Lecture 22:

Introduction to Image Search

Visual Computing Systems
CMU 15-869, Fall 2013

Are these images similar?

(MU 15-869, Fall 2013

Pixel differences

CMU 15-869, Fall 2013

Pixel differences

(MU 15-869, Fall 2013

Pixel differences

CMU 15-869, Fall 2013

Are these two web pages similar?

Visual Computing Systems
CMU 15-869 | Fall 2013

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important
responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These
workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and
challenges associated with the design of parallel systems for visual computing applications. This course is
intended for graduate-level students interested in architecting efficient future graphics and image processing
platforms and for students seeking to develop scalable algorithms for these platforms.

Course Description, Logistics, and Detalls
When We Meet

Mon/Wed 12:00 - 1:20pm (GHC 4303)
Instructor: Kayvon Fatahalian

Schedule

Part I: Implementing and Scheduling the Real-Time Graphics Pipeline

Sep 9

Sep 11

Sep 13

Sept 16

Sep 18

Sep 23

Course Introduction + The Real-Time Graphics Pipeline
(real-time rendering from a systems perspective)

Graphics Pipeline Parallelization and Scheduling
(characteristics of the pipeline workload, Molnar's scheduling taxonomy, trade-offs between parallelism,
communication, and locality)

Geometry Processing and Scheduling Under Data Amplification
(clipping, tessellation, parallel scheduling challenges of tessellation)

Visibility: Rasterization and Occlusion
(algorithms and their fixed-function implementation, occlusion culling, anti-aliasing, frame-buffer
compression)

Texturing
(anti-aliasing using the mip-map, hardware texture unit implementation, prefetching and caching policies)

Texturing Part Il: Texture Compression
(hardware-friendly texture compression techniques)

Parallel Computer Architecture

and Programming

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, parallel
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as
to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel
programs requires an understanding of key machine performance characteristics, this course will cover both parallel

hardware and software design.

[Our Self-Made Online Reference]

[Policies, Logistics, and Details]

When We Meet

Tues/Thurs 9:00 - 10:20am
Baker Hall A51 (Giant Eagle Auditorium)
nstructor: Kayvon Fatahalian

Spring 2013 Schedule
Jan15 Why Parallelism?
Jan17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
Assignment 1 out
Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations
Jan 24 Parallel Programming Basics (the parallelization thought process)
Assignment 1 due
Jan 29 GPU Architecture and CUDA Programming
Assignment 2 out
Jan 31 Performance Optimization I: Work Distribution
Feb 5 Performance Optimization II: Locality, Communication, and Contention
Feb 7 Parallel Application Case Studies
Feb 12 Workload-Driven Performance Evaluation

Assignment 2 due
Assignment 3 out

Another example: which web page is most similar to the search query...

(MU 15-869, Fall 2013

Are these two web pages similar?

Visual Computing Systems
CMU 15-869 | Fall 2013

Visual computing tasks such as 2D/3D graphics, image processing, and image understanding are important
responsibilities of modern computer systems ranging from sensor-rich smart phones to large datacenters. These
workloads demand exceptional system efficiency and this course examines the key ideas, techniques, and
challenges associated with the design of parallel systems for visual computing applications. This course is
intended for graduate-level students interested in architecting efficient future graphics and image processing
platforms and for students seeking to develop scalable algorithms for these platforms.

Course Description, Logistics, and Details
When We Meet

Mon/Wed 12:00 - 1:20pm (GHC 4303)
Instructor: Kayvon Fatahalian

Schedule

Part I: Implementing and Scheduling the Real-Time Graphics Pipeline

Sep9 Course Introduction + The Real-Time Graphics Pipeline
(real-time rendering from a systems perspective)

Sep 11 Graphics Pipeline Parallelization and Scheduling
(characteristics of the pipeline workload, Molnar's scheduling taxonomy, trade-offs between parallelism,
communication, and locality)

Sep 13 Geometry Processing and Scheduling Under Data Amplification
(clipping, tessellation, parallel scheduling challenges of tessellation)

Sept 16 Visibility: Rasterization and Occlusion
(algorithms and their fixed-function implementation, occlusion culling, anti-aliasing, frame-buffer
compression)

Sep 18 Texturing
(anti-aliasing using the mip-map, hardware texture unit implementation, prefetching and caching policies)

Sep 23 Texturing Part II: Texture Compression
(hardware-friendly texture compression techniques)

Parallel Computer Architecture
and Programming

From smart phones, to multi-core CPUs and GPUs, to the world's largest supercomputers and web sites, paralle
processing is ubiquitous in modern computing. The goal of this course is to provide a deep understanding of the
fundamental principles and engineering trade-offs involved in designing modern parallel computing systems as well as
to teach parallel programming techniques necessary to effectively utilize these machines. Because writing good parallel
programs requires an understanding of key machine performance characteristics, this course will cover both parallel
hardware and software design.

