Lecture 23:
A Systems View of Large-Scale 3D Reconstruction

Visual Computing Systems
CMU 15-869, Fall 2013
Goals and motivation

Construct a detailed 3D model of the world from unstructured photographs (e.g., Flickr, Facebook)
- Organize the world’s photographs in 3D space

Leverage the organization to perform tasks
- Allow navigation/browsing of 3D environments (better maps, “virtual tourism”)
- Given a picture, where was it taken?
- Find canonical views of scenes
- Differentiate transient objects in scene from stationary ones
- Many more uses...

Image credits: Snavely et al. CVPR 2008, Agarwal et al. ICCV 2009
Today

- A good example of large-scale systems problem

- Arriving at efficient solutions involved combination of
 - Parallel execution
 - Algorithmic innovation

- We will “black box” key computer vision techniques to focus on overall algorithm design/systems issues
 - e.g., F-matrix estimation, homography estimation, pose estimation
Reconstructing scenes

- **Input:**
 - Unstructured collection of photos

- **Output:**
 - Sparse 3D representation of scene (point cloud)
 - Position of camera for each photo
Step 1: find matching images

- Goal: find pairs of images containing the same object
- Step 1: compute feature points for all images (SIFT keypoint descriptors)
 - ~ thousands of keypoints per image
- Step 2: for each pair of images (I,J), determine if a match exists
 - Find matching keypoints

 Compute K-D tree for all keypoints in J
 for each keypoint i in I:

    ```
    // d1, d2 are distance to first and second nearest neighbor
    (d1, d2) = perform approximate nearest neighbor (ANN) lookup for $i$
    if (d1/d2 < threshold)
      closest NN is match for $i$
    ```

 - Verify matching keypoints: attempt to find geometric relationship between the two viewpoints: estimate a fundamental matrix for the image pair
 - RANSAC:

 - Select 8 matching keypoints at random, estimate F-matrix
 - If there are not at least 20 inlier keypoints, repeat
Geometric verification example (here: in 2D)
Step 2: organize matches into tracks

- Track = connected set of matching keypoints
 - Idea: a track corresponds to a single point in the scene
 - Track must contain at least two keypoints

Consistent track: black arrows indicate matching keypoints in difference images

Inconsistent track: contains two keypoints in one image
(keypoints in track cannot correspond to same scene point)
Image connectivity graph

- **Nodes = images**
- **Edges = images that contain matching keypoints**

In this example, the two densely connected regions correspond to daytime and nighttime photos.

Image credit: Snavely et al. 2007
Step 3: structure from motion (SfM)

- Given image match graph and a set of tracks, estimate:
 - Camera parameters for each image
 - Position, orientation, focal length
 - 3D scene position of each track

- Goal: minimize track reprojection error:
 - Error = SSDs between projection of each track and the corresponding feature in the image.

\[
\arg\min_{\theta, X} \sum w_{ij} \| P_{\theta_i} X_j - f_{ij} \|
\]

- Non-linear problem: solved via bundle adjustment

Where:

- \(P_{\theta_i} \) is the projection matrix into the \(i \)’th image (depends on camera pos, orientation, f-length)
- \(X_j \) is the 3D scene position of track \(j \)
- \(f_{ij} \) is the 2D keypoint location of track \(j \) in image \(i \)
- \(w_{ij} \) is a binary indicator: designating whether a keypoint for track \(j \) exists in image \(i \)
Incremental SfM approach

- Incrementally solve for camera positions, one camera at a time:
 - Begin with data that we are most confident in (avoid local minima)

- Initialization:
 - Pick a pair of images with large number of feature matches and also wide baseline, estimate camera pose from these matches *
 - Triangulate shared tracks to estimate 3D position
 - Run two-frame bundle adjustment to refine camera poses and track position

- Add next camera:
 - Choose camera that observes most tracks with known positions
 - Estimate camera pose from track matches using DLT/RANSAC
 - Run bundle adjustment to refine only new camera and positions of tracks it observes
 - Add new tracks to scene (observed by new camera but not yet in scene)
 - Triangulate positions of new tracks using two cameras with maximum angle of separation
 - Run bundle adjustment to globally refine all camera and track position estimates

* Snavely et al. initialize with image pair that has at least 100 matches, and for which the smallest percentage of matches are inliers to an estimated homography relating the two images
Algorithm summary

- For each image, compute matching images
- Organize matching keypoints into tracks
- While no new cameras can be estimated
 - Pick next camera to estimate
 - Refine estimate globally using bundle adjustment
Accelerating match finding

- A naive formulation of match finding is $O(N^2)$
 - Recall, we care about large values of N
 - Match process itself is expensive (finding a geometric fit for keypoint matches via homography or fundamental matrix): ~ a few matches per core per second
 - $N=1,000,000$, 10 matches per second per core $= 3100$ CPU years

- Must avoid performing expensive check on all possible matches!

