# Lecture 21: PatchMatch + Course-so-far Review (in-class review, no slides)

Visual Computing Systems CMU 15-869, Fall 2013

## Today's theme

### Image manipulation by example

## Data-driven texture synthesis

- Input: low resolution texture image
- Want: high resolution texture that appears "like" the input

Source texture (low resolution)



High resolution texture generated by tiling





## Non-parametric texture synthesis

### **Synthesized Textures**



Increasing neighborhood search window

[Efros and Leung 99]

## **Algorithm: non-parametric texture synthesis**

Main idea: given NxN neighborhood w(p) around unknown pixel p, want probability distribution function for value of p, given w(p).

For each pixel p to synthesize:

- 1. Find other patches in the image that are similar to the NxN neighborhood around p (use gaussian weighted SSD as the patch distance function)
- 2. Center pixel of patches are candidates for p
- 3. Randomly sample from candidates weighted by distance d



### More texture synthesis examples

### **Source textures**



ut it becomes harder to lau sound itself, at "this daily i ving rooms," as House Der escribed it last fall. He fail ut he left a ringing question ore years of Monica Lewir inda Tripp?" That now seer Political comedian Al Fran ext phase of the story will

### **Synthesized Textures**



the following for all cooling reservances of the market of the particular cooling reservance of the particular cooling res it ndateears coune Tring rooms," as Heft he fast nd it l ars dat noears oortseas ribed it last nt hest bedian Al. H econicalHornd it h Al. Heft ars of as da Lewindailf I lian Al Ths," as Lewing questies last aticarstical1. He is dian Al last fal counda Lew, at "this dailyears d ily edianicall. Hoorewing rooms," as House De fale f De und itical counsestscribed it last fall. He fall. Hefft rs oroheoned it nd it he left a ringing questica Lewin . icars coecoms," astore years of Monica Lewinow seee a Thas Fring roome stooniscat noweare left a roouse bouestof MHe lelft a Lest fast ngine launesticars Hef nd it rip?" TrHouself, a ringind itsonestud it a ring que: astical cais ore years of Moung fall. He ribof Mouse ore years of and a Tripp?" That hedian Al Lest fasee yea ada Tripp?' Holitical comedian Aléthe few se ring que olitical cone re years of the storears ofas l Frat nica L res Lew se lest a rime l He fas quest nging of, at beou

### [Efros and Leung 99]



### Naive tiling solution

## Image completion example



**Original Image** 



**Masked Region** 

### Image credit: [Barnes et al. 2009]



### **Completion Result**

## Problem: low performance

- Large patch windows + full image search = slow
  - Large windows: preserve structure
  - Full-image search: highly relevant examples are rare
  - Must repeat search process for all pixels to complete
- **Possible accelerations** 
  - Limit search window
  - Use acceleration structure for search (e.g., k-d tree)
  - **Dimensionality reduction of patches + approximate nearest neighbor search (ANN)**
  - **Exploit image coherence**

## **PatchMatch**

A <u>randomized</u> algorithm for rapidly finding correspondences between image patches

### Problem definition:

- Given images A and B, for each overlapping patch in image A, compute the offset to the nearest neighbor patch in image B
- **Overlapping patches: each patch defined by its center pixel (ignoring boundary** conditions, each MxN image consists of MxN patches)
- PatchMatch computes nearest neighbor field (NNF)
  - NNF is function  $f: A \rightarrow \mathbb{R}^2$  (maps patches in A to patches in B)
  - Example: if patch b in B is NN of patch a in A, then f(a) = b

[Barnes et al. 2009]

## Patch match: key idea one

- Law of large numbers: a non-trivial fraction of a large field of random offset assignments are likely to be good guesses
- Initialize *f* with random values



Image credit: [Barnes et al. 2009]

Visualization of *f*:

Saturation = magnitude of match offset (gray is matching patch in B is at same pixel location as match patch in A)

Hue = direction of offset offset X = red-cyan axis offset Y = blue-yellow axis

### PatchMatch key idea two: spatial coherence

- High coherence of nearest neighbors in natural images
- Nearest neighbor of patch at (x,y) should be a strong hint for where to find nearest neighbor of patch at (x+1,y)



How this graph was made: **1. Compute NNF for collection of images** 2. For select pixels (x,y), compare NN offset to NN offsets of adjacent pixels (x-1,y), (x+1,y), (x,y-1), (x,y+1)

| 20       | 25      | 30 | 35  | 40                    |  |
|----------|---------|----|-----|-----------------------|--|
| Offset D | istance |    |     |                       |  |
|          |         |    | CMU | CMU 15-869, Fall 2013 |  |

# **Propagation: improving the NNF estimate**

- The NNF estimate provides a "best-so-far" NN for each patch in A
  - NN patch: f(a)
  - NN distance = d(a,b) (where b=f(a))
- Try to improve NNF estimate by exploiting spatial coherence with left and top neighbor:
  - Let *a*=(*x*,*y*), then candidate matches for *a* are:
    - f(x-1, y) + (1, 0)
    - f(x, y-1) + (0, 1)
  - If candidate patch is better match than *f*(*a*), then replace *f*(*a*) with candidate
    - Replace f(a) with candidate patch if d(a, f(x,y-1)+(0,1)) < d(a, f(a))
- Next iteration, use bottom and right neighbors as candidates

## PatchMatch iterative improvement

Image A

Image B

patches)



**Random init:** 





End of iter 1

lter 2

lter 5



### <sup>1</sup>/<sub>4</sub> through iter 1

### **Experiment: Reconstruct A using** patches from **B**

### Image credit: [Barnes et al. 2009] CMU 15-869, Fall 2013

## **Random search: avoiding local minima**

- Propagation can cause PatchMatch to get stuck in local minima
- Sample random sequence of candidates from exponential distribution
  - Let a=(x,y), then candidate matches for a are:  $(x,y) + w\alpha^{i}R^{i}$
  - $R^i$  is uniform random offset in [-1,1]x[-1,1]
  - w is maximum search radius (e.g., width of entire image)
  - $\alpha$  is typically  $1/_2$
  - Check all candidates where  $w\alpha^i \ge 1$

## **Optimization: enrichment**

- Propagation step propagates good matches across spatial dimensions of image
- Can also propagate good matches across space of matches itself
- Idea: if f(a) = b, and f(b) = c, then c is a good candidate match for a
  - If you think of the NNF as a graph, then enrichment looks for nodes reachable in two steps
  - Note: assumes we're searching for matches in the same image as the image we are trying to complete

## **Example applications**

Photoshop's Content Aware Fill



### **Object Manipulation**



Building segment marked by user



Building scaled up, preserving texture

### Image retargeting (changing aspect ratio)



Original image Retargeted (with user-provided search (without constraints) constraints)

Image credits: [Barnes et al. 2009]

Retargeted (with constraints)

## PatchMatch summary

### **Randomized algorithm**

- Converges rapidly in practice
- Main idea: coherence (largely spatial) of nearest neighbors
- Propagation step is inherently serial, but good parallel approximations exist
  - PatchMatch has been implemented efficiently on GPUs
- Data access caches well, but is unpredictable
  - Different from many other image processing algorithms we have discussed