
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 24:

Image Retrieval: Part II

 CMU 15-869, Fall 2013

Review: K-D tree
▪ Spatial partitioning hierarchy
▪ K = dimensionality of space (below: K = 2)

4 2

3 2 1 3 3

Counts of points in leaf nodes

 CMU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Query point

A

Closest so far: A (at distance d)

Step 1: traverse to leaf cell containing query: compute closest point in
this cell to the query.

Best so far: A (at distance d)

d

 CMU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Query point

A

Closest so far: B (at distance d’)

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Best so far: A (at distance d)

B

d

d’

 CMU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Query point

Nearest neighbor result: B (at distance d’)
(Visited nodes during query shown in pink)

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Best so far: A (at distance d)

Bd’

 CMU 15-869, Fall 2013

Approximate nearest neighbor (ANN) search

Query point

A

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)

One simple answer: just take closest point in leaf node containing query

Best so far: A (at distance d)

d

 CMU 15-869, Fall 2013

Approximate nearest neighbor search

Query point

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest N nodes to query

Best so far: A (at distance d)

d1

d2

d3

d4 d1

d2

d3

d4

 CMU 15-869, Fall 2013

Basic K-D tree build
▪ To !nd a partition for a node:

- Partition axis for which the variance of current data points is the highest
- Split at the median of the current data points

 CMU 15-869, Fall 2013

Randomized K-D tree
▪ To !nd a partition for a node:

- Randomly choose axis to partition
- Draw from distribution weighted proportionally with variance of current

data points is the highest
- Simple solution: pick partition axis by uniformly sampling from top N axes

with highest variance
- Randomly choose partition point

- Draw from distribution heavily weighted at the median of the current data
points (make it likely to split near the median of the data points)

 CMU 15-869, Fall 2013

ANN search using a forest of randomized K-D trees
▪ Construct a set (“forest”) of random K-D trees

▪ For each tree, !nd NN in leaf cell containing query
- Add all nodes (across all trees) traversed along the way to a priority queue (node

priority = distance from query to node)

▪ Take closest of all answers across all trees as an initial ANN

▪ For top D nodes in queue, resume
downward search from that node
(D = 5 in !gure [Muja et al. 2009])

▪ Solution for approximate k-NN as well

 CMU 15-869, Fall 2013

K-D search application: feature correspondence

▪ Example: SIFT descriptor, K=128
▪ For all descriptors in image 1, !nd nearest neighbor in image 2

1 2

 CMU 15-869, Fall 2013

Application: approximate K-means clustering *
▪ Assign N points to one of K clusters, subject to minimizing distance of points to

their cluster centers

▪ Basic algorithm: O(kN) per iteration

▪ Recall: clustering used to compute vocabulary for bag-of-words representation
(given all features in database, assign each feature to one of K-clusters)

randomly	
 initialize	
 cluster	
 means
while	
 (assignment	
 of	
 points	
 to	
 clusters	
 continues	
 to	
 change)
	
 	
 for	
 each	
 point	
 p:
	
 	
 	
 	
 	
 for	
 each	
 cluster	
 c:
	
 	
 	
 	
 	
 	
 	
 	
 compute	
 distance	
 between	
 p	
 and	
 mean(c)
	
 	
 	
 	
 	
 assign	
 P	
 to	
 closest	
 cluster
	
 	
 recompute	
 cluster	
 means

(for pj in set of points in cluster i (Si)
and cluster center positions μi)

* On this slide: K is the number of clusters,
not the dimensionality of the points!!!

 CMU 15-869, Fall 2013

Size matters: large vocabularies yield better
retrieval performance
▪ Consider bag of words implementation:

- K = 100,000 to 1,000,000 words
- N ~ 10’s of millions when generating datasets for large vocabularies

(train on sampling of descriptors from millions of images)

[Philbin et al. CVPR 2007]

Results from object retrieval task (N = 16.7M for 1M word vocabulary)
mAP = mean average precision (average precision is precision averaged over all recall values)

 CMU 15-869, Fall 2013

Basic K-means algorithm does not scale to large K
▪ Consider bag of words implementation:

- K = 100,000 to 1,000,000 words
- N ~ 1M (sampling of descriptors from millions of images)

▪ Approximate K-means:
- Replace inner loop on previous slide with ANN search using K-D tree

- Per-iteration run time: O(N lg k)
- Enables construction of much larger vocabularies (~1M)

randomly	
 initialize	
 cluster	
 means
while	
 (assignment	
 of	
 points	
 to	
 clusters	
 continues	
 to	
 change)
	
 	
 construct	
 K-­‐D	
 tree	
 from	
 cluster	
 means
	
 	
 for	
 each	
 point	
 p:
	
 	
 	
 	
 	
 use	
 approximate	
 NN	
 search	
 to	
 find	
 closest	
 cluster	
 center
	
 	
 	
