Two orders of magnitude faster than brute force (and also K-
NN tree search) on database containing full-representation
GIST descriptors *

[Torralba et al. 2008]

* Unfair comparison: should have compared to approximate k-NN implementation
to be more fair since bitcode search results are not the same (see next slide)

 CMU 15-869, Fall 2013

Bitcode search “performance”

[Torralba et al. 2008]

▪ Baseline: GIST full image descriptor (384 "oats)

▪ Experiment (left): compute top 50 NN in GIST-space, then measure how many of
these NN appeared in the NN results in hamming space

▪ Experiment (right): object detection by transferring class label (person) from NN’s
to query image (does query picture contain a person?)

 CMU 15-869, Fall 2013

Bene!ts of NN search in hamming space
1. Efficient distance metric computation:

- Hamming distance: number of bits that differ between two b-bit codes

2. Compact database representation:
- bn bits to store bitcodes for n images in database

3. Potential for using binary code directly as hash table index
for O(1) search

 CMU 15-869, Fall 2013

Simple problem formulation
▪ Find all images within hamming distance r from query
▪ Search process: (assume 2b indices in hash table)

Compute	
 b-­‐bit	
 key	
 for	
 query
For	
 all	
 indices	
 within	
 distance	
 r	
 from	
 query:

	
 	
 	
 	
 Add	
 images	
 in	
 hashtable[index]	
 to	
 result	
 set

▪ Simple example: r=0, just check one bucket

 CMU 15-869, Fall 2013

Problem
▪ Number of buckets to check increases rapidly with r

- Volume of the “hamming ball” of radius r

▪ Number of candidate buckets:

[Norouzi et al. 2012]

▪ Example: b=64, then about 1B
buckets for r=7
- If database is smaller than 1B

elements, most of these indices will
be empty

- Consider database of millions of
elements: faster to just run brute-
force linear search through database!

 CMU 15-869, Fall 2013

Multi-index hashing to improve k-NN
search in hamming space
▪ Basic intuition:

- Divide query bit string into m disjoint b/m-bit substrings
- Bit strings that are close in one of the substrings might be close overall

▪ Key idea:
- If binary codes x and y differ by less than r bits, then in one of their m

substrings they must differ by less than "oor(r/m) bits.
- Proof by pigeon-hole principle (if they differed by more than r/m bits in each

substring, then overall x and y must differ by more than r bits

[Norouzi et al. 2012]

 CMU 15-869, Fall 2013

Efficient k-NN using multi-index hashing
▪ For each set of length-m substrings, !nd substrings of within

Hamming radius of "oor(r/m)

▪ This is a much easier problem!
- Previously: search needed to examine hash buckets
- Now need to examine only buckets in m different

hash tables
- E.g., r=7, m=4, then only need to search with radius 1 in each of the

substrings

 CMU 15-869, Fall 2013

Full algorithm
▪ Build m hashtables using the length b/m substrings of elements in the original

database

▪ Given b-bit query:
- For each of the m substrings of the query:

- Find radius "oor(r/m) neighbors and add them to candidate set (using
hashtable corresponding to current substring)

- The candidate set is a superset of the true set of elements within hamming
distance r, so compute actual set by executing full Hamming distance
computation for all elements in candidate set (brute force linear scan)

▪ Storage cost:
- bn bits to represent all descriptors in hash table
- m hash tables referring to these descriptors (mnlg2n)
- In practice, optimal m=b/lg2n so overall storage cost near linear in n

 CMU 15-869, Fall 2013

How to choose m?
▪ Trade-off between having large substrings (and thus a tight candidate set, but

many bucket lookups in substring searches) and having small substrings (cheap
substring search but very loose candidate set)
- Consider m=b, substrings are of length 1, but all neighbors in candidate set!

Figure at right:
- Database size: 1B descriptors
- 128-bit codes (b=128)

b/m

 CMU 15-869, Fall 2013

How to determine r from k?
▪ Algorithm !nds all database elements within Hamming distance r, but we often

want k nearest neighbors to a query (not all elements within a !xed distance)

▪ Problem: binary codes not uniformly distributed across Hamming space, so cannot
just pick an r corresponding to k (r required to contain knn depends on query)

▪ Solution: progressively increase r until k-NN are found.

 CMU 15-869, Fall 2013

10‘s of
thousands of

hamming
distance

computations

SIFT
SURF
HOG
etc.

Matrix-vector
multiplication

Neural network
evaluation

etc.

