Lecture 19:

Depth Cameras

Visual Computing Systems
CMU 15-869, Fall 2013



Continuing theme: computational photography

m (Cameras capture light, then extensive processing produces
the desired image

m Today:
- (Capturing scene depth in addition to light intensity
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Why might we want to know the depth of scene objects?
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Depth from time-of-flight

Conventional LIDAR .

Laser beam scans scene (rotating mirror)

Low frame rate to capture entire scene

i

“Time-of-flight” cameras

No moving beam, capture entire image of scene with each light pulse
Special C(MOS sensor records a depth image

High frame rate

Formerly TOF cameras were low resolution, expensive...

TOF camera featured in the upcoming XBox One depth sensor
(today we will first talk about the original XBox 360 implementation)
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Computing depth from images

Binocular stereo 3D reconstruction of point P: depth from disparity

P
Focal length: / ?
Baseline: » o
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Simple reconstruction example: cameras aligned (coplanar sensors), separated by known distance, same focal length
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Correspondence problem

How to determine which pairs of pixels in image 1 and image 2 correspond to the

same scene point?
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Epipolar constraint

B Goal: determine pixel correspondence
- Corresponding pixels = pairs of pixels that correspond to same scene point

~r

epipolar line_ _epipolar line

(image of the line through P)

= Epipolar Constraint

— Reduces correspondence problem to 1D search along conjugate epipolar lines
— Pointin leftimage will lie on line in right image (epipolar line)

Slide credit: S. Narasimhan CMU 15-869, Fall 2013



Solving correspondence (basic algorithm)
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Slide credit: S: Narasimhan

For each epipolar line
For each pixel in the left image
Compare with every pixel on same epipolar line in right image

What are

Pick pixel with minimum match cost .
assumptions?
Basic improvements: match windows, adaptive size match windows...

- This should sound familiar given our discussion of image processing algorithms...

- Correlation, sum of squared difference (5SD), etc.
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Solving correspondence: robustness challenges

B Scene with no texture (many parts of the scene look the same)
B Non-lambertian surfaces (surface appearance is dependent upon view)

®  Pixel pairs may not be present (point on surface is occluded from one view)
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Alternative: depth from defocus

Aperture: a P
Circle-of-confusion: ¢ ’z
a c
' 7=f
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Then use thin lens approximation to obtainzfromz’ 7’ A | "I |
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Avoids correspondence problem of depth from disparity, but system must know
location of sharp edges in scene to estimate circle of confusion c.
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Structured light

System: one light source emitting known beam + one camera measuring scene appearance
If the scene is at reference plane, image that will be recorded by camera is known
(correspondence between pixel in recorded image and scene point is known)

- Reference plane
Sref 7 = bf

IS x+d

<
b/

Known light /¢
source |
Single spot illuminant is inefficient! X d

(must “scan” scene with spot to get depth, so high latency to retrieve a single depth image) CMU 15-869. Fall 2013



Structured light

Simplify correspondence problem by encoding spatial position in illuminant
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Projected light pattern

Image: Zhang et al.
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Microsoft XBox 360 Kinect

llluminant RGB CMOS Sensor Monochrome Infrared
(Infrared Laser + diffuser) 640x480 (w/ Bayer mosaic) CMOS Sensor
(Aptina MT9MO001)
1280x1024 **

** Kinect returns 640x480 disparity image, suspect sensor is configured for 2x2 pixel binning down to 640x512, then crop

Image credit: iFixIt
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Computing disparity for scene

Region-growing algorithm for compute efficiency **
(Assumption: spatial locality likely implies depth locality)

1.  Choose output pixels in infrared image, classify as UNKNOWN or SHADOW (based on whether speckle is found)
2.  While significantly large percentage of output pixels are UNKNOWN

- Choose an UNKNOWN pixel.
- Correlate surrounding MxN pixel window with reference image to compute disparity D = (dx,dy)
(note: search window is a horizontal swath of image, plus some vertical slack)
- If sufficiently good correlation is found:
- Mark pixel as a region anchor (it’s depth is known)
- Attempt to grow region around the anchor pixel:
- Place region anchor in FIFO, mark as ACTIVE
- While FIFO not empty
- Extract pixel P from FIFO (known disparity for P is D)

- Attempt to establish correlations for UNKOWN neighboring pixels P, of P (left,right,top,bottom
neighbors) by searching region given by P, + D + (+/-1,+/1)

- If correlation is found, mark P, as ACTIVE, set parent to P, add to FIFO

- Else, mark P, as EDGE, set depth to depth of P.

