
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 12:

The Reyes Rendering
Architecture

 CMU 15-869, Fall 2013

A gallery of images rendered using Reyes

 CMU 15-869, Fall 2013
Image credit: Lucas!lm (Adventures of Andre and Walle B, 1984)

 CMU 15-869, Fall 2013

Image credit: Pixar (Luxo Jr., 1986)

 CMU 15-869, Fall 2013

Image credit: Pixar (Toy Story 2, 1999)

 CMU 15-869, Fall 2013

Image credit: Pixar (Wall-E, 2008)

 CMU 15-869, Fall 2013

Image credit: Pixar (Ratatouille, 2007)

 CMU 15-869, Fall 2013Image credit: Pixar (UP, 2009)

 CMU 15-869, Fall 2013Image credit: Pixar (UP, 2009)

 CMU 15-869, Fall 2013

Image credit: Pixar (UP, 2009)

 CMU 15-869, Fall 2013Image credit: Pixar (UP, 2009)

 CMU 15-869, Fall 2013

Image credit: Pixar (UP, 2009)

 CMU 15-869, Fall 2013

Image credit: Pixar (Toy Story 3, 2010)

 CMU 15-869, Fall 2013

The Reyes image rendering architecture
▪ Reyes: acronym for Renders Everything You Ever Saw

- Also a reference to Pt. Reyes, CA (just north of San Francisco)
- Disagreement in graphics community about whether it is written Reyes or REYES.

(Rob Cook says it’s “Reyes”)

▪ Developed at Lucas!lm (graphics group later
became Pixar)

▪ Pixar’s implementation is called
Photorealistic Renderman (prman)
- Renderman name was a take off on the Sony Walkman

▪ Rendering system for every Pixar !lm
- And vast majority of other studio’s special effects

 CMU 15-869, Fall 2013

Reyes goals
▪ High image quality: no visible faceting or aliasing

▪ Handle massive scene complexity

▪ Support large diversity in models, materials (shading)

▪ High performance: achieve all of the above in “reasonable”
rendering time (minutes/hours frame)

 CMU 15-869, Fall 2013

Canonical Reyes pipeline

Vertex Shade

Primitive Bound

Primitive Split

Rasterization

Frame-Buffer Ops

Primitive Dice

“Hider”

Primitives
(e.g., parametric patch, sphere)

Micropolygon Grid

Shaded Micropolygon Grid
(vertices displaced)

Visible points

Frame Buffer

 CMU 15-869, Fall 2013

De!nitions
▪ Micropolygon = canonical intermediate representation in the Reyes

pipeline. Expectation is that projected polygon area <= 1 pixel
▪ Grid = micropolygon mesh corresponding to contiguous surface region
▪ Reyes pipeline state de!nes:

- Target micropolygon area (typically 1/4 to 1 pixels)
- Maximum number of micropolygons in a grid (typically ~256)

Micropolygons
(note: here I’m showing triangle micropolygons, but for this lecture I usually refer to micropolygons as quads)

(one pixel)

 CMU 15-869, Fall 2013

Tessellation

 CMU 15-869, Fall 2013

Tessellating primitives into micropolygon grids

▪ Goals
- Want micropolygons all about the same size
- Want projected micropolygon areas to closely match target size
- Ideally, grids should be reasonably large (close to max grid size)

▪ Reyes tessellation
- Lane-Carpenter algorithm (often referred to as “split-dice”)

Patch viewed from camera

Uniform patch tessellation is insufficient

Polygons too large: poor quality

Too many polygons: poor performance

Uniform partitioning of patch
(parametric domain)

u

v

Patch parametric domain Patch viewed from camera

Split-dice adaptive tessellation

u

v

[Lane 80]

Patch parametric domain Patch viewed from camera
u

v

Split-dice adaptive tessellation [Lane 80]

Patch parametric domain Patch viewed from camera
u

v

Split-dice adaptive tessellation [Lane 80]

 CMU 15-869, Fall 2013

Reyes primitive interface
class	
 Primitive

{

	
 	
 	
 BBox3D	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 bbox();

	
 	
 	
 bool	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 canDice();

	
 	
 	
 List<Primitive>	
 split();

	
 	
 	
 Grid	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 dice();

};

Split partitions primitive into one or more child primitives
Split may generate child primitives of a different type

Note: bbox is expanded by renderer to account for primitive motion over the frame (motion blur),
surface displacement, etc.

