
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 20:

Video Compression

 CMU 15-869, Fall 2013

H.264/AVC video compression
▪ AVC = advanced video coding
▪ Also called MPEG4 Part 10
▪ Common format in many modern HD video applications:

- Blue Ray
- HD streaming video on internet (Youtube, Vimeo, iTunes store, etc.)
- HD video recorded by your smart phone
- European broadcast HDTV (U.S. broadcast HDTV uses MPEG 2)
- Some satellite TV broadcasts (e.g., DirecTV)

▪ Bene!t: much higher compression ratios than MPEG2 or MPEG4
- Alternatively, higher quality per !xed bit rate

▪ Costs: decoding complexity, substantially higher encoding cost
- Trade more compute for less bandwidth/storage

 CMU 15-869, Fall 2013

Hardware implementations
▪ Support for encode/decode provided via !xed function hardware on modern

mobile devices

▪ Hardware encoding/decoding support in modern Intel CPUs since Sandy Bridge
(Intel “Quick Sync”)

▪ Modern operating systems expose hardware support through APIs
- e.g., DirectShow/DirectX (Windows), AVFoundation (iOS)

 CMU 15-869, Fall 2013

Video container format versus codec
▪ Video container (MOV, AVI) bundles media assets

▪ Video codec: H.264/AVC (MPEG 4 Part 10)
- H.264 standard de!nes how to represent and decode video
- H.264 does not de!ne how to encode video (this is left up to implementations)
- H.264 has many pro!les

- High Pro!le (HiP): supported by HDV and Blue Ray

 CMU 15-869, Fall 2013

Review: Y’CbCr 4:2:0
Y’ = perceived brightness (“luma”)
Cb = blue-yellow deviation from gray
Cr = red-cyan deviation from gray

Y’

Cb

Cr

Image credit: Wikipedia

4:2:0 representation (subsampled chroma):
- Store Y’ at full resolution
- Store Cb, Cr at half vertical and horizontal resolution

(1/4 as many chroma samples as luminance samples)

Y’00 Y’10 Y’20 Y’30
Cb00 Cb20
Cr00 Cr20

Y’01 Y’11 Y’21 Y’31

 CMU 15-869, Fall 2013

Review: image transform coding via DCT
(JPEG compression segment of camera pipeline lecture)

i

j

0

7
7

Credit: Wikipedia, Pat Hanrahan

0

x=

Note: only showing coefficients for one
channel (e.g., Y’) here. Each channel is
transformed independently.

 CMU 15-869, Fall 2013

Review: quantization and entropy compression

Credit: Pat Hanrahan
Coefficient reordering

RLE compression of zeros

Entropy compression of
non-zeros

Compressed bits

Lossless compression!

Quantization loses information
(lossy compression!)

 CMU 15-869, Fall 2013

Residual: difference between compressed and
original image

Original pixels

Compressed pixels
(JPEG quality level 2)

Residual
(ampli!ed for visualization)

Compressed pixels
(JPEG quality level 6)

Residual
(ampli!ed for visualization)

 CMU 15-869, Fall 2013

Video compression main ideas
▪ Compression is about exploiting redundancy in signal

- Intra-frame redundancy: pixels in neighboring regions of a
frame are good indicator of other pixels in the frame

- Inter-frame redundancy: pixels from nearby frames in time
are a good predictor for current frame pixels

 CMU 15-869, Fall 2013

H.264/AVC video compression overview

Intra-/Inter-frame
Prediction Model

Transform/
Quantize
Residual

Previously
Coded Data

Entropy
Encoding

Source
Video

Compressed
Video Stream

Prediction
parameters

Residual
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Residual: difference between predicted pixel values and input video pixel values

 CMU 15-869, Fall 2013

16 x 16 macroblocks
Frame partitioned into 16 x 16 pixel
macroblocks

Due to 4:2:0 chroma subsampling,
macroblocks correspond to 16 x 16 luma
samples and 8 x 8 chroma samples

 CMU 15-869, Fall 2013

Macroblocks organized into slices
Can think of a slice as a sequence of
macroblocks in raster scan order *

Slices can be decoded independently **

Slice 1

Slice 2

* H.264 also has non-raster-scan order modes (FMO), will not discuss today.