** Source: PrimeSense Patent W0 2007/043036 A1 CMU 15-869. Fall 2013
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Kinect block diagram

Disparity calculations performed by PrimeSense ASICin Kinect, not by XBox 360 CPU

Infrared Sensor

RGB Sensor

llluminant

Kinect

B

Image
processing
ASIC

Cheap sensors: ~ 1 MPixel

Cheap illuminant: laser + diffuser makes random
dot pattern (not a traditional projector)

Custom image-processing ASIC to compute
disparity image (scale-invariant region
correlation involves non-trivial compute cost)

USB bus

Box 360 CPU

640x480 x 30fps RGB image
640x480 x 30fps Disparity image
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Extracting the player’s skeleton

[Shotton et al. 2011]
(enabling full-body game input)
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Challenge: how to determine player’s position and Depth Image Character Joint Angles
motion from (noisy) depth images... without consuming
a large fraction of the XBox 360’s compute capability?
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Key idea: classify pixels into body regions

[Shotton et al. 2011]

| front . % 1 /5

depth image == body parts ' =) 3D joint proposals

Shotton et al. represents body with 31 regions
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PIXEI Classrﬁcatlﬂn [Shotton et al. 2011]
For each pixel: compute features from depth image

U ey 1% Where H=(L£,V) and dI(X) is the
' d,(X)

£, (1,X)=d, (X+

d;(X)

depth image value at pixel X.

(b)

Two example depth features

Features are cheap to compute + can be computed for all pixels in parallel
- Do not depend on velocities: only information from current frame

Classify pixels into body parts using randomized decision forest classifier
- Trained on 100K motion capture poses + database of rendered images as ground truth

Result of classification: [ (C ‘ 1A , x) (probability pixel x in depth image 7 is body part c)

Per-pixel probabilities pooled to compute 3D spatial density function for each body part c

(joint angles inferred from this density)
(MU 15-869, Fall 2013



Performance result

B Real-time skeleton estimation from depth image requires < 10%
of Xbox 360 CPU

m XBox GPU-based implementation @ 200Hz (research
implementation described in publication, not used in product)

- Actual XBox 360 product implementation is likely far more efficient
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XBox 360 + Kinect system

Disparity computations

(create depth image) —

Skeleton inference

Infrared Sensor RGB Sensor llluminant
Image
— processing
ASIC
Kinect

USB bus

640x480 x 30fps RGB image
640x480 x 30fps Disparity image

A 4
1 MB Shared L2
10 MB Embedded
DRAM
XBox 360
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Xbox 360 Kinect summary

m Hardware = cheap depth sensor + custom image processing ASIC

- Structured light pattern generated by scattering infrared laser
- Depth obtained from triangulation (depth from disparity), not time-of-flight

= Custom ASICto convert infrared image into depth values (high computational
cost is searching for correspondences)

m [nterpretation of depth values is performed on C(PU

- Low-cost, data-patallel skeleton estimation made computationally feasible by
machine learning approach
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Xbox One Sensor

Time-of-flight sensor (not based on structured light like the original Kinect)

B 1080p depth sensing + wider field-of-view than original Kinect
® “Computer vision” challenges in obtaining high-quality signal:
- Flying pixels
- Segmentation

- Motion blur

HD 720p Image sensor

3D Depth
ensor

Power LED
indicator

Another TOF camera:
Creative Depth Camera

(MU 15-869, Fall 2013



Time of flight cameras

B Measure phase offset of light reflected off environment
- Phase shift proportional to distance from object

continuous wave Phase Meter
VaVALL 20 MHz
= aRVANYAN
N\N\— “
phase shift

3D Surface

Image credit: V. Castaneda and N. Navab
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors LabCourse Kinect.pdf

B Many “computer vision” challenges to achieving high quality depth estimate

- Measurement error
- Motion blur

- Flying pixels

- Segmentation
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[A Kolb et al. 2009]

(a) 3D Point Cloud (¢) Amplitudes
[Reynolds et al. CVPR 2011]
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http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf
http://campar.in.tum.de/twiki/pub/Chair/TeachingSs11Kinect/2011-DSensors_LabCourse_Kinect.pdf

Reading

B KinectFusion: Real-time 3D Reconstruction and interaction Using a Moving
Depth Camera. S. I1zadi et al. UIST 11

- Note: may wish to Google ICP algorithm (iterative closest point)
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