- This is a retrieval problem!
Accelerating match finding

- **Step 1:** use fast retrieval techniques to find candidate matching images
 - e.g., use inverted index with TF-IDF weighting as discussed in last class
 - Result: obtain k-NN for query image
- **For each of the** k candidates, perform expensive geometric verification step
 - Reduce complexity of expensive operations to $O(kN)$, where $k << N$

Parallelization on a distributed system:

1. Partition images across nodes, compute features/BOW + term-frequencies for all images
 - SIFT features for 1M images: ~ 1-2 TB
 - BOW representation for 1M images: ~ 13 GB
2. Global reduction to compute IDF for each visual word
3. Broadcast IDF information to all nodes
4. Broadcast TFIDF table to all nodes (13 GB)
5. Each node computes kNN for the images it owns.
Improving match finding for 3D scene reconstruction

- Assume primary goal is to produce a high-quality 3D scene reconstruction (not to compute position of camera for every image in the database)
- Want a match graph that is sufficiently dense to enable 3D reconstruction:
 - Want as few connected components in match graph as possible (each connected component will be its own 3D scene after reconstruction)
 - Prefer a single, large scene reconstruction, not many “pieces” of scene
 - Want multiple views of the same track (several images containing the same features to aid robustness of reconstruction)
Building a match graph

- Step 1: Compute k nearest neighbors using acceleration structure, $k = k_1 + k_2$
- Step 2: Perform geometric verification of top k_1 matches, add graph edge if verification succeeds
- Step 3: Verify next k_2 matches, but only verify pair (I,J) if image I and image J are in different components of the graph
- Step 4: Densify the graph using several rounds of “query expansion”

For each image I
 - For each neighbor J of I in graph
 - For each neighbor K of J in graph
 - Verify (I, K)

Initial Matches CC Merge Query Expansion 1 Query Expansion 4

[Agarwal 2009]
Putting it all together (distributed implementation)

- In parallel across all nodes, compute features
- Compute IDF weights via reduction, broadcast to all nodes
- Broadcast TFIDF information (weight table) to all nodes
- Independently compute $K = k_1 + k_2$ NN on all nodes
- For each image i, verify top k_1 candidates (parallelized dynamically via shared work queue across nodes)
- Compute match graph connected components (sequentially on one node is easiest)
- For each image i, verify next k_2 candidates if pair is not in same graph connected component (dynamic parallelization)
- For each image i, verify further matches based on candidates returned from query expansion
 - Repeat for N rounds, or until convergence
- Generate tracks:
 - Each node generates tracks for the images it owns (in parallel across nodes)
 - Then merge tracks across nodes (parallel reduction, or sequentially on home node)
- Compute graph skeletal set
Match graph sparsification

- All images do not contribute accurately to coverage/accuracy of 3D reconstruction
- For efficiency, we'd like to compute SfM using a minimal set of images (the “skeletal set”) that yields similar reconstruction quality as the full match graph

Result: 2 to 50x improvement in reconstruction performance

Image credit: Snavely et al. 2008
Systems problems, algorithmic solutions

- Desire to work at scale triggered innovation in algorithms
 - Scale imposes new constraints

- Iterative approach to SfM (to avoid local minimal)

- New algorithm for removing redundant images from match graph
 - Redundant = doesn’t improve reconstruction quality

- Improved algorithm for bundle adjustment at scale
 - Not discussed today
 - See “Bundle Adjustment in the Large”, Agarwal et al. ECCV 2010
Results

“Building Rome in a Day” Agarwal et al. 2009

<table>
<thead>
<tr>
<th>Data set</th>
<th>Images</th>
<th>Cores</th>
<th>Registered</th>
<th>Pairs verified</th>
<th>Pairs found</th>
<th>Matching</th>
<th>Skeletal sets</th>
<th>Reconstruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dubrovnik</td>
<td>57,845</td>
<td>352</td>
<td>11,868</td>
<td>2,658,264</td>
<td>498,982</td>
<td>5</td>
<td>1</td>
<td>16.5</td>
</tr>
<tr>
<td>Rome</td>
<td>150,000</td>
<td>496</td>
<td>36,658</td>
<td>8,825,256</td>
<td>2,712,301</td>
<td>13</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>Venice</td>
<td>250,000</td>
<td>496</td>
<td>47,925</td>
<td>35,465,029</td>
<td>6,119,207</td>
<td>27</td>
<td>21.5</td>
<td>16.5</td>
</tr>
</tbody>
</table>
Key ideas:
- Represent images using 512-bit binary codes (using locality-sensitive hash of GIST+4x4 RGB image descriptor)
- Cluster binary codes by Hamming distance
- Verify clusters by finding N images near center that can be geometrically verified using SIFT keypoints (reject clusters than cannot be verified)
- Compute “iconic” image for each cluster (image with most inliers)
- Compute matches between iconics, limiting matches to images within 150 meters of each other (as given by image geotags)
- Use high-performance plane-sweep 3D reconstruction
- Use a single PC with four GPUs
Application: location recognition

- Given a new image, how can we leverage an existing 3D reconstruction to accelerate location recognition?

- First-thought solution: find matches for query image:
 - For each SIFT feature in query image, finding matching tracks in scene database (recall: tracks = scene features)
 - Then attempt pose estimation from matches
Observation

- Not all scene features are equally useful in matching images
- Many scene features appear in many images
 - Example below: clock face on tower is most frequently observed point in database

- Idea: compute scene point set that is a K-cover of all images in DB
 - K-cover: set of points such that at least K points are present in each image
- Simply greedy algorithm: select point P that covers largest number of not-yet-full covered images
K-coverings of scene images

- Compute two K-coverings
 - P^s: 5-covering, capped at 2000 points
 - P^c: 100-covering
Localization

- Scene point-to-feature matching: rather than match query image to DB, match database to feature points in the query image
 - Idea: we know a lot about scene points, we know very little about the query image

- Simple: algorithm:
 - Test scene points against query image in priority order
 - Initialization:
 - Highest priority: Ps
 - Next highest priority: Pc
 - All other points: priority = number of images they are visible in
 - If match is found, for all images containing point:
 - Increase priority of all scene points in these images
How it works

- Test the most likely to match images in the database first
 - Only need a few matches to localize
- Once a match is found, leverage co-occurrence of points to predict new matching points
- Intuitive:
 - Common images get found very quickly
 - Uncommon images take longer to localize
 - Optimize for the common case!