
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 21:

PatchMatch +
Course-so-far Review

(in-class review, no slides)



 CMU 15-869, Fall 2013

Today’s theme
▪ Image manipulation by example



 CMU 15-869, Fall 2013

Data-driven texture synthesis
▪ Input: low resolution texture image
▪ Want: high resolution texture that appears “like” the input

Source texture
(low resolution) High resolution texture generated by tiling



 CMU 15-869, Fall 2013

Non-parametric texture synthesis

Increasing neighborhood search window

So
ur

ce
 te

xt
ur

es

Synthesized Textures

[Efros and Leung 99]

5x5 11x11 15x15 23x23



 CMU 15-869, Fall 2013

Algorithm: non-parametric texture synthesis
Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability 
distribution function for value of p, given w(p).  

For	  each	  pixel	  p	  to	  synthesize:
1. Find	  other	  patches	  in	  the	  image	  that	  are	  similar	  to	  the	  

NxN	  neighborhood	  around	  p	  (use	  gaussian	  weighted	  SSD	  as	  
the	  patch	  distance	  function)

2. Center	  pixel	  of	  patches	  are	  candidates	  for	  p

3. Randomly	  sample	  from	  candidates	  weighted	  by	  distance	  d	  

P

[Efros and Leung 99]



 CMU 15-869, Fall 2013

More texture synthesis examples
Synthesized TexturesSource textures

Naive tiling solution

[Efros and Leung 99]



 CMU 15-869, Fall 2013

Image completion example

Original Image

Masked Region

Completion Result

Image credit: [Barnes et al. 2009]



 CMU 15-869, Fall 2013

Problem: low performance
▪ Large patch windows + full image search = slow

- Large windows: preserve structure
- Full-image search: highly relevant examples are rare

▪ Must repeat search process for all pixels to complete

▪ Possible accelerations
- Limit search window
- Use acceleration structure for search (e.g., k-d tree)
- Dimensionality reduction of patches + approximate nearest neighbor search (ANN)
- Exploit image coherence



 CMU 15-869, Fall 2013

PatchMatch
▪ A randomized algorithm for rapidly !nding correspondences 

between image patches

▪ Problem de!nition:
- Given images A and B, for each overlapping patch in image A, compute the 

offset to the nearest neighbor patch in image B
- Overlapping patches: each patch de!ned by its center pixel (ignoring boundary 

conditions, each MxN image consists of MxN patches)
- PatchMatch computes nearest neighbor !eld (NNF)

- NNF is function f: A ➝ ℝ2  (maps patches in A to patches in B)
- Example: if patch b in B is NN of patch a in A, then f(a) = b 

[Barnes et al. 2009]



 CMU 15-869, Fall 2013

Patch match: key idea one
▪ Law of large numbers: a non-trivial fraction of a large !eld of random 

offset assignments are likely to be good guesses
▪ Initialize f with random values

Visualization of f:

Saturation = magnitude of match offset
(gray is matching patch in B is at same 
pixel location as match patch in A)

Hue = direction of offset
offset X = red-cyan axis
offset Y = blue-yellow axis

Image credit: [Barnes et al. 2009]



 CMU 15-869, Fall 2013

PatchMatch key idea two: spatial coherence
▪ High coherence of nearest neighbors in natural images

▪ Nearest neighbor of patch at (x,y) should be a strong hint for where to !nd nearest 
neighbor of patch at (x+1,y)

0 5 10 15 20 25 30 35 40

14M

12M

10M

8M

6M

4M

2M

0

Offset Distance

Nu
m

be
r o

f n
ei

gh
bo

rin
g p

ai
rs

How this graph was made:
1. Compute NNF for collection of images
2. For select pixels (x,y), compare NN offset to NN offsets 

of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1) 

Image credit: [Barnes et al. 2009]



 CMU 15-869, Fall 2013

Propagation: improving the NNF estimate 
▪ The NNF estimate provides a “best-so-far” NN for each patch in A

- NN patch: f(a)
- NN distance = d(a,b)     (where b=f(a))

▪ Try to improve NNF estimate by exploiting spatial coherence with left and 
top neighbor:
- Let a=(x,y), then candidate matches for a are:

- f(x-1, y) + (1,0)
- f(x, y-1) + (0,1)

- If candidate patch is better match than f(a), then replace f(a) with 
candidate
- Replace f(a) with candidate patch if d(a, f(x,y-1)+(0,1)) < d(a, f(a))

▪ Next iteration, use bottom and right neighbors as candidates



 CMU 15-869, Fall 2013

PatchMatch iterative improvement

Image A

Image B
(source of 
patches)

Experiment:
Reconstruct A using 
patches from B

Random init: 1/4 through iter 1

End of iter 1 Iter 2 Iter 5 Image credit: [Barnes et al. 2009]



 CMU 15-869, Fall 2013

Random search: avoiding local minima
▪ Propagation can cause PatchMatch to get stuck in  local minima

▪ Sample random sequence of candidates from exponential distribution
- Let a=(x,y), then candidate matches for a are: (x,y) + wαiRi  
- Ri is uniform random offset in [-1,1]x[-1,1]
- w is maximum search radius (e.g., width of entire image)
- α is typically 1/2 
- Check all candidates where wαi ≥ 1 



 CMU 15-869, Fall 2013

Optimization: enrichment
▪ Propagation step propagates good matches across spatial 

dimensions of image
▪ Can also propagate good matches across space of matches itself
▪ Idea: if f(a) = b, and f(b) = c, then c is a good candidate match for a

- If you think of the NNF as a graph, then enrichment looks for nodes reachable 
in two steps

- Note: assumes we’re searching for matches in the same image as the image 
we are trying to complete



 CMU 15-869, Fall 2013

Example applications
Photoshop’s Content Aware Fill

Image retargeting (changing aspect ratio)

Original image
(with user-provided search 

constraints)

Retargeted
(without constraints)

Retargeted
(with constraints)

Image credits: [Barnes et al. 2009]

Object Manipulation

Building scaled up,
preserving texture

Building segment 
marked by user



 CMU 15-869, Fall 2013

PatchMatch summary
▪ Randomized algorithm

- Converges rapidly in practice 

▪ Main idea: coherence (largely spatial) of nearest neighbors

▪ Propagation step is inherently serial, but good parallel approximations exist
- PatchMatch has been implemented efficiently on GPUs  

▪ Data access caches well, but is unpredictable
- Different from many other image processing algorithms we have 

discussed  