** Final “deblocking” pass is often applied to post-decode pixel data, so technically slices are not fully independent.

One 16x16 macroblock

 CMU 15-869, Fall 2013

Decoding via prediction + correction
▪ During decode, samples in a macroblock are generated by:

1. Making a prediction based on already decoded samples in macroblocks from
the same frame (intra-frame prediction) or from other frames (inter-frame
prediction)

2. Correcting the prediction with a residual stored in the video stream

▪ Three forms of prediction:
- I-macroblock: macroblock samples predicted from samples in previous

macroblocks in the same slice of the current frame
- P-macroblock: macroblock samples can be predicted from samples from one

other frame (one prediction per macroblock)
- B-macroblock: macroblock samples can be predicted by a weighted

combination of multiple predictions from samples from other frames

 CMU 15-869, Fall 2013

Intra-frame prediction (I-macroblock)
▪ Prediction of sample values is performed in spatial domain, not transform domain

- Predicting pixel values, not basis coefficients

▪ Three modes for predicting luma (Y):
- Intra_4x4 mode: predict 4x4 block of samples from adjacent row/col of pixels
- Intra_16x16 mode: predict entire 16x16 block of pixels from adjacent row/col
- I_PCM: actual sample values provided

0 1 2 3 4 5 6 7 8

9
10
11
12

Intra_4X4

Intra_16x16

Yellow pixels: already reconstructed (values known)
White pixels: 4x4 block to be reconstructed

 CMU 15-869, Fall 2013

Intra_4x4 prediction modes
▪ Nine prediction modes (5 shown below)

- Other modes: vert-right, horiz-down, vertical-left, horiz-up

0 1 2 3 4

9
10
11
12

0 1 2 3 4

9
10
11
12

0 1 2 3 4

9
10
11
12

0 1 2 3 4 5 6 7 8

9
10
11
12

Mode 0: vertical
(4x4 block is copy of
above row of pixels)

Mode 1: horizontal
(4x4 block is copy of left

col of pixels)

Mode 2: DC
(4x4 block is average of above

row and left col of pixels)

Average

Mode 3: diagonal down-left

0 1 2 3 4

9
10
11
12

Mode 4: diagonal down-right

 CMU 15-869, Fall 2013

Intra_16x16 prediction modes
▪ 4 prediction modes: vertical, horizontal, DC, plane

Average

Mode 0: vertical Mode 1: horizontal Mode 2: DC

Mode 4: plane

P[i,j] = Ai * Bj + C
A derived from top row, B derived from left col, C from both

 CMU 15-869, Fall 2013

Further details
▪ Intra-prediction of chroma is performed using the same four modes as intra_16x16

(except reordered as: DC, vertical, horizontal, plane)

▪ Intra-prediction scheme for each 4x4 block within macroblock encoded as follows:
- One bit per 4x4 block:

- if 1, use most probable mode
- Most probable = lower of modes used for 4x4 block to left or above current

- if 0, use additional 3-bit value rem_intra4x4_pred_mode to encode
one of nine modes
- if rem_intra4x4_pred_mode is smaller than most probable mode,

use mode given by rem_intra4x4_pred_mode
- else mode is rem_intra4x4_pred_mode+1

mode=??mode=2

mode=8

 CMU 15-869, Fall 2013

Inter-frame prediction (P-macroblock)
▪ Predict sample values using values from a block of a previously decoded

frame *

▪ Basic idea: current frame formed by translation of pixels from temporally
nearby frames (e.g., object moved slightly on screen between frames)
- “Motion compensation”: use of spatial displacement to make prediction

about pixel values

Recently decoded frames
(stored in “decoded picture Buffer”)

macroblock

Frame currently
being decoded

* Note: “previously decoded” does not imply source frame must come before frame in video sequence.
 (Can decode out of order.)

 CMU 15-869, Fall 2013

P-macroblock prediction

Decoded picture
buffer: frame 0

Decoded picture
buffer: frame 1

Current frame

A

B

Block A: predicted from (frame 0, motion-vector = [-3, -1])
Block B: predicted from (frame 1, motion-vector = [-2.5, -0.5])

▪ Prediction can be performed at macroblock or sub-macroblock granularity
- Macroblock can be divided into 16x16, 8x16, 16x8, 8x8 partitions
- 8x8 partitions can be further subdivided into 4x8, 8x4, 4x4 sub-macroblock partitions

▪ Each partition predicted by sample values de!ned by: (reference frame id, motion
vector)

4x4 pixel sub-
macroblock

partition

Notice non-integer
motion vector

 CMU 15-869, Fall 2013

Non-integer motion vectors require resampling

Interpolation to 1/2 pixel sample points via 6-tap !lter:
half_integer_value = clamp(
 (A	
 -­‐	
 5B	
 +	
 5C	
 +	
 5D	
 -­‐	
 5E	
 +	
 F)	
 /	
 32)

H.264 supports both 1/2 pixel and 1/4 pixel resolution motion vectors
1/4 resolution resampling performed by bilinear interpolation of 1/2 pixel
samples
1/8 resolution (chroma only) by bilinear interpolation of 1/4 pixel samples

A

B
C

D
E

F

Example: motion vector with 1/2 pixel values.
Must resample reference block at positions given by red dots.