[Our Self-Made Online Reference]
[Policies, Logistics, and Details]

When We Meet

Tues/Thurs 9:00 - 10:20am
Baker Hall AS1 (Giant Eagle Auditorium)
nstructor: Kayvon Fatahalian

Spring 2013 Schedule

Jan 15 Why Parallelism?

Jan17 A Modern Multi-Core Processor: Forms of Parallelism + Understanding Latency and BW
Assignment 1 out

Jan 22 Parallel Programming Models and Their Corresponding HW/SW Implementations

Jan 24 Parallel Programming Basics (the parallelization thought process)
Assignment 1 due

Jan 29 GPU Architecture and CUDA Programming
Assignment 2 out

Jan 31 Performance Optimization I: Work Distribution
Feb 5 Performance Optimization II: Locality, Communication, and Contention
Feb 7 Parallel Application Case Studies

Feb 12 Workload-Driven Performance Evaluation
Assig; due

nment 2

gnment 3 out

Another example: which web page
is most similar to the search query...

Google

Google

cmu visual computing systems fall 2013

cmu visual computing systems fall 2013

Web Images Maps Shopping More ~ Search tools

Kayvon Fatahalian - School of Computer Science - Carnegie Mellon ...
www.cs.cmu.edu/~kayvonf/ ~

| am teaching 15-869: VISUAL COMPUTING SYSTEMS in the Fall 2013 semester . 15-
418/15-618: Parallel Computer Architecture and Programming (Spring ...

You've visited this page many times. Last visit: 11/7/13

(PoF] Visual Computing Systems CMU 15-868, Fall 2013 Lecture 1:
graphics.cs.cmu.edu/courses/.../fall2013content/.../gfxpipeline_slides.pdf ~

CMU 15-869, Fall 2013. Many applications driving the need for high efficiency
computing involve visualcomputing tasks.

Visual Computing Systems : 15-869 Fall 2013 - Carnegie Mellon ...
Kip.graphics.cs.cmu.edu/ ~

Visual computing tasks such as 2D/3D graphics, image processing, and image
understanding are important responsibilities of modern computer systems ...

(MU 15-869, Fall 2013

Naive solution

Given query words: w1 and w2
for all documents d in database:

score(d, w1, w2) = number of occurrences of wl andw2ind
Return top 20 results in sorted order based on score

m [mproving search:

— Improve score function (return better results *)

— Improve query execution time: above solution is O(N)

* In retrieval community: the quality of the returned results is referred to as the “performance” of the algorithm. “An
algorithm performs better if it returns better results”. Clearly, using the term “performance” in this way going to cause
problems in this class.

CMU 15-869, Fall 2013

Index

To simplify, let:
score(d,wl,w2) = 1 if d contains wl and w2, 0 otherwise

Document ©0: Kayvon 1is teaching 15-869 today. Yay 15-869!
Document 1: 15-869 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index: Query: kayvon awesome
- Kayvon: 0, 1, 2
- is: 0, 1, 2 Partial result set:
- teaching: © kayvon: {0, 1,,2}
- 15-869: 0, 1 awesome: {1, 2}
- yay: ©
- thinks: 1 Result:
- today: © {0,1,2} n {1, 2} = {1,2}

- awesome: 1, 2
- occasionally: 2

CMU 15-869, Fall 2013

Full inverted index

Inverted index contains one entry per word occurrence:

score(d,wl,w2) =
number of occurrences of wl or w2, if d contains wl and w2
© otherwise

Document ©: Kayvon is teaching 15-869 today. Yay 15-869!
Document 1: 15-869 is awesome, Kayvon claims.
Document 2: Kayvon is occasionally awesome.

