
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 23:

A Systems View of Large-
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Goals and motivation
▪ Construct a detailed 3D model of the world from 

unstructured photographs (e.g., Flickr, Facebook)
- Organize the world’s photographs in 3D space

▪ Leverage the organization to perform tasks
- Allow navigation/browsing of 3D environments

(better maps, “virtual tourism”)
- Given a picture, where was it taken?
- Find canonical views of scenes
- Differentiate transient objects in scene from stationary ones 
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009 
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Today
▪ A good example of large-scale systems problem

▪ Arriving at efficient solutions involved combination of
- Parallel execution
- Algorithmic innovation

▪ We will “black box” key computer vision techniques to focus on 
overall algorithm design/systems issues
- e.g., F-matrix estimation, homography estimation, pose estimation
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Reconstructing scenes
▪ Input:

- Unstructured collection of photos

▪ Output: 
- Sparse 3D representation of scene (point cloud)
- Position of camera for each photo
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▪ Goal: "nd pairs of images containing the same object

▪ Step 1: compute feature points for all images (SIFT keypoint descriptors)
- ~ thousands of keypoints per image

▪ Step 2: for each pair of images (I,J), determine if a match exists
- Find matching keypoints

- Verify matching keypoints: attempt to "nd geometric relationship between 
the two viewpoints: estimate a fundamental matrix for the image pair
- RANSAC:

- Select 8 matching keypoints at random, estimate F-matrix
- If there are not at least 20 inlier keypoints, repeat  

Step 1: "nd matching images

Compute	  K-‐D	  tree	  for	  all	  keypoints	  in	  J
for	  each	  keypoint	  i	  in	  I:
	  	  	  //	  d1,	  d2	  are	  distance	  to	  first	  and	  second	  nearest	  neighbor
	  	  	  (d1,	  d2)	  =	  perform	  approximate	  nearest	  neighbor	  (ANN)	  lookup	  for	  i
	  	  	  if	  (d1/d2	  <	  threshold)
	  	  	  	  	  	  closest	  NN	  is	  match	  for	  i	  	  	  	  	  	  	  
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Geometric veri"cation example (here: in 2D)

Image 1 Image 2

Outlier
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Step 2: organize matches into tracks
▪ Track = connected set of matching keypoints

- Idea: a track corresponds to a single point in the scene
- Track must contain at least two keypoints 

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image
(keypoints in track cannot correspond to same scene point)
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Image connectivity graph
▪ Nodes = images

▪ Edges = images that contain matching keypoints

In this example, the two densely connected regions correspond to daytime and nighttime photos

Image credit: Snavely et al. 2007
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Step 3: structure from motion (SfM)
▪ Given image match graph and a set of tracks, estimate:

- Camera parameters for each image
- Position, orientation, focal length 

- 3D scene position of each track

▪ Goal: minimize track reprojection error:
- Error = SSDs between projection of each track and the 

corresponding feature in the image.

- Non-linear problem: solved via bundle adjustment

Where:

is the projection matrix into the i’th image (depends on camera pos, orientation, f-length)

is the 3D scene position of track j

is the 2D keypoint location of track j in image i

is a binary indicator: designating whether a keypoint for track j exists in image i 
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Incremental SfM approach
▪ Incrementally solve for camera positions, one camera at a time:

- Begin with data that we are most con"dent in (avoid local minima)
▪ Initialization:

- Pick a pair of images with large number of feature matches and also wide baseline, 
estimate camera pose from these matches *

- Triangulate shared tracks to estimate 3D position
- Run two-frame bundle adjustment to re"ne camera poses and track position

▪ Add next camera:
- Choose camera that observes most tracks with known positions
- Estimate camera pose from track matches using DLT/RANSAC
- Run bundle adjustment to re"ne only new camera and positions of tracks it observes
- Add new tracks to scene (observed by new camera but not yet in scene)

- Triangulate positions of new tracks using two cameras with maximum angle of 
separation

- Run bundle adjustment to globally re"ne all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 matches, and for which the 
smallest percentage of matches are inliers to an estimated homography relating the two images
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Algorithm summary
▪ For each image, compute matching images
▪ Organize matching keypoints intro tracks
▪ While no new cameras can be estimated

- Pick next camera to estimate
- Re"ne estimate globally using bundle adjustment
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Accelerating match "nding
▪ A naive formulation of match "nding is O(N2)

- Recall, we care about large values of N
- Match process itself is expensive ("nding a geometric "t for keypoint matches 

via homography or fundamental matrix): ~ a few matches per core per second
- N=1,000,000, 10 matches per second per core =  3100 CPU years

▪ Must avoid performing expensive check on all possible matches!

▪ This is a retrieval problem!
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Accelerating match "nding
▪ Step 1: use fast retrieval techniques to "nd candidate matching images

- e.g., use inverted index with TF-IDF weighting as discussed in last class
- Result: obtain k-NN for query image

▪ For each of the k candidates, perform expensive geometric veri"cation step
- Reduce complexity of expensive operations to O(kN), where k << N

Visual words

Im
ag

es TFIDF weights

Node 0

Node 1

Node 2

. . .

