Lecture 16:

Image Processing
Algorithm Grab Bag

Visual Computing Systems
CMU 15-869, Fall 2013

Today

m Grab bag of image processing techniques relevant to
computational photography

m High level description of algorithms to help you build

intuition (just scratching the surface of concepts and results
from field of image processing)

B Atthe end of class:

- We'll discuss how we might design an efficient image
processor for these types of workloads

CMU 15-869, Fall 2013

Review: 2D convolution with 5x5 filter

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

uint8 weights[] = {1, 1, 1, 1, 1,
2, 2, 2, 2, 2,
3, 3, 3, 3, 3,
2, 2, 2, 2, 2, .
1111 Recall:
Total work =25 x WIDTH x HEIGHT
for (int j=0; J<HEIGHT; j++) { For NxN filter: N2 x WIDTH x HEIGHT

for (int i=0; i<WIDTH; i++) {
int tmp = 0.fF;
for (int jj=0; jj<5; jj++)
for (int ii=0; ii<5; ii++)
tmp += (int)input[(j+jj)*(WIDTH+2) + (i+ii)] * weights[jj*5 + 1ii];
output[j*WIDTH + i] = uint8(tmp / 25);

CMU 15-869, Fall 2013

2D convolution with 5x5 filter

int WIDTH = 1024;
int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];

uint8 output[WIDTH * HEIGHT];
uint8 weights[] = {1,

for (int j=0; JF<HEIGHT; j++) {

2,

J

o

3
2
1

J

int tmp = 0O;

for (int jj=0; jj<5; jj++)
for (int ii=@; 1i<5; ii++)
tmp += (int)input[(j+jj)*(WIDTH+2)
output[j*WIDTH] = uint8(tmp);

for (int i=1; i<WIDTH; i++) {

1

= N W N

int tmpl=0, tmp2=0;
for (int

tmpl
tmp2
}

output[j*WIDTH + i]

}
}

3

J

o

o

J

1,

J

o

= N W N
o

J

output[j*WIDTH

1,

)

o

= N W N
o

)

o

o

N W N =
o

JJ=0; 3j<5; jj++) A
(int)input[(j+377j)* (WIDTH+2)
(int)input[(j+7jj)*(WIDTH+2)

-+

-+

-+

Incremental computation:
~ Total work = 2*N x WIDTH x HEIGHT

Filter is separable, so same work
complexity as two-pass approach, but

using only one pass over the data.

At what cost?

ii] * weights[jj*5 + ii];

i+4] * weights[jj*5 + 4];
i] * weights[jj*5 + 0];

i - 1] + uint8(tmpl-tmp2);

CMU 15-869, Fall 2013

5x5 median filter

B Noise reduction filter

— Unlike gaussian, one bright pixel doesn’t drag up the average for entire region
B Notlinear, not separable

— Filter weights are 1 or 0 (depending on image content)
B Naive algorithm for width N square kernel support region:

— Sort N2 elements in support region, pick median: O(N2log(N2)) work per pixel

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

for (int j=0; jJ<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
output[j*WIDTH + i] = // median of pixels in surrounding 5x5 pixel window

}

CMU 15-869, Fall 2013

5x5 median filter

B (O(N2) work-per-pixel solution: radix sort algorithm for 8 bit-integer data
— Bin elements in support region. Scan histogram to find median

int WIDTH = 1024;

int HEIGHT = 1024;

uint8 input[(WIDTH+2) * (HEIGHT+2)];
uint8 output[WIDTH * HEIGHT];

int histogram|[256];

for (int j=0; J<HEIGHT; j++) {
for (int i=0; i<WIDTH; i++) {
for (int ii=@; 1i<256; ii++)
histogram[ii] = O;
for (int jj=0; jj<5; jj++)
for (int 1i=0@; 1ii<5; ii++)
histogram[input[(j+jj)*(WIDTH+2) + (i+ii)]]++;
int count = 0;
for (int 1i=0@; 1i<256; i++) {

Can you design a O(N) work-per-pixel
median filter?