Index: Query: kayvon 15-869
- Kayvon: (0,0), (1,3) (2,0)
- 1s: (9,1), (1:1): (2:1) Partial result set:
- teaching: (0, 2) kayvon: {(0,0), (1,3), (2,0)}
- 15-869: (90,3), (0,6), (1, 0) 15-869: {(0,3), (0,6), (1,0)}
- yay: (0, 5)
- claims: (1,4) Result:
- today: (@, 4) {0,1,2} n {6, 1} = {0,1}

- awesome: (1,2), (2,3)
- occasionally: (2,2)

Ranking:

0, 1
(MU 15-869, Fall 2013

TF-IDF weighting

® TF: term frequency, the number of occurrences of a a word in a document
- Measure of how relevant a document is for a given query word
B [DF:inverse document frequency
- Measure of how discriminative a word is.
- Depends on entire document collection
- Idea: words that appear in most documents should influence score less

m thdf score(w,d, D) = tf(w,d) * idf(w, D)
- tf(w,d) = number of occurrences of word win document d
D|

"Where Dis the set of all documents
|{d EDweEd }|

- idf(w, D)= log

® Many variants on how to compute tf(w,d)
- Binary: is word in document
- Normalized frequency: number of occurrences normalized by document size (or
most frequently occurring word)

CMU 15-869, Fall 2013

Searching for images

GO 8[6 crazy professors O] “

Web Images Maps Shopping More ~ Search tools

(MU 15-869, Fall 2013

Content-based image retrieval

B Take a photo, want to find webpages containing similar photos
® Take a photo, want to find information about its contents

B Take a photo, want to know what subject is

(MU 15-869, Fall 2013

Text document retrieval

B Keyidea is the breakdown into words

- Documents that have the same words are likely to be similar

- Words are a semantically meaningful granularity of text to latch on to

CMU 15-869, Fall 2013

Content based image retrieval

m |f we wanted to follow the text analogy, what are the words?
- Pixels?
- Blocks of pixels?

- Descriptors/features computed from images?

CMU 15-869, Fall 2013

Correspondence

m Similarity is a problem of finding correspondences

- Pictures with the same/similar objects

= Pictures at the same place

m Wantimage “descriptors” such that are numerically similar
descriptors correspond to meaningful similarities

- e.g., invariant to noise, lighting, affine object transformation (rotation,
translation, scale)

- Distinctive... doesn’t appear in every image

CMU 15-869, Fall 2013

Histogram of oriented gradients (HOG) ..o

m [dea: local object appearance/shape is well characterized by distribution of local
intensity gradients

Gradient orientation is less sensitive to illumination change than gradient magnitude

X -

For each pixel p in block:

;,¥&%§gg

 %@§¢*@A; ,5

Compute gradient

bk ___i BRIV S anrdy ' Add vote to histogram cell based on
ot s A 4 K%\%x *ww~w¢**%¢¢¢

AR ¥ i R PO SRR SAPIT — A = gradient orientation
awﬁmf\X\%qbﬁﬂWW% i) r

gt mermsin YW X ~&@v~%&r¢4¥~ﬁmv%@ﬁ* : o o .

Wbk AR § X (vote is weighted based on gradient

magnitude and distance between p
and block center)

_"/////##

e = \\\~~wmxkum*mm&¢ :
f.*N\\\\\ #ﬁk St S
2 S '#t\\\\\r#* A e 4
#%t**¢_+&%§§x*%;
j'%%ww'www § o e
o B e B x%w%\toxﬁix%\x
oo w R e R S S
| oo <N iﬁ:&%ﬁf&mu~%&\&%-u\\\
f*w#r%%\ §&% e 'pﬂg; *%%MNWRWNMH%%N\\
B s i SN NE NN S = "”“’.
oA Ao NN~ »*@%n#t%
ff*#*%f*?*\\\\\\\w Tf 3 3 oy o f r*?g_
v & Ilquf{“\\\\\\M% "o K #%%X#MN%***~ /I‘*\l
¥ ¥ ¥ Aok f\%\\«w—g"#aﬁ}-&* ' ¥ i T T g
i X ~*w%~ xxx*w#ffpg. A A A NI rREL L
S5 : ol e fi&\k h © ICNCRENE \VEFLY
. e
. %N&%mm-+#§*rt W ow \N%%ﬂﬂf*ﬁ