 CMU 15-869, Fall 2013

Motion vector prediction
▪ Problem: per-partition motion vectors requires signi!cant amount of storage
▪ Solution: predict motion vectors from neighboring partitions and encode

residual in compressed video stream
- Simple example below: predict D’s motion vector as average of motion vectors of A, B, C
- More complex logic when partition sizes of neighboring blocks have different sizes

DA

B C

 CMU 15-869, Fall 2013

Question: what partition size is best?
▪ Smaller partitions likely yield more accurate prediction

- Fewer bits needed for residuals

▪ Smaller partitions require more bits to store partition
information (diminish bene!ts of prediction)
- Reference picture id
- Motion vectors (note: motion vectors are more coherent with !ner sampling,

so likely compress well)

 CMU 15-869, Fall 2013

Inter-frame prediction (B-macroblock)
▪ Each partition predicted by up to two source blocks

- Prediction is the average of the two reference blocks
- Each B-macroblock partition stores two frame references and two motion

vectors (recall P-macroblock partitions only stored one)

Previously decoded frames
(stored in “decoded picture Buffer”)

Frame currently
being decoded

A

B

prediction = (A + B) / 2

 CMU 15-869, Fall 2013

Additional prediction details
▪ Optional weighting to prediction:

- Per-slice explicit weighting (reference samples multiplied by weight)
- Per-B-slice implicit weights (reference samples weights by temporal distance

of reference frame from current frame in video)
- Idea: weight samples from reference frames nearby in time more

▪ Deblocking
- Blocking artifacts may result as a result of superblock granularity encoding
- After macroblock decoding is complete, optional perform smoothing !lter

across block edges.

 CMU 15-869, Fall 2013

Putting it all together: encoding an inter-
predicted macroblock
▪ Inputs:

- Current state of decoded picture buffer
- 16x16 block of input video to encode

▪ General steps: (need not be performed in this order)
- Resample images in decoded picture buffer to obtain 1/2, and 1/4, 1/8 pixel

resampling
- Choose prediction type (P-type or B-type)
- Choose reference pictures for prediction
- Choose motion vectors for each macroblock partition (or sub-partition)
- Predict motion vectors and compute motion vector difference
- Encode choice of prediction type, reference pictures, and motion vector

differences
- Encode residual for macroblock prediction
- Store reconstructed macroblock (post deblocking) in decoded picture buffer to

use as reference picture for future macroblocks

Heavily coupled
decisions

 CMU 15-869, Fall 2013

H.264/AVC video encoding

Intra-frame
Prediction

Transform/
Quantize
Residual

Decoded
picture buffer

Source
Video
Frame

Compressed
Video Stream

Prediction parameters

Actual MB pixels
Basis

coefficients

Credit: Figure derived from H.264 Advanced Video Compression Standard, I. Richardson, 2010

Inter-frame
Prediction

Predicted MB
Compute
Residual

Entropy
Encoder

Motion
Vector Pred.

Compute
MV Diffs

Inverse
transform/

quantize
Deblock

Motion
vectors

MB = macroblock
MV = motion vector

 CMU 15-869, Fall 2013

Motion estimation
▪ Encoder must !nd reference block that predicts current frame’s pixels well.

- Can search over multiple pictures in decoded picture buffer + motion vectors can be
non-integer (huge search space)

- Must also choose block size (macroblock partition size)
- And whether to predict using combination of two blocks
- Literature full of heuristics to accelerate this process

- Remember, must execute in real-time for HD video (1920x1080) in a digital video
camera

A

gray area:
search region Decoded picture

buffer: frame 0
Current frame

Limit search window:

 CMU 15-869, Fall 2013

Motion estimation optimizations
▪ Coarser search:

- Limit search window to small region
- First compute block differences at coarse scale (save partial sums from previous searches)

▪ Smarter search:
- Guess motion vectors similar to motion vectors used for neighboring blocks
- Diamond search: start by test large diamond pattern centered around block

- If best match is interior, re!ne to !ner scale
- Else, recenter around best match

▪ Early termination: don’t !nd optimal reference patch, just !nd one that’s “good enough”
compressed representation lower than threshold
- Test zero-motion vector !rst (optimize for non-moving background)

▪ Optimizations for subpixel motion vectors:
- Re!nement: !nd best reference block given only pixel offsets, then try 1/2, 1/4-subpixel

offsets around this match

Original Re!ned Recentered

