
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 23:

A Systems View of Large-
Scale 3D Reconstruction

 CMU 15-869, Fall 2013

Goals and motivation
▪ Construct a detailed 3D model of the world from

unstructured photographs (e.g., Flickr, Facebook)
- Organize the world’s photographs in 3D space

▪ Leverage the organization to perform tasks
- Allow navigation/browsing of 3D environments

(better maps, “virtual tourism”)
- Given a picture, where was it taken?
- Find canonical views of scenes
- Differentiate transient objects in scene from stationary ones
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009

 CMU 15-869, Fall 2013

Today
▪ A good example of large-scale systems problem

▪ Arriving at efficient solutions involved combination of
- Parallel execution
- Algorithmic innovation

▪ We will “black box” key computer vision techniques to focus on
overall algorithm design/systems issues
- e.g., F-matrix estimation, homography estimation, pose estimation

 CMU 15-869, Fall 2013

Reconstructing scenes
▪ Input:

- Unstructured collection of photos

▪ Output:
- Sparse 3D representation of scene (point cloud)
- Position of camera for each photo

 CMU 15-869, Fall 2013

▪ Goal: "nd pairs of images containing the same object

▪ Step 1: compute feature points for all images (SIFT keypoint descriptors)
- ~ thousands of keypoints per image

▪ Step 2: for each pair of images (I,J), determine if a match exists
- Find matching keypoints

- Verify matching keypoints: attempt to "nd geometric relationship between
the two viewpoints: estimate a fundamental matrix for the image pair
- RANSAC:

- Select 8 matching keypoints at random, estimate F-matrix
- If there are not at least 20 inlier keypoints, repeat

Step 1: "nd matching images

Compute	 K-‐D	 tree	 for	 all	 keypoints	 in	 J
for	 each	 keypoint	 i	 in	 I:
	 	 	 //	 d1,	 d2	 are	 distance	 to	 first	 and	 second	 nearest	 neighbor
	 	 	 (d1,	 d2)	 =	 perform	 approximate	 nearest	 neighbor	 (ANN)	 lookup	 for	 i
	 	 	 if	 (d1/d2	 <	 threshold)
	 	 	 	 	 	 closest	 NN	 is	 match	 for	 i	 	 	 	 	 	 	

 CMU 15-869, Fall 2013

Geometric veri"cation example (here: in 2D)

Image 1 Image 2

Outlier

 CMU 15-869, Fall 2013

Step 2: organize matches into tracks
▪ Track = connected set of matching keypoints

- Idea: a track corresponds to a single point in the scene
- Track must contain at least two keypoints

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image
(keypoints in track cannot correspond to same scene point)

 CMU 15-869, Fall 2013

Image connectivity graph
▪ Nodes = images

▪ Edges = images that contain matching keypoints

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007

 CMU 15-869, Fall 2013

Step 3: structure from motion (SfM)
▪ Given image match graph and a set of tracks, estimate:

- Camera parameters for each image
- Position, orientation, focal length

- 3D scene position of each track

▪ Goal: minimize track reprojection error:
- Error = SSDs between projection of each track and the

corresponding feature in the image.

- Non-linear problem: solved via bundle adjustment

Where:

is the projection matrix into the i’th image (depends on camera pos, orientation, f-length)

is the 3D scene position of track j

is the 2D keypoint location of track j in image i

is a binary indicator: designating whether a keypoint for track j exists in image i

 CMU 15-869, Fall 2013

Incremental SfM approach
▪ Incrementally solve for camera positions, one camera at a time:

- Begin with data that we are most con"dent in (avoid local minima)
▪ Initialization:

- Pick a pair of images with large number of feature matches and also wide baseline,
estimate camera pose from these matches *

- Triangulate shared tracks to estimate 3D position
- Run two-frame bundle adjustment to re"ne camera poses and track position

▪ Add next camera:
- Choose camera that observes most tracks with known positions
- Estimate camera pose from track matches using DLT/RANSAC
- Run bundle adjustment to re"ne only new camera and positions of tracks it observes
- Add new tracks to scene (observed by new camera but not yet in scene)

- Triangulate positions of new tracks using two cameras with maximum angle of
separation

- Run bundle adjustment to globally re"ne all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 matches, and for which the
smallest percentage of matches are inliers to an estimated homography relating the two images

 CMU 15-869, Fall 2013

Algorithm summary
▪ For each image, compute matching images
▪ Organize matching keypoints intro tracks
▪ While no new cameras can be estimated

- Pick next camera to estimate
- Re"ne estimate globally using bundle adjustment

 CMU 15-869, Fall 2013

Accelerating match "nding
▪ A naive formulation of match "nding is O(N2)

- Recall, we care about large values of N
- Match process itself is expensive ("nding a geometric "t for keypoint matches

via homography or fundamental matrix): ~ a few matches per core per second
- N=1,000,000, 10 matches per second per core = 3100 CPU years

▪ Must avoid performing expensive check on all possible matches!

▪ This is a retrieval problem!

 CMU 15-869, Fall 2013

Accelerating match "nding
▪ Step 1: use fast retrieval techniques to "nd candidate matching images

- e.g., use inverted index with TF-IDF weighting as discussed in last class
- Result: obtain k-NN for query image

▪ For each of the k candidates, perform expensive geometric veri"cation step
- Reduce complexity of expensive operations to O(kN), where k << N

Visual words

Im
ag

es TFIDF weights

Node 0

Node 1

Node 2

. . .

Parallelization on a distributed system:

1. Partition images across nodes, compute features/BOW + term-
frequencies for all images
- SIFT features for 1M images: ~ 1-2 TB
- BOW representation for 1M images: ~ 13 GB

2. Global reduction to compute IDF for each visual word
3. Broadcast IDF information to all nodes
4. Broadcast TFIDF table to all nodes (13 GB)
5. Each node computes kNN for the images it owns.