‘1
%
%
ﬁ

[Image credit: Vondrick et al. ICCV 13] (MU 15-869, Fall 2013

HOG visualization close up

D

Visualizing magnitude of each histogram cell as a line

(Direction of line is at a right angle to the corresponding gradient orientation)

(MU 15-869, Fall 2013

SIFT

Interest-point-based, orientation of gradients descriptor
B Find interest points (location in image, scale, and orientation)
Compute 128-element descriptor for interest points

- -

.- ; . ' .o: - .17-". . . -
p— ‘;Cﬁ_‘.ooi #. L - sl o] ®
-""L'l."°»-'-l.'-"' o N p

.':"o ’ : el - .Ol:’ » o: o;: * # T v
F:";T‘.“. ¢ . . » ;%’fo . A
.;.T.T. - : » —'.Y - .
b:r';’iﬂ:.o ‘!l\ M .I].?2:1

Fiflal al 2Ry . YR AN 1 F q 1
1o Iz : T 1y '
3000 RN SENE OBRE K 4

SIS A Ll ’ . 0[. . p

OT.;TLO 3 T2 B .%' Lo ?‘ I'.H: j ’, ’

BAANTI ST A ol . —‘ T T
. -&—1_-- R o B e T PSS p

YIR IR AR el i3 3 ot
PT' - A L ‘:’o Low 0!0! B
1 | PSAs1v1e] :j_—;" e
Image gradients Keypoint descriptor

Pool gradient samples from 4x4 window into 8-bin histogram
Stack 4x4 grid of histograms to get full descriptor

Figure credits:
R. Bandara, Codeproject

Chen, Kong, Oh, Sanan, Wohlberk 09 (MU 15-869, Fall 2013

http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O
http://www.codeproject.com/Articles/619039/Bag-of-Features-Descriptor-on-SIFT-Features-with-O

Aside: feature extraction workload

m Discussion: series of local image processing operations

- Multi-scale: local convolution to create gaussian/laplacian pyramid (mip-map)

- Keypoint identification: e.g.. corner detector: strong gradients in two
directions

- Gradient computation: local differences

CMU 15-869, Fall 2013

Visual words

B Text documentis made up of words (discrete values)
B Features are points in continuous high-dimensional space

B (Construct visual words from features
I S

s‘\
~

(A) Featuresinimages

(B) Compute vocabulary from all features
by clustering: represent each cluster
by mean (or median) feature

(C) Bin (discretize) image features by
assignment to closest cluster.

w, ’
O 7
\ i 8 ,/,
(D) Image is now represented as a S & S
histogram of visual words! " o Sk
—————————— \ \\
éws \\ R

(MU 15-869, Fall 2013

Bag of words

B Bag of words (BOW) descriptor:
- Image descriptor is a histogram of word occurrences

- Very sparse vector
o|o|o|1|e|1|0|4|0|0|0|0|0|8|9|3|0|0]o0

B Given query image descriptor g, compute score for database image d:

- Example: dot product of normalized query descriptor and DB image descriptor:

q-d
4llld|

- Better: weight descriptor elements by visual word IDF values
- Many alternatives:
- e.g., histogram intersection: min(g;, di) rather than product

score(q,d) =

CMU 15-869, Fall 2013

Summary

B |mage search using bag of words descriptors and an inverted index
acceleration structure:

1. Compute features for image collection
2. Build vocabulary (visual words) via clustering features in collection
3. Compute inverted index:

- For each visual word, index stores list of images with word, plus the tf-idf weight for that
word in thatimage: tfidf score(w, d, D) = tf(w,d) * idf(w, D)

4. For each query image:
- Compute BOW descriptor

- Useinverted index to find candidate set of similarimages
- Compute score between query and candidate images (e.g., dot product of descriptors)

- Rankresults by score

CMU 15-869, Fall 2013

Why image retrieval is important

Retrieval as building block for class of vision applications

Category-SVM

Object Detection [Malisiewicz 11]

Meta-data

g 3 e
l',‘ { [N [l
'
5 .
> * 1
C .
=0 K
£
= ‘e h
| < .
g N
. ”’
L3R
" -
.) A<
1 N ’
. '
: b
‘ g
Lo | -
ol

~

p EBTRE RN R
11] | Image Matching [Shrivastava 11]

(MU 15-869, Fall 2013

—n

Novelty Detection [Aghazade

