Lecture 24:

Image Retrieval: Part |

Visual Computing Systems
CMU 15-869, Fall 2013

Review: K-D tree

m Spatial partitioning hierarchy
m K =dimensionality of space (below: K = 2)

e LI
~

Counts of points in leaf nodes

(MU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Step 1: traverse to leaf cell containing query: compute closest point in

this cell to the query.
Query point

R a8

Closest so far: A (at distance d)

CMU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
AN -
09 0 o \
Vo o L) L
® °
L) (L {

R .

Closest so far: B (at distance d’)

CMU 15-869, Fall 2013

Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to
closest point found so far, must check points in this cell

Query point
ARV -
09 O o
.)
® °
L) (0 L

R .

Nearest neighbor result: B (at distance d’)
(Visited nodes during query shown in pink)

CMU 15-869, Fall 2013

Approximate nearest neighbor (ANN) search

One simple answer: just take closest point in leaf node containing query

Query point
L -
° 09 O
e o) O
® °
) ()

R .

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)

CMU 15-869, Fall 2013

Approximate nearest neighbor search

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest N nodes to query

Query point
o -
ds \d7 ¢ ¢
¢ : P di
0 o O
ds ®
| .)

CMU 15-869, Fall 2013

Basic K-D tree bhuild

m To find a partition for a node:

- Partition axis for which the variance of current data points is the highest

- Split at the median of the current data points

CMU 15-869, Fall 2013

Randomized K-D tree

m To find a partition for a node:

- Randomly choose axis to partition

- Draw from distribution weighted proportionally with variance of current
data points is the highest

- Simple solution: pick partition axis by uniformly sampling from top N axes
with highest variance

- Randomly choose partition point

- Draw from distribution heavily weighted at the median of the current data
points (make it likely to split near the median of the data points)

CMU 15-869, Fall 2013

ANN search using a forest of randomized K-D trees

B (onstruct a set (“forest”) of random K-D trees
B For each tree, find NN in leaf cell containing query

- Add all nodes (across all trees) traversed along the way to a priority queue (node
priority = distance from query to node)

B Take closest of all answers across all trees as an initial ANN

B Fortop D nodes in queue, resume
downward search from that node

(D =5 in figure [Muja et al. 2009])

® Solution for approximate k-NN as well

R,

Speedup over linear search
—
o
\
|
|
\

70% precision
| = = —95% precision

10

10’ 10°
Number of trees

CMU 15-869, Fall 2013

K-D search application: feature correspondence

m Example: SIFT descriptor, K=128
m Forall descriptors in image 1, find nearest neighbor in image 2

a’ QJ

Or".)
P A ¥ a* O"."’_f W AN . ‘\.’ .‘.)‘

FEEEES A AR LR

f\ 3 o\v ‘® /2 0
.l.\’/ w&.m.nm .}:; ..0

- ‘A\-‘f‘” A2 e ‘.0.. =

- :-4 . T -4 ‘\ .
> -
o OB TN .’, 280G)
- - ATV) S~ AT S ST . o ‘ b
..o -

2 < i& x < \\?\r’.f
M&& ._’, :wm\\ 2w

‘o
} A—

CMU 15-869, Fall 2013

Application: approximate K-means clustering *

B Assign N points to one of K clusters, subject to minimizing distance of points to
their cluster centers k

afggninE E ;- n

i=1 jES,
® Basicalgorithm: O(kN) per iteration

randomly initialize cluster means
while (assignment of points to clusters continues to change)
for each point p:
for each cluster c:
compute distance between p and mean(c)
assign P to closest cluster
recompute cluster means

2 (for pjin set of points in cluster i (5;)

and cluster center positions y;)

B Recall: clustering used to compute vocabulary for bag-of-words representation
(given all features in database, assign each feature to one of K-clusters)

* On this slide: K is the number of cIusters,\“\»-. * e R
not the dimensionality of the points!!!

(MU 15-869, Fall 2013

Size matters: large vocabularies yield better

retrieval performance

m (Consider bag of words implementation:
- K=100,000 to 1,000,000 words

- N~ 10’ of millions when generating datasets for large vocabularies
(train on sampling of descriptors from millions of images)

Vocab | Bag of
Size words | Spatial
S0K 0.473 0.599
100K | 0.535 0.597
250K | 0.598 0.633
S00K | 0.606 0.642
750K | 0.609 0.630
1M 0.618 0.645
1.25M | 0.602 0.625

0.65

-+-Bag of words
- Spatial

2

4 6 8 10 12
Vocabulary Size x 10°

Results from object retrieval task (N = 16.7M for TM word vocabulary)
mAP = mean average precision (average precision is precision averaged over all recall values)

[Philbin et al. CVPR 2007]

CMU 15-869, Fall 2013

Basic K-means algorithm does not scale to large K

m (Consider bag of words implementation:
- K=100,000 to 1,000,000 words

= N~ 1M (sampling of descriptors from millions of images)

m Approximate K-means:

- Replace inner loop on previous slide with ANN search using K-D tree

randomly initialize cluster means
while (assignment of points to clusters continues to change)
construct K-D tree from cluster means
for each point p:
use approximate NN search to find closest cluster center
assign P to closest cluster
recompute cluster means

