Lecture 16:

Image Processing Algorithm Grab Bag

Visual Computing Systems CMU 15-869, Fall 2013

Today

- Grab bag of image processing techniques relevant to computational photography
- High level description of algorithms to help you build intuition (just scratching the surface of concepts and results from field of image processing)
- At the end of class:
 - We'll discuss how we might design an efficient image processor for these types of workloads

Review: 2D convolution with 5x5 filter

```
int WIDTH = 1024;
int HEIGHT = 1024;
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
uint8 weights[] = {1, 1, 1, 1, 1,
                    2, 2, 2, 2, 2,
                    3, 3, 3, 3, 3,
                    2, 2, 2, 2, 2,
                                                             Recall:
                    1, 1, 1, 1, 1};
                                                             Total work = 25 \times WIDTH \times HEIGHT
                                                             For NxN filter: N<sup>2</sup> x WIDTH x HEIGHT
for (int j=0; j<HEIGHT; j++) {</pre>
  for (int i=0; i<WIDTH; i++) {</pre>
    int tmp = 0.f;
    for (int jj=0; jj<5; jj++)
      for (int ii=0; ii<5; ii++)
         tmp += (int)input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*5 + ii];
    output[j*WIDTH + i] = uint8(tmp / 25);
```

2D convolution with 5x5 filter

```
int WIDTH = 1024;
int HEIGHT = 1024;
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
uint8 weights[] = {1, 1, 1, 1, 1,
                   2, 2, 2, 2, 2,
                   3, 3, 3, 3, 3,
                   2, 2, 2, 2, 2,
                   1, 1, 1, 1, 1};
                                                       At what cost?
for (int j=0; j<HEIGHT; j++) {</pre>
  int tmp = 0;
  for (int jj=0; jj<5; jj++)
    for (int ii=0; ii<5; ii++)
      tmp += (int)input[(j+jj)*(WIDTH+2) + ii] * weights[jj*5 + ii];
 output[j*WIDTH] = uint8(tmp);
  for (int i=1; i<WIDTH; i++) {</pre>
    int tmp1=0, tmp2=0;
    for (int jj=0; jj<5; jj++) {
      tmp1 = (int)input[(j+jj)*(WIDTH+2) + i+4] * weights[jj*5 + 4];
      tmp2 = (int)input[(j+jj)*(WIDTH+2) + i] * weights[jj*5 + 0];
    output[j*WIDTH + i] = output[j*WIDTH + i - 1] + uint8(tmp1-tmp2);
```

Incremental computation:
 ~ Total work = 2*N x WIDTH x HEIGHT

Filter is separable, so same work complexity as two-pass approach, but using only one pass over the data.

5x5 median filter

- Noise reduction filter
 - Unlike gaussian, one bright pixel doesn't drag up the average for entire region
- Not linear, not separable
 - Filter weights are 1 or 0 (depending on image content)
- Naive algorithm for width N square kernel support region:
 - Sort N² elements in support region, pick median: O(N²log(N²)) work per pixel

```
int WIDTH = 1024;
int HEIGHT = 1024;
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

for (int j=0; j<HEIGHT; j++) {
   for (int i=0; i<WIDTH; i++) {
     output[j*WIDTH + i] = // median of pixels in surrounding 5x5 pixel window
   }
}</pre>
```

5x5 median filter

- O(N²) work-per-pixel solution: radix sort algorithm for 8 bit-integer data
 - Bin elements in support region. Scan histogram to find median

```
int WIDTH = 1024;
int HEIGHT = 1024;
                                                            Can you design a O(N) work-per-pixel
uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];
                                                            median filter?
int histogram[256];
                                                            See Weiss [SIGGRAPH 2006] for
for (int j=0; j<HEIGHT; j++) {</pre>
                                                           O(lg N) work-per-pixel median filter
 for (int i=0; i<WIDTH; i++) {</pre>
    for (int ii=0; ii<256; ii++)
     histogram[ii] = 0;
    for (int jj=0; jj<5; jj++)
     for (int ii=0; ii<5; ii++)
         histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;
    int count = 0;
    for (int ii=0; ii<256; i++) {
       if (count + histogram[i] >= 13) // median of 25 elements is bin containing 13th value
         output[j*WIDTH + i] = uint8(i);
       count += histogram[i];
```

