Review: K-D tree

- Spatial partitioning hierarchy
- \(K = \) dimensionality of space (below: \(K = 2 \))

Counts of points in leaf nodes
Nearest neighbor search with K-D tree

Step 1: traverse to leaf cell containing query: compute closest point in this cell to the query.

Query point

Closest so far: A (at distance d)
Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to closest point found so far, must check points in this cell

Query point

Closest so far: B (at distance d')
Nearest neighbor search with K-D tree

Step 2: backtrack: if distance to other cells is closer than distance to closest point found so far, must check points in this cell.

Nearest neighbor result: B (at distance d')
(Visited nodes during query shown in pink)
Approximate nearest neighbor (ANN) search

One simple answer: just take closest point in leaf node containing query

Approximate nearest neighbor: A (at distance d)
(nodes visited during query shown in pink)
Approximate nearest neighbor search

Improvement: place nodes in priority queue during downward traversal
Resume downward traversal from closest N nodes to query
Basic K-D tree build

- To find a partition for a node:
 - Partition axis for which the variance of current data points is the highest
 - Split at the median of the current data points
Randomized K-D tree

To find a partition for a node:

- Randomly choose axis to partition
 - Draw from distribution weighted proportionally with variance of current data points is the highest
 - Simple solution: pick partition axis by uniformly sampling from top N axes with highest variance

- Randomly choose partition point
 - Draw from distribution heavily weighted at the median of the current data points (make it likely to split near the median of the data points)
ANN search using a forest of randomized K-D trees

- Construct a set ("forest") of random K-D trees
- For each tree, find NN in leaf cell containing query
 - Add all nodes (across all trees) traversed along the way to a priority queue (node priority = distance from query to node)
- Take closest of all answers across all trees as an initial ANN
- For top D nodes in queue, resume downward search from that node (D = 5 in figure [Muja et al. 2009])
- Solution for approximate k-NN as well
K-D search application: feature correspondence

- Example: SIFT descriptor, $K=128$
- For all descriptors in image 1, find nearest neighbor in image 2
Application: approximate K-means clustering *

- Assign \(N \) points to one of \(K \) clusters, subject to minimizing distance of points to their cluster centers

\[
\text{argmin} \sum_{i=1}^{k} \sum_{j \in S_i} \| p_j - \mu_i \|^2
\]

(for \(p_j \) in set of points in cluster \(i \) \(S_i \) and cluster center positions \(\mu_i \))

- Basic algorithm: \(O(kN) \) per iteration

 randomly initialize cluster means
 while (assignment of points to clusters continues to change)
 for each point \(p \):
 for each cluster \(c \):
 compute distance between \(p \) and mean(\(c \))
 assign \(p \) to closest cluster
 recompute cluster means

- Recall: clustering used to compute vocabulary for bag-of-words representation
 (given all features in database, assign each feature to one of \(K \)-clusters)

* On this slide: \(K \) is the number of clusters, not the dimensionality of the points!!!
Size matters: large vocabularies yield better retrieval performance

Consider bag of words implementation:

- $K = 100,000$ to $1,000,000$ words
- $N \sim 10$'s of millions when generating datasets for large vocabularies (train on sampling of descriptors from millions of images)

<table>
<thead>
<tr>
<th>Vocab Size</th>
<th>Bag of words</th>
<th>Spatial</th>
</tr>
</thead>
<tbody>
<tr>
<td>50K</td>
<td>0.473</td>
<td>0.599</td>
</tr>
<tr>
<td>100K</td>
<td>0.535</td>
<td>0.597</td>
</tr>
<tr>
<td>250K</td>
<td>0.598</td>
<td>0.633</td>
</tr>
<tr>
<td>500K</td>
<td>0.606</td>
<td>0.642</td>
</tr>
<tr>
<td>750K</td>
<td>0.609</td>
<td>0.630</td>
</tr>
<tr>
<td>1M</td>
<td>0.618</td>
<td>0.645</td>
</tr>
<tr>
<td>1.25M</td>
<td>0.602</td>
<td>0.625</td>
</tr>
</tbody>
</table>

Results from object retrieval task ($N = 16.7M$ for 1M word vocabulary)
mAP = mean average precision (average precision is precision averaged over all recall values)

[Philbin et al. CVPR 2007]
Basic K-means algorithm does not scale to large K

- Consider bag of words implementation:
 - $K = 100,000$ to $1,000,000$ words
 - $N \sim 1M$ (sampling of descriptors from millions of images)