- Per-iteration run time: O(N lg k)

- Enables construction of much larger vocabularies (~1M)

CMU 15-869, Fall 2013

Approx. k-NN application to image retrieval

m Full representation of database
- Search based on actual descriptor values, not quantized values

m Database:

- K-D tree of features appearing in database images
- e.g., SIFT descriptor: K= 128

m Search procedure:

- Compute SIFT features for query image
- For each descriptor
- Find ANN descriptor in database (or k-NN)
- Add “vote” forimage containing feature (e.g., vote weighted by distance)

- Rank database images by final score

CMU 15-869, Fall 2013

Nearest neighbor image retrieval

m Good: no quantization of features like in bag of words

- Common problem: how many visual words to create?

- Active research area is design of good vocabulary

B (ost:

- Storage of K-D tree is much larger than inverted index
- Must store descriptor values, not just a weight (tf-idf) for each descriptor
- Also store tree structure itself, but this is much less (unless forest gets large)

- 1million images, ~1,000 descriptors per image, 128 bytes = 128 bytes per
descriptor — 128 GB database!!!

CMU 15-869, Fall 2013

Distributing a search tree

B Simple solution:

Partition dataset into chunks of data points that fit in memory on a node
Build K-D trees independently and in parallel on all nodes

For each query:
- Broadcast query to all N nodes

= Run N independent k-NN searches in parallel

- Broadcast results to a master node

- Master sorts results to produce overall k-NN

Problems:

Lack of parallelism in the combine
results stage

Less efficient structure
— Nindependent K-D tree lookups

— Search through single, large K-D
tree would visit fewer nodes

[Figure credit: Aly et al. VISAPP 2011]

—————————_

i
SN

CMU 15-869, Fall 2013

Distributing a search tree

B |dea: Store top part of tree in master, bottom parts of tree are distributed across nodes
B Tree construction:
- Build top subtree using sampling of entire dataset that fits in memory
- Top subtree height must be at least Ig(N) (to generate N leaf trees for N machines)
- For each remaining datapoint:
- Use search to determine which subtree data belongs to

- Build leaf trees in parallel on respective nodes s

(@/K)
AWa

<&ﬁfﬁﬁ$

ll l
Node 1 Node 2 Node N

[Figure credit: Aly et al. VISAPP 2011]
CMU 15-869, Fall 2013

Distributing a search tree

® Foreach query:
- Compute features, for each feature:
- Search top of tree, find all leaf nodes within distance d to query
- Send query to these leaf nodes
- All leaf nodes carry out search in parallel
- Send k-NN results back to master for combination

® Good:
Root Machine

- Efficacy similar to single big tree (each s N
node contains an actual subtree, not a Q/C\
random sampling of data points) {O

m Bad:serialization of work at root

TS f—%——v fg—g—\ ————— ,

m Optimizations: i % i
- Replicate root tree to increase over Il Q Qu :
system throughput (but not individual _]\70_&;—1— ‘—]'\‘,;;e—z—’ —— ‘;\70;6‘]—\,—

query latency)

CMU 15-869, Fall 2013

Computational characteristics

B [nverted index
- Computation:
- K-d tree lookup to quantize features into words (tree holds cluster centers)
- Sparse dot products to compute image distances

- Storage:

- For each word, maintain list of documents and word TFIDF weight for word in
each document: 4 to 8 bytes per descriptor

m Full representation, approx k-NN search

- Computation:

- K-d tree lookup to find k-NN
- Dense dot products (e.g., 128-element vector) at the leaves

- Storage:
- Must store full descriptor representation (128 bytes for SIFT) for each occurrence
= Also store tree structure (increasingly significant with a forest of trees)

CMU 15-869, Fall 2013

Locality sensitive hashing

m Basicintuition:

- Hash points into buckets, such that points nearby in space are likely to fall into
the same (or nearby) buckets

B Given x1and x2 and distance r
- Ifd(x1,x2) < r, then P(h(x1) = h(x2)) is high
- Ifd(x1,x2) > ar, then P(h(x1) = h(x2) is low

CMU 15-869, Fall 2013

Locality sensitive hashing

® Example: pick m random projections

- For each input query, hash into m different hash keys (associated with m different
hash tables)

= Union of data points from matching bins is candidate nearest neighbor set
- Compute full distance function on these points

\
¢ ® o
®
®
o
o
®
® o
®
®
® |

CMU 15-869, Fall 2013

Locality sensitive hashing (as an embedding)

® Example: pick m random projections
- For each input query, compute 1 bit per projection
- Query now reduced to m-bit string
- 1hash table containing (m-bit keys)

- Check all hash bins with hamming distance similar to query!

Note: much better ways to determine set of hash functions than random projections
(Learn them from the data)

CMU 15-869, Fall 2013

Image retrieval summary

m Keyissues at scale:
- Quality of results
- Speed of query
- Space footprint of index

image —» —_— —> — results

Compute queries/keys Index lookup Filter
(SIFT, BOW, embedding,
hash functions)

CMU 15-869, Fall 2013