Bilateral filter

$$BF[I](p) = \sum_{q \in S} f(\left|I_p - I_q\right|) G_{\sigma}(\left\|p - q\right\|) I(q)$$

Output pixel p is the weighted sum of all pixels in the support region S of a truncated gaussian kernel (width σ)

But weight is combination of <u>spatial distance</u> and <u>input image pixel intensity</u> difference. (like median filter, filter weights depend on image content)

- Non-linear filter
- An "edge preserving" filter: down weight contribution of pixels on the other side of strong edges. f(x) defines what "strong edge means"
- Spatial distance weight term f(x) could be a gaussian
 - Or very simple: f(x) = 0 if x > threshold, 1 otherwise

Bilateral filter

Pixels with significantly different intensity Non-linear, edge preserving, smoothing filter contribute little to filtered result influence g in the intensity spatial kernel finput domain for the central pixel weight $f \times g$ output for the central pixel

Bilateral filter: kernel depends on image content

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edges the bilateral filter will not respect (it will blur across).

Denoising using non-local means

- Main idea: replace pixel with average value of nearby pixels that <u>have a similar surrounding region</u>.
 - Prior: images have repeating texture

$$NL[I](p) = \sum_{q \in S} w(p,q)I(q)$$

$$w(p,q) = \frac{1}{C_p} e^{\frac{-\|N_p - N_q\|_2^2}{h^2}}$$

 N_p and P_q are vectors of pixel values in square window around pixels p and q.

(Difference of these vectors = "similarity" of surrounding regions)

Cp is just a normalization constant to ensure weights sum to one for pixel p.

Non-local means

Large weight for pixels that have similar neighborhood

- "Take the average of pixels "like" this one"
- In example below-right: q1 and q2 have high weight, q3 has low weight

In each pair below:

- Image at left shows pixel to denoise.
- Image at right shows weights of pixels in 21x21-pixel kernel support window.

Buades et al. CVPR 2005

Optical flow

Goal: determine 2D screen-space velocity of visible objects in image

Image source: https://vimeo.com/28395792

Optical flow

- Given image A (at time t) and image B (at time $t + \Delta t$) compute optical flow between the two images
- Major assumption 1: brightness constancy
 - The appearance of point in image A is same as same point in image B

Tailor expansion

$$I(x + \Delta x, y + \Delta y, t + \Delta t) = I(x, y, t) + I_x(x, y, t)\Delta x + I_y(x, y, t)\Delta y + I_t(x, y, t)\Delta t + \text{higher order terms}$$

So...

$$I(x, y, t) \approx I(x, y, t) + I_x(x, y, t)\Delta x + I_y(x, y, t)\Delta y + I_t(x, y, t)\Delta t$$

$$I_{x}(x, y, t)\Delta x + I_{y}(x, y, t)\Delta y + I_{t}(x, y, t)\Delta t = 0$$
The observed change in pixel (x,y)

Is due to object motion at point by $(\Delta x, \Delta y)$

Problem: underconstrained

Gradient-constraint equation is insufficient to solve for motion

One equation, two unknowns: $(\Delta x, \Delta y)$

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

$$I_{x}(x_{0}, y_{0}, t)\Delta x + I_{y}(x_{0}, y_{0}, t)\Delta y + I_{t}(x_{0}, y_{0}, t)\Delta t = 0$$

$$I_{x}(x_{1}, y_{1}, t)\Delta x + I_{y}(x_{1}, y_{1}, t)\Delta y + I_{t}(x_{1}, y_{1}, t)\Delta t = 0$$

$$I_{x}(x_{2}, y_{2}, t)\Delta x + I_{y}(x_{2}, y_{2}, t)\Delta y + I_{t}(x_{2}, y_{2}, t)\Delta t = 0$$