- Approximate K-means:
 - Replace inner loop on previous slide with ANN search using K-D tree
 - randomly initialize cluster means
 - while (assignment of points to clusters continues to change)
 - construct K-D tree from cluster means
 - for each point p:
 - use approximate NN search to find closest cluster center
 - assign P to closest cluster
 - recompute cluster means
 - Per-iteration run time: $O(N \lg k)$
 - Enables construction of much larger vocabularies ($\sim 1M$)
Approx. k-NN application to image retrieval

- Full representation of database
 - Search based on actual descriptor values, not quantized values

- Database:
 - K-D tree of features appearing in database images
 - e.g., SIFT descriptor: $K = 128$

- Search procedure:
 - Compute SIFT features for query image
 - For each descriptor
 - Find ANN descriptor in database (or k-NN)
 - Add “vote” for image containing feature (e.g., vote weighted by distance)
 - Rank database images by final score
Nearest neighbor image retrieval

- **Good:** no quantization of features like in bag of words
 - Common problem: how many visual words to create?
 - Active research area is design of good vocabulary

- **Cost:**
 - Storage of K-D tree is much larger than inverted index
 - Must store descriptor values, not just a weight (tf-idf) for each descriptor
 - Also store tree structure itself, but this is much less (unless forest gets large)
 - 1 million images, \(\sim 1,000 \) descriptors per image, 128 bytes = 128 bytes per descriptor → **128 GB database!!!**
Distributing a search tree

- Simple solution:
 - Partition dataset into chunks of data points that fit in memory on a node
 - Build K-D trees independently and in parallel on all nodes
 - For each query:
 - Broadcast query to all N nodes
 - Run N independent k-NN searches in parallel
 - Broadcast results to a master node
 - Master sorts results to produce overall k-NN

- Problems:
 - Lack of parallelism in the combine results stage
 - Less efficient structure
 - N independent K-D tree lookups
 - Search through single, large K-D tree would visit fewer nodes

[Figure credit: Aly et al. VISAPP 2011]
Distributing a search tree

- Idea: Store top part of tree in master, bottom parts of tree are distributed across nodes
- Tree construction:
 - Build top subtree using sampling of entire dataset that fits in memory
 - Top subtree height must be at least \(\lg(N) \) (to generate \(N \) leaf trees for \(N \) machines)
 - For each remaining datapoint:
 - Use search to determine which subtree data belongs to
 - Build leaf trees in parallel on respective nodes

[Figure credit: Aly et al. VISAPP 2011]
Distributing a search tree

- For each query:
 - Compute features, for each feature:
 - Search top of tree, find all leaf nodes within distance d to query
 - Send query to these leaf nodes
 - All leaf nodes carry out search in parallel
 - Send k-NN results back to master for combination

- Good:
 - Efficacy similar to single big tree (each node contains an actual subtree, not a random sampling of data points)

- Bad: serialization of work at root

- Optimizations:
 - Replicate root tree to increase overall system throughput (but not individual query latency)
Computational characteristics

- **Inverted index**
 - **Computation:**
 - K-d tree lookup to quantize features into words (tree holds cluster centers)
 - Sparse dot products to compute image distances
 - **Storage:**
 - For each word, maintain list of documents and word TFIDF weight for word in each document: 4 to 8 bytes per descriptor

- **Full representation, approx k-NN search**
 - **Computation:**
 - K-d tree lookup to find k-NN
 - Dense dot products (e.g., 128-element vector) at the leaves
 - **Storage:**
 - Must store full descriptor representation (128 bytes for SIFT) for each occurrence
 - Also store tree structure (increasingly significant with a forest of trees)
Locality sensitive hashing

- Basic intuition:
 - Hash points into buckets, such that points nearby in space are likely to fall into the same (or nearby) buckets

- Given x_1 and x_2 and distance r
 - If $d(x_1, x_2) < r$, then $P(h(x_1) = h(x_2))$ is high
 - If $d(x_1, x_2) > \alpha r$, then $P(h(x_1) = h(x_2))$ is low
Locality sensitive hashing

- Example: pick \(m \) random projections
 - For each input query, hash into \(m \) different hash keys (associated with \(m \) different hash tables)
 - Union of data points from matching bins is candidate nearest neighbor set
 - Compute full distance function on these points
Locality sensitive hashing (as an embedding)

- Example: pick m random projections
 - For each input query, compute 1 bit per projection
 - Query now reduced to m-bit string
 - 1 hash table containing (m-bit keys)
 - Check all hash bins with hamming distance similar to query!

Note: much better ways to determine set of hash functions than random projections (Learn them from the data)
Image retrieval summary

- Key issues at scale:
 - Quality of results
 - Speed of query
 - Space footprint of index

```
image → Compute queries/keys (SIFT, BOW, embedding, hash functions) → Index lookup → Filter → results
```