See Weiss [SIGGRAPH 2006] for
O(lg N) work-per-pixel median filter

if (count + histogram[i] »>= 13) // median of 25 elements is bin containing 13th value

output[j*WIDTH + i] = uint8(i);
count += histogram[i];

CMU 15-869, Fall 2013

Bilateral filter

BF[I1(p)="Y f(1,-1,)G,(p-q)I(q)

qgesS

Output pixel p is the weighted sum of all pixels in the support region S of a truncated
gaussian kernel (width o)

But weight is combination of spatial distance and input image pixel intensity difference.
(like median filter, filter weights depend on image content)

B Non-linear filter

B An“edge preserving” filter: down weight contribution of pixels on the other side of
strong edges. 7(x) defines what “strong edge means”

B Spatial distance weight term /(x) could be a gaussian
= Orverysimple: f/(x) = 0 if x > threshold, 1 otherwise

CMU 15-869, Fall 2013

Bilateral filter
Pixels with significantly different intensity

B Non-linear, edge preserving, smoothing filter contribute little to filtered result
A

input spatial kernel f influence g in the intensity
domain for the central pixel

weight f X g output
for the central pixel

Figure credit: Durand and Dorsey, “Fast Bilateral Filtering for the Display of High-Dynamic-Range Images”, SIGGRAPH 2002 CMU 15-869, Fall 2013

Bilateral filter: kernel depends on image content

S - output

See Paris et al. [ECCV 2006] for a fast approximation to the bilateral filter

Question: describe a type of edges the bilateral filter will not respect (it will blur across).

Figure credit: SIGGRAPH 2008 Course: “A Gentle Introduction to Bilateral Filtering and its Applications” Paris et al. CMU 15-869, Fall 2013

Denoising using non-local means

m Main idea: replace pixel with average value of nearby pixels

that have a similar surrounding region.
- Prior:images have repeating texture "*"*““"“"-—T

NLITI(p)= ¥ w(p,g)I(q) b

qES : Ny '

2 5
_HNP_NCIHz B

| 5
w(p,g)=—e " ‘
Cp S e e

N, and P, are vectors of pixel values in square window around pixels p and q.
(Difference of these vectors = “similarity” of surrounding regions)

Cp is just a normalization constant to ensure weights sum to one for pixel p.

CMU 15-869, Fall 2013

Non-local means

m Large weight for pixels that have similar neighborhood

- “Take the average of pixels “like” this one”
- Inexample below-right: g7 and g2 have high weight, ¢3 has low weight

In each pair below:
- Image at left shows pixel to denoise.
- Image at right shows weights of pixels in 21x21-pixel
kernel support window.

(A) (B)
w. \‘“'\’
\\\\‘i
A%
(C) (D)

Buades et al. CVPR 2005

(MU 15-869, Fall 2013

Optical flow

B Goal: determine 2D screen-space velocity of visible objects in image

N\
5

N
AR
1)
\

\

\

\
L N
N
NS

/ /
"
I/./‘

R I

.y rSS

Ay O
o -
s I

Image source: https://vimeo.com/28395792

CMU 15-869, Fall 2013

https://vimeo.com/28395792
https://vimeo.com/28395792

Optical flow

B Givenimage A (at time t) and image B (at time t + At) compute optical flow
between the two images

B Major assumption 1: brightness constancy
- The appearance of point in image A is same as same point inimage B

I(x+ Ax,y+ Ay, t + Af) = I(x, y, t) <—— The point observed at (x,y) at time moves to (x+A4, y+A4) at t-+At

Tailor expansion
Ix+Ax,y+ Ay, t+ Af) =]()C, V, f) + L(x, y, t)Ax +]y(x, ¥V, l‘)Ay + Iix, y, H)At + higher order

terms

SOOO.
I(x, y,) = I(x, y, 1) + I«(x, y, OAX + L)(x, y, DAY + Idx, y, 1)At

L(x, y, OAx + L(x, y, DAy | T|Idx, y, DAL= 0
<— The observed change in pixel (x,y)