 CMU 15-869, Fall 2013

Interesting implications of split

▪ Splitting also enables clipless rasterization (see Reyes paper)

▪ Encapsulates adaptivity (keep dicing operation simple, regular, and fast)

▪ Divide and conquer algorithm:
- Micropolygon generation order exhibits high spatial locality (recall hierarchical rasterization)
- Provides temporal stability

▪ Splitting implicitly creates a hierarchy of grids
- Very useful for frustum/depth culling at largest possible granularity
- Use bbox to cull primitives prior to dicing (or prior to unnecessary splitt

 CMU 15-869, Fall 2013

Shading

 CMU 15-869, Fall 2013

Reyes shades micropolygon grid vertices
▪ Reyes invokes the shading function once for each grid vertex

- Shading function de!ned using Renderman Shading Language (RSL) ***
- Shading function computes surface appearance at vertex
- Shading function may also reposition vertex (displacement)

*** See shading languages lecture

 CMU 15-869, Fall 2013

Micropolygon mesh: before displacement

 CMU 15-869, Fall 2013

Micropolygon mesh: after displacement
(Noise function used to compute displacement amount.)

 CMU 15-869, Fall 2013

Why operate on grids?
▪ Execution coherence

- All vertices on grid shaded with same shader
- Permits SIMD implementation

▪ Locality
- Grid is contiguous region of surface: shading points together increases texture locality

▪ Compact representation
- For regular (tensor product) grid, topology is implicit (do not need to store polygon adjacency)
- Quad micropolygon grid: each interior vertex shared by four micropolygons

▪ Connectivity leveraged to compute derivatives in shaders
- Can compute higher order derivatives

▪ Preserve hierarchy
- Allows per-grid operations, in addition to per micropolygon or per-vertex
- Useful for culling, etc.

 CMU 15-869, Fall 2013

Hiding
(visibility and occlusion)

 CMU 15-869, Fall 2013

Hiding micropolygons (rasterization + occlusion)

Note: many visibility samples per pixel to eliminate aliasing

Option 1: micropolygon is $at shaded (apply color from one vertex to sample)

 CMU 15-869, Fall 2013

Hiding micropolygons (rasterization + occlusion)

Note: many visibility samples per pixel to eliminate aliasing

Option 2: interpolate per-vertex colors

 CMU 15-869, Fall 2013

Aside: interesting sampling question
▪ Reyes samples surface appearance uniformly in surface parametric space (within in grid)

- Uniform in parametric space ≃ uniform in object space, but not uniform in screen
space due to projection

- Textures !ltered using object-space surface derivatives

▪ Surface is projected, and then appearance is resampled uniformly in screen space at
visibility sample points

▪ OpenGL/Direct3D pipeline samples surface appearance uniformly in screen space

- Textures !ltered using screen-space surface derivatives

Is there a preferred solution? (not well understood)
Consider:
High frequency surface appearance: due to bumpy geometry, due to high frequency texture
Surfaces at grazing angles to camera (near silhouettes)
What is lost in resampling step?