 CMU 15-869, Fall 2013

Improving match "nding for 3D scene reconstruction
▪ Assume primary goal is to produce a high-quality 3D scene reconstruction (not to

compute position of camera for every image in the database)

▪ Want a match graph that is sufficiently dense to enable 3D reconstruction:
- Want as few connected components in match graph as possible (each

connected component will be it’s own 3D scene after reconstruction)
- Prefer a single, large scene reconstruction, not many “pieces” of scene

- Want multiple views of the same track (several images containing the same
features to aid robustness of reconstruction)

 CMU 15-869, Fall 2013

Building a match graph
▪ Step 1: Compute k nearest neighbors using acceleration structure, k = k1 + k2
▪ Step 2: Perform geometric veri"cation of top k1 matches, add graph edge is

veri"cation succeeds
▪ Step 3: Verify next k2 matches, but only verify pair (I,J) if image I and image J

are in different components of the graph
▪ Step 4: Densify the graph using several rounds of “query expansion”

For	 each	 image	 I
	 	 For	 each	 neighbor	 J	 of	 I	 in	 graph
	 	 	 	 For	 each	 neighbor	 K	 of	 J	 in	 graph
	 	 	 	 	 	 	 Verify	 (I,	 K)

[Agarwal 2009]

 CMU 15-869, Fall 2013

Putting it all together (distributed implementation)
▪ In parallel across all nodes, compute features

▪ Compute IDF weights via reduction, broadcast to all nodes

▪ Broadcast TFIDF information (weight table) to all nodes

▪ Independently compute K=k1+k2 NN on all nodes

▪ For each image i, verify top k1 candidates (parallelized dynamically via shared work queue
across nodes)

▪ Compute match graph connected components (sequentially on one node is easiest)

▪ For each image i, verify next k2 candidates if pair is not in same graph connected component
(dynamic parallelization)

▪ For each image i, verify further matches based on candidates returned from query expansion
- Repeat for N rounds, or until convergence

▪ Generate tracks:
- Each node generates tracks for the images it owns (in parallel across nodes)
- Then merge tracks across nodes (parallel reduction, or sequentially on home node)

▪ Compute graph skeletal set

 CMU 15-869, Fall 2013

Match graph sparsi"cation
▪ All images do not contribute accurately to coverage/accuracy of 3D reconstruction

▪ For efficiency, we’d like to compute SfM using a minimal set of images (the
“skeletal set”) that yields similar reconstruction quality as the full match graph

Image credit: Snavely et al. 2008

[Snavely 2008]

Match graph Skeletal set
(black nodes are skeletal set

images, gray nodes are
remaining images)

Reconstruction
from skeletal set

Adding addition
images with pose

estimation

"nal result post
bundle

adjustment

Result: 2 to 50x improvement in reconstruction performance

 CMU 15-869, Fall 2013

Systems problems, algorithmic solutions
▪ Desire to work at scale triggered innovation in algorithms

- Scale imposes new constraints

▪ Iterative approach to SfM (to avoid local minimal)

▪ New algorithm for removing redundant images from match graph
- Redundant = doesn’t improve reconstruction quality

▪ Improved algorithm for bundle adjustment at scale
- Not discussed today
- See “Bundle Adjustment in the Large”, Agarwal et al. ECCV 2010

 CMU 15-869, Fall 2013

Results
“Building Rome in a Day” Agarwal et al. 2009

 CMU 15-869, Fall 2013

Building Rome on a Cloudless Day

Key ideas:
- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor)
- Cluster binary codes by Hamming distance
- Verify clusters by "nding N images near center that can be geometrically veri"ed using SIFT keypoints (reject

clusters than cannot be veri"ed)
- Compute “iconic” image for each cluster (image with most inliers)
- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by

image geotags)
- Use high-performance plane-sweep 3D reconstruction
- Use a single PC with four GPUs

2.8M images on a single PC in one day (Frahm et al. ECCV 2010)

 CMU 15-869, Fall 2013

Application: location recognition
▪ Given a new image, how can we leverage an existing 3D

reconstruction to accelerate location recognition?

▪ First-thought solution: "nd matches for query image:
- For each SIFT feature in query image, "nding matching tracks in scene

database (recall: tracks = scene features)
- Then attempt pose estimation from matches

 CMU 15-869, Fall 2013

Observation
▪ Not all scene features are equally useful in matching images
▪ Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database

▪ Idea: compute scene point set that is a K-cover of all images in DB

- K-cover: set of points such that at least K points are present in each image

▪ Simply greedy algorithm: select point P that covers largest number of not-yet-full
covered images

 CMU 15-869, Fall 2013

K-coverings of scene images
▪ Compute two K-coverings

- Ps: 5-covering, capped at 2000 points
- Pc: 100-covering

 CMU 15-869, Fall 2013

Localization
▪ Scene point-to-feature matching: rather than match query image to DB, match

database to feature points in the query image
- Idea: we know a lot about scene points, we know very little about the query

image

▪ Simple: algorithm:
- Test scene points again query image in priority order
- Initialization:

- Highest priority: Ps
- Next highest priority: Pc
- All other points: priority = number of images they are visible in

- If match is found, for all images containing point:
- Increase priority of all scene points in these images

 CMU 15-869, Fall 2013

How it works
▪ Test the most likely to match images in the database "rst

- Only need a few matches to localize
▪ Once a match is found, leverage co-orrurence of points to

predict new matching points
▪ Intuitive:

- Common images get found very quickly
- Uncommon images take longer to localize
- Optimize for the common case!