Fast image retrieval using bitcodes

Query
image

Compute full
descriptor

Compute b-bit
binary descriptor

(embedding in
hamming space)

search database of
binary descriptors

Compute intensive memory intensive

 CMU 15-869, Fall 2013

Accelerating binary code generation

Query
image

Compute full
descriptor

Compute b-bit
binary descriptor

(embedding in
hamming space)

search database of
binary descriptors

▪ Option 1: use faster-to-compute full descriptors: e.g., SURF
▪ Option 2: compute binary code directly from image (not via binarization

of full descriptor)

Direct computation of binary code

 CMU 15-869, Fall 2013

BRIEF descriptor
▪ Idea: compute binary descriptor for image directly

(rather than binarize a full descriptor)

▪ Want descriptor computation to be fast (avoiding cost of full descriptor
computation is the motivation for direct computation)

▪ BRIEF is a patch-based descriptor:
- For each S x S image patch p, consider binary function f(p, x, y)

- x and y are pixel coordinates in patch
- f(p, x, y) = 1 if p(x) < p(y), 0 otherwise

- Algorithm:
- Step 1: smooth image patch using 9x9 pixel gaussian kernel
- Step 2: to compute each bit b, evaluate f(p, xb, yb)

- (x,y)b point pairs chosen at random from gaussian
distribution centered at patch center

[Calonder 2010]

 CMU 15-869, Fall 2013

BRIEF “performance”
▪ Experiment: !nd % of NN that match ground truth NN
▪ Note: BRIEF-64 is eight times more compact than full SURF descriptor (64 "oats)

 CMU 15-869, Fall 2013

10‘s of
thousands of

hamming
distance

computations

Fast image retrieval using bitcodes

Query
image

Compute full
descriptor

Compute b-bit
binary descriptor

(embedding in
hamming space)

search database of
binary descriptors

memory intensive

▪ Example: Hamming distance for 64-bit code
- 64 bit xor
- 64-bit pop count (popcnt)
- 16 bytes of input, 2 CPU instructions

▪ 4 cores at 3 GHz: 6B distance computations per second
- 96 GB/sec of required bandwidth

 CMU 15-869, Fall 2013

Bandwidth cost of search
▪ Back-of-the-envelope calculation

- 30 fps video, 1000 descriptors per frame
- 64 bit descriptors (small)
- 100M element database (800MB database)
- 100,000 Hamming distances per frame (.1% of database touched per query)

▪ System must compute 3B hamming distances per second
- 8 bytes per distance computation (assume query is cached)
- 24 GB/sec of bandwidth
- 150 pJ per byte (LPDDR memory)
- Approximately 3.84 watts just to read the data! (not counting cost of Hamming

distance math or math to compute the query bitcode)
- Modern smartphone: 5.5 watt-hour battery
- Typically budget for mobile GPU: ~ 1 watt

 CMU 15-869, Fall 2013

Optimizations
▪ Caching: Exploit locality of queries

- Hopefully back-to-back access same hash buckets (cache bene!t)

▪ Algorithmic: batch queries
- Execute N queries at a time
- Requires database reuse across queries (certainly true for brute-force

search, less clear when hashing techniques uses -- see point 1 above)
- Increases query latency, to gain higher overall throughput

▪ Improved machine organizations?
- Move computation closer to memory

Basic machine organization

Cache

Processor
Core

Memory Bus

DRAM

Descriptor
databaseQuery

Increasing interest in avoiding transfer of all this data to CPU

Then repeat for next query. (transfer entire database to CPU)

Example: hybrid memory cube
▪ Stacked layers of DRAM

- Through-silicon vias (TSV) connect layers

▪ Bottom layer is logic layer
- Currently handles logic for managing memory cube,

serving memory requests
- What if it had a Hamming distance engine on it?

Cache

Processor
Core

(query bitcode, r)

(memory addresses of results)

Tutorial: DRAM operation (load one byte)

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

1. Activate row

2. Transfer
row

3. Transfer
byte onto bus

RowClone: in-DRAM operations

Row Buffer (4 Kbits)

Memory Bus

Data pins (8 bits)

DRAM array

4 Kbits

1. Activate row A

2. Transfer
row

3. Activate row B

4.
Transfer

row

[Seshadri et al 13]
Idea: offload simple bandwidth-heavy operations (bulk data copy and bulk data initialize)
from CPU to DRAM.

RowClone: in-DRAM operations [Seshadri 13]

Idea: offload simple bandwidth-heavy operations (bulk data copy and bulk data initialize) from
CPU to DRAM. (The operations do not require computation.)

▪ Accelerates bulk copy by 11.5x

▪ Eliminates memory bus traffic: reduces energy cost by 1.5 to 74.4x

▪ Next step: move from copy (no computation) to simple computations (e.g., bit-wise operations)
- XOR + count bits is a Hamming distance
- XOR seems possible, count bits much tricker
- Memory requests: load, store, bulk copy, bulk initialize, !lter by predicate

Cache

Processor
Core

Memory Bus

DRAM

Database of
images

(millions)

Query vector

Results

Heterogeneous parallel architecture view

CPU
core

CPU
core

CPU
core

CPU
core

mini-CPU
core

video
core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

GPU
(throughput)

core

LLC

Memory Controller
Specialized

compute-capability
in memory

Memoryimaging
core

Memory Bus

Summary
▪ Image retrieval as a core building block of compelling visual computing applications

▪ We will need very efficient implementations to enable advanced new applications

Movement prediction [Yuen 11]

Novelty Detection Image Matching [Shrivastava 11]

Object Detection
[Malisiewicz 11]