. Is due to object motion at point by (Ax, Ay)

(MU 15-869, Fall 2013

Problem: underconstrained

Gradient-constraint equation is insufficient to solve for motion

One equation, two unknowns: (Ax, Ay)

I p—
Ay I, y, DAL 40— Known: observed change in pixel (x,y)

Known: image gradients inimage A

Major assumption 2: nearby pixels have similar motion (Lucas-Kanade)

]x(XO,)0, t)A)C T [y(XO,)0, t)Ay T It(X(),)0, t)At =0
]x(x], Vi, t)A)C _l_IY(x]a Vi, t)Ay T It(XI, Vi, t)At =0
]x(X2, Y2, f)AX T IY(X29 Y2, I)Ay T]t(X2, Y2, I)At =0

Now overconstrained system, compute least squares solution

CMU 15-869, Fall 2013

Least-squares solution

]x(XO,)0, t)A)C]y(XO,)0, t)Ay It(XO,)0, t)At =0
]x(x], Vi, t)A)C [J/(xla Vi, t)Ay It(XJ, Vi, t)At =0
]x(X2, Y2, f)AX T IY(X29 Y2, I)Ay T]t(X2, Y2, I)At =0

Now overconstrained system, compute least squares solution by minimizing:

(x;, yi) are pixels in region around (x,y).

Weighting function w() weights error contribution based on distance between (x;, yi) and (x, y). e.g., Gaussian fall-off.

E(Ax,Ay) = 2 W,y x| L (%3, 0Ax + 1 (x5, DAy +1,(x,,y, ,Z‘)At]2

X; 5Y;

CMU 15-869, Fall 2013

Solving for motion

E (Ax, Ay) minimized when derivatives are zero:

dE(Ax,Ay))
= Y w(x,y, , X, | Ax+1 1 Ay+1 1,
e Ey (%, 3:%,3)| Ay+ 11

dE(Ax,Ay) "
= Y w(x,,y,, x, VI Ay+1 I Ax+1 1
d(Ay) E(” LA+ LLAH L

Rewrite, now solve the following linear system for Ax, Ay:

0

0

AO BO C

Precompute partial derivatives /., /,, I from original images A and B
For each pixel (x,y): evaluate A0, BO, C0, A1, B1, (1, then solve for (Ax, Ay) at (x,y)

CMU 15-869, Fall 2013

Optical flow, implemented in practice

Gradient-constraint equation makes a linear motion assumption

I(x, y,) = I(x, y,) + I(x, y, OAx + L(x, y, DAy + Idx, y, DAt

X —|_ -
I(x, y,)Ax + L(x, y,)AW H Idx, y, DA 40— The observed change in pixel (x,y)

. Is due to object motion at point by (Ax, Ay)

B Improvement: iterative techniques use this original flow field to compute higher
order residuals (non-linear motion)

B Question: Why is it important for optical flow implementation to be very efficient?
— Hint: consider linear-motion assumption, consider aliasing

CMU 15-869, Fall 2013

Class discussion

B |magine the your final project is to architect a processor to handle image
processing tasks for the widely anticipated kPhone. (like the iPhone, but better)

® How would you characterize image processing workloads?
- Parallelism?

- Data-access patterns?
- Predictability? (of data access, of instruction stream)

B What are good characteristics of a processor for image processing tasks?

- Programmable, or fixed-function?
- If programmable, do we need: branch-prediction? out-of-order execution?
- If fixed-function, in what ways can it be configured?

- What forms of parallelism? (SIMD, multi-core)
- Support for multi-threading, prefetching?

- Data caches or on-chip buffers/scratchpads?

CMU 15-869, Fall 2013

Readings

m Adams et al. The Frankencamera: An Experimental Platform for
Computational Photography. SIGGRAPH 2010

CMU 15-869, Fall 2013