 CMU 15-869, Fall 2013

Motion blur

Moving micropolygon

x

y

t Common simpli!cation: linear motion for
duration of virtual camera exposure

X,T plane (visibility samples distributes in space and time)
t

x

1 pixel

X,T plane

xMotion blur + defocus: 5D point-in-polygon tests (XY, T, lens UV)

t

Candidate visibility samples
t

x

Tighter bounds (4 time intervals)

x

t

Tighter bounds (4 time intervals)

x

t

B0

B1

B2

B3

Slow motion = tight bounds

x
B0

t

Fast motion = loose bounds

x
B0

t

 CMU 15-869, Fall 2013

Stochastic rasterization results
White ball moving rapidly across screen

(movies shown in class)

 CMU 15-869, Fall 2013

Stochastic rasterization results
White ball moving rapidly across screen

(movies shown in class: see web site)

 CMU 15-869, Fall 2013

Stochastic sampling for motion blur
(and defocus blur)
▪ Need high visibility sampling rates to remove noise in renderings with

large motion blur, or camera defocus
▪ 64 - 128 visibility samples per pixel common in !lm rendering

- Large frame buffer!

 CMU 15-869, Fall 2013

Transparent surfaces

100% opaque, red

75% opaque, blue

25% opaque, green

composited result = 0.25 * green + .75 * (.75 * blue + .25 * red)

OpenGL/Direct3D solution relies on pipeline ordering semantics:
Application sorts surfaces, renders surfaces back-to-front ***
Set frame-buffer blend mode:
frag.alpha	
 *	
 frag.color	
 +	
 (1-­‐frag.alpha)	
 *	
 fb_color

*** front-to-back rendering solution exists as well

 CMU 15-869, Fall 2013

Transparency when using Z-buffer for occlusion

▪ Application sorting is a pain

▪ Depth sort order not well de!ned with triangles
(interpenetration), let alone complex Reyes primitives

▪ Further complicated by motion blur

 CMU 15-869, Fall 2013

A-buffer
▪ Store list of “visible points” at each visibility sample

- visible point = {rgb, alpha, z}

▪ When frame rendering is complete:
For	
 each	
 sample:

Sort	
 visible	
 points	
 in	
 list	
 by	
 Z

Blend	
 front-­‐to-­‐back	
 (or	
 back-­‐to-­‐front)	

▪ Provides primitive order-independent solution for rendering transparency
▪ Cost: variable storage per visibility sample
▪ Many optimizations to prune list as rendering proceeds

- e.g., don’t need to add visible points behind an opaque point in the list

[Carpenter 84]

 CMU 15-869, Fall 2013

Reyes A-buffer
▪ Many visibility samples per pixel (recall: 64-128)
▪ Many visible points per sample (under conditions of

signi!cant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel
4 visible points per sample (rgb,a,z)

~10 GB A-buffer !!!

 CMU 15-869, Fall 2013

Reyes implementations use bucketing
▪ Recall “sort middle tiled chunked” (assignment 1)
▪ Motivation here is to keep the A-buffer for a bucket in memory

(previously we discussed how some implementations of OpenGL use a similar sorting scheme to:
gain parallelism, keep a tile of frame-buffer on chip)

for	
 each	
 primitive,	
 place	
 in	
 screen	
 bucket

for	
 each	
 bucket

	
 	
 	
 	
 allocate	
 G-­‐buffer	
 for	
 bucket

	
 	
 	
 	
 for	
 each	
 primitive

split-­‐dice	
 to	
 create	
 grids	
 //	
 each	
 split,	
 cull	
 primitives	
 falling	
 outside	
 of	
 bucket

shade	
 +	
 hide	
 grids

	
 for	
 each	
 bucket	
 g-­‐buffer	
 sample

composite	
 visible	
 points

 CMU 15-869, Fall 2013

Reyes summary
▪ Key algorithms

- High quality, split-dice tessellation
- Shades per-vertex, prior to rasterization
- Visibility via stochastic point sampling to simulate motion blur, camera defocus
- Correct rendering of transparent surfaces via the A-buffer

▪ Key system concepts
- Micropolygons: common intermediate representation for all primitive types
- Micropolygon grids for locality and SIMD shading
- Bucketed rendering to !t tiles of A-buffer in memory (high depth complexity due to

transparency and high visibility sampling rates)
(not discussed today: lots of smarts in a performant Reyes implementation to keep working
set in memory)

 CMU 15-869, Fall 2013

Readings
▪ The Reyes Image Rendering Architecture. R. Cook et al.

SIGGRAPH 1987