Parallelization on a distributed system:

1. Partition images across nodes, compute features/BOW + term-
frequencies for all images
- SIFT features for 1M images: ~ 1-2 TB
- BOW representation for 1M images: ~ 13 GB 

2. Global reduction to compute IDF for each visual word
3. Broadcast IDF information to all nodes  
4. Broadcast TFIDF table to all nodes (13 GB)
5. Each node computes kNN for the images it owns.
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Improving match "nding for 3D scene reconstruction
▪ Assume primary goal is to produce a high-quality 3D scene reconstruction (not to 

compute position of camera for every image in the database)

▪ Want a match graph that is sufficiently dense to enable 3D reconstruction:
- Want as few connected components in match graph as possible (each 

connected component will be it’s own 3D scene after reconstruction)
- Prefer a single, large scene reconstruction, not many “pieces” of scene

- Want multiple views of the same track (several images containing the same 
features to aid robustness of reconstruction)
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Building a match graph
▪ Step 1: Compute k nearest neighbors using acceleration structure, k = k1 + k2
▪ Step 2: Perform geometric veri"cation of top k1 matches, add graph edge is 

veri"cation succeeds
▪ Step 3: Verify next k2 matches, but only verify pair (I,J) if image I and image J 

are in different components of the graph
▪ Step 4: Densify the graph using several rounds of “query expansion”

For	  each	  image	  I
	  	  For	  each	  neighbor	  J	  of	  I	  in	  graph
	  	  	  	  For	  each	  neighbor	  K	  of	  J	  in	  graph
	  	  	  	  	  	  	  Verify	  (I,	  K)

[Agarwal 2009]
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Putting it all together (distributed implementation)
▪ In parallel across all nodes, compute features

▪ Compute IDF weights via reduction, broadcast to all nodes

▪ Broadcast TFIDF information (weight table) to all nodes

▪ Independently compute K=k1+k2 NN on all nodes

▪ For each image i, verify top k1 candidates (parallelized dynamically via shared work queue 
across nodes)

▪ Compute match graph connected components (sequentially on one node is easiest)

▪ For each image i, verify next k2 candidates if pair is not in same graph connected component 
(dynamic parallelization)

▪ For each image i, verify further matches based on candidates returned from query expansion
- Repeat for N rounds, or until convergence

▪ Generate tracks:
- Each node generates tracks for the images it owns (in parallel across nodes)
- Then merge tracks across nodes (parallel reduction, or sequentially on home node)

▪ Compute graph skeletal set
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Match graph sparsi"cation
▪ All images do not contribute accurately to coverage/accuracy of 3D reconstruction

▪ For efficiency, we’d like to compute SfM using a minimal set of images (the 
“skeletal set”) that yields similar reconstruction quality as the full match graph

Image credit: Snavely et al. 2008

[Snavely 2008]

Match graph Skeletal set
(black nodes are skeletal set 

images, gray nodes are 
remaining images)

Reconstruction 
from skeletal set

Adding addition 
images with pose 

estimation

"nal result post 
bundle 

adjustment

Result: 2 to 50x improvement in reconstruction performance
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Systems problems, algorithmic solutions
▪ Desire to work at scale triggered innovation in algorithms

- Scale imposes new constraints

▪ Iterative approach to SfM (to avoid local minimal)

▪ New algorithm for removing redundant images from match graph
- Redundant = doesn’t improve reconstruction quality

▪ Improved algorithm for bundle adjustment at scale
- Not discussed today
- See “Bundle Adjustment in the Large”, Agarwal et al. ECCV 2010
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Results
“Building Rome in a Day” Agarwal et al. 2009
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Building Rome on a Cloudless Day

Key ideas:
- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor)
- Cluster binary codes by Hamming distance
- Verify clusters by "nding N images near center that can be geometrically veri"ed using SIFT keypoints (reject 

clusters than cannot be veri"ed)
- Compute “iconic” image for each cluster (image with most inliers)
- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by 

image geotags)
- Use high-performance plane-sweep 3D reconstruction
- Use a single PC with four GPUs

2.8M images on a single PC in one day (Frahm et al. ECCV 2010)
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Application: location recognition
▪ Given a new image, how can we leverage an existing 3D 

reconstruction to accelerate location recognition?

▪ First-thought solution: "nd matches for query image:
- For each SIFT feature in query image, "nding matching tracks in scene 

database (recall: tracks = scene features)
- Then attempt pose estimation from matches
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Observation
▪ Not all scene features are equally useful in matching images
▪ Many scene features appear in many images

- Example below: clock face on tower is most frequently observed point in database

▪ Idea: compute scene point set that is a K-cover of all images in DB

- K-cover: set of points such that at least K points are present in each image

▪ Simply greedy algorithm: select point P that covers largest number of not-yet-full 
covered images
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K-coverings of scene images
▪ Compute two K-coverings

- Ps: 5-covering, capped at 2000 points
- Pc:  100-covering
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Localization
▪ Scene point-to-feature matching: rather than match query image to DB, match 

database to feature points in the query image
- Idea: we know a lot about scene points, we know very little about the query 

image

▪ Simple: algorithm:
- Test scene points again query image in priority order
- Initialization:

- Highest priority: Ps
- Next highest priority: Pc
- All other points: priority = number of images they are visible in

- If match is found, for all images containing point:
- Increase priority of all scene points in these images 
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How it works
▪ Test the most likely to match images in the database "rst

- Only need a few matches to localize
▪ Once a match is found, leverage co-orrurence of points to 

predict new matching points
▪ Intuitive:

- Common images get found very quickly
- Uncommon images take longer to localize
- Optimize for the common case!