 	
 	
 assign	
 P	
 to	
 closest	
 cluster
	
 	
 recompute	
 cluster	
 means

 CMU 15-869, Fall 2013

Approx. k-NN application to image retrieval
▪ Full representation of database

- Search based on actual descriptor values, not quantized values

▪ Database:
- K-D tree of features appearing in database images
- e.g., SIFT descriptor: K = 128

▪ Search procedure:
- Compute SIFT features for query image
- For each descriptor

- Find ANN descriptor in database (or k-NN)
- Add “vote” for image containing feature (e.g., vote weighted by distance)

- Rank database images by !nal score

 CMU 15-869, Fall 2013

Nearest neighbor image retrieval
▪ Good: no quantization of features like in bag of words

- Common problem: how many visual words to create?
- Active research area is design of good vocabulary

▪ Cost:
- Storage of K-D tree is much larger than inverted index

- Must store descriptor values, not just a weight (tf-idf) for each descriptor
- Also store tree structure itself, but this is much less (unless forest gets large)

- 1 million images, ~1,000 descriptors per image, 128 bytes = 128 bytes per
descriptor → 128 GB database!!!

 CMU 15-869, Fall 2013

Distributing a search tree
▪ Simple solution:

- Partition dataset into chunks of data points that !t in memory on a node
- Build K-D trees independently and in parallel on all nodes
- For each query:

- Broadcast query to all N nodes
- Run N independent k-NN searches in parallel
- Broadcast results to a master node
- Master sorts results to produce overall k-NN

Node 1 Node N...

▪ Problems:
- Lack of parallelism in the combine

results stage
- Less efficient structure
- N independent K-D tree lookups
- Search through single, large K-D

tree would visit fewer nodes

[Figure credit: Aly et al. VISAPP 2011]

 CMU 15-869, Fall 2013

Distributing a search tree
▪ Idea: Store top part of tree in master, bottom parts of tree are distributed across nodes
▪ Tree construction:

- Build top subtree using sampling of entire dataset that !ts in memory
- Top subtree height must be at least lg(N) (to generate N leaf trees for N machines)
- For each remaining datapoint:

- Use search to determine which subtree data belongs to
- Build leaf trees in parallel on respective nodes

Node 1 Node N...Node 2

[Figure credit: Aly et al. VISAPP 2011]

 CMU 15-869, Fall 2013

Distributing a search tree
▪ For each query:

- Compute features, for each feature:
- Search top of tree, !nd all leaf nodes within distance d to query
- Send query to these leaf nodes
- All leaf nodes carry out search in parallel

- Send k-NN results back to master for combination

Node 1 Node N...Node 2

▪ Good:
- Efficacy similar to single big tree (each

node contains an actual subtree, not a
random sampling of data points)

▪ Bad: serialization of work at root

▪ Optimizations:
- Replicate root tree to increase over

system throughput (but not individual
query latency)

 CMU 15-869, Fall 2013

Computational characteristics
▪ Inverted index

- Computation:
- K-d tree lookup to quantize features into words (tree holds cluster centers)
- Sparse dot products to compute image distances

- Storage:
- For each word, maintain list of documents and word TFIDF weight for word in

each document: 4 to 8 bytes per descriptor

▪ Full representation, approx k-NN search
- Computation:

- K-d tree lookup to !nd k-NN
- Dense dot products (e.g., 128-element vector) at the leaves

- Storage:
- Must store full descriptor representation (128 bytes for SIFT) for each occurrence
- Also store tree structure (increasingly signi!cant with a forest of trees)

 CMU 15-869, Fall 2013

Locality sensitive hashing
▪ Basic intuition:

- Hash points into buckets, such that points nearby in space are likely to fall into
the same (or nearby) buckets

▪ Given x1 and x2 and distance r
- If d(x1,x2) < r, then P(h(x1) = h(x2)) is high
- If d(x1,x2) > αr, then P(h(x1) = h(x2) is low

 CMU 15-869, Fall 2013

Locality sensitive hashing
▪ Example: pick m random projections

- For each input query, hash into m different hash keys (associated with m different
hash tables)

- Union of data points from matching bins is candidate nearest neighbor set
- Compute full distance function on these points

 CMU 15-869, Fall 2013

Locality sensitive hashing (as an embedding)
▪ Example: pick m random projections

- For each input query, compute 1 bit per projection
- Query now reduced to m-bit string
- 1 hash table containing (m-bit keys)
- Check all hash bins with hamming distance similar to query!

Note: much better ways to determine set of hash functions than random projections
(Learn them from the data)

 CMU 15-869, Fall 2013

Image retrieval summary
▪ Key issues at scale:

- Quality of results
- Speed of query
- Space footprint of index

Compute queries/keys
(SIFT, BOW, embedding,

hash functions)

Index lookup Filter

resultsimage