Now overconstrained system, compute least squares solution

Least-squares solution

$$I_x(x_0, y_0, t)\Delta x + I_y(x_0, y_0, t)\Delta y + I_t(x_0, y_0, t)\Delta t = 0$$

$$I_x(x_1, y_1, t)\Delta x + I_y(x_1, y_1, t)\Delta y + I_t(x_1, y_1, t)\Delta t = 0$$

$$I_x(x_2, y_2, t)\Delta x + I_y(x_2, y_2, t)\Delta y + I_t(x_2, y_2, t)\Delta t = 0$$

•

Now overconstrained system, compute least squares solution by minimizing:

 (x_i, y_i) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (x_i, y_i) and (x, y). e.g., Gaussian fall-off.

$$E(\Delta x, \Delta y) = \sum_{x_i, y_i} w(x_i, y_i, x, y) \left[I_x(x_i, y_i, t) \Delta x + I_y(x_i, y_i, t) \Delta y + I_t(x_i, y_i, t) \Delta t \right]^2$$

Solving for motion

E (Δx , Δy) minimized when derivatives are zero:

$$\frac{dE(\Delta x, \Delta y)}{d(\Delta x)} = \sum_{x_i, y_i} w(x_i, y_i, x, y) \Big[I_x^2 \Delta x + I_x I_y \Delta y + I_x I_t \Big] = 0$$

$$\frac{dE(\Delta x, \Delta y)}{d(\Delta y)} = \sum_{x_i, y_i} w(x_i, y_i, x, y) \Big[I_y^2 \Delta y + I_x I_y \Delta x + I_y I_t \Big] = 0$$

Rewrite, now solve the following linear system for Δx , Δy :

$$\Delta x \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{x}^{2} + \Delta y \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{x} I_{y} + \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{x} I_{t} = 0$$

$$\Delta x \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{x} I_{y} + \Delta y \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{y}^{2} + \sum_{x_{i}, y_{i}} w(x_{i}, y_{i}, x, y) I_{y} I_{t} = 0$$

Precompute partial derivatives I_x , I_y , I_t from original images A and B

For each pixel (x,y): evaluate A0, B0, C0, A1, B1, C1, then solve for $(\Delta x, \Delta y)$ at (x,y)

Optical flow, implemented in practice

Gradient-constraint equation makes a linear motion assumption

$$I(x, y, t) \approx I(x, y, t) + I_x(x, y, t)\Delta x + I_y(x, y, t)\Delta y + I_t(x, y, t)\Delta t$$

$$I_x(x, y, t)\Delta x + I_y(x, y, t)\Delta y + I_t(x, y, t)\Delta t = 0$$
The observed change in pixel (x,y) Is due to object motion at point by (\Delta x, \Delta y)

- Improvement: iterative techniques use this original flow field to compute higher order residuals (non-linear motion)
- Question: Why is it important for optical flow implementation to be very efficient?
 - Hint: consider linear-motion assumption, consider aliasing

Class discussion

- Imagine the your final project is to architect a processor to handle image processing tasks for the widely anticipated kPhone. (like the iPhone, but better)
- How would you characterize image processing workloads?
 - Parallelism?
 - Data-access patterns?
 - Predictability? (of data access, of instruction stream)
- What are good characteristics of a processor for image processing tasks?
 - Programmable, or fixed-function?
 - If programmable, do we need: branch-prediction? out-of-order execution?
 - If fixed-function, in what ways can it be configured?
 - What forms of parallelism? (SIMD, multi-core)
 - Support for multi-threading, prefetching?
 - Data caches or on-chip buffers/scratchpads?

Readings

 Adams et al. The Frankencamera: An Experimental Platform for Computational Photography. SIGGRAPH 2010