Lecture 12:

The Reyes Rendering
Architecture

Visual Computing Systems
CMU 15-869, Fall 2013

A gallery of images rendered using Reyes

CMU 15-869, Fall 2013

Image credit: Lucasfilm (Adventures of Andre and Walle B, 1984)

CMU 15-869, Fall 2013

Image credit: Pixar (Luxo Jr., 1986)

CMU 15-869, Fall 2013

/4

Image credit: Pixar (Toy Story 2, 1999)

CMU 15-869, Fall 2013

Image credit: Pixar (Wall-E, 2008)

(MU 15-869, Fall 2013

Image credit: Pixar (Ratatouille, 2007)

Image credit: Pixar (UP, 2009)

apaspap.asr.avl

Image credit: Pixar (UP, 2009)

CMU 15-869, Fall 2013

Image credit: Pixar (UP, 2009)

(MU 15-869, Fall 2013

i,

Image credit: Pixar (UP, 2009) CMU 15-869, Fall 2013

Imag;-iredit: Pixar (UP, 2009)

Image credit: Pixar (Toy Story 3,2010)

The Reyes image rendering architecture

B Reyes: acronym for Renders Everything You Ever Saw

- Also a reference to Pt. Reyes, CA (just north of San Francisco)

- Disagreement in graphics community about whether it is written Reyes or REYES.
(Rob Cook says it's “Reyes”)

m Developed at Lucasfilm (graphics group later
became Pixar)

m Pixar’s implementation is called
Photorealistic Renderman (prman)

— Renderman name was a take off on the Sony Walkman

B Rendering system for every Pixar film

— And vast majority of other studio’s special effects

(MU 15-869, Fall 2013

Reyes goals

m Highimage quality: no visible faceting or aliasing

|
ll
_

B Handle massive scene complexity

—

m Support large diversity in models, materials (shading)

m High performance: achieve all of the above in “reasonable”
rendering time (minutes/hours frame)

CMU 15-869, Fall 2013

Canonical Reyes pipeline

Primitives
(e.g., parametric patch, sphere)

Primitive Bound

Primitive Split

Primitive Dice

Micropolygon Grid

Shaded Micropolygon Grid
N (vertices displaced)

Rasterization

“Hider” momemmmmnm Visible points

Frame-Buffer Ops

|

Frame Buffer

CMU 15-869, Fall 2013

Definitions

® Micropolygon = canonical intermediate representation in the Reyes
pipeline. Expectation is that projected polygon area <=1 pixel

® Grid = micropolygon mesh corresponding to contiguous surface region

m Reyes pipeline state defines:
Target micropolygon area (typically 1/4 to 1 pixels)

Maximum number of micropolygons in a grid (typically ~256)

CMU 15-869, Fall 2013

.

R TANRG AV LNZAY G L 7 g AW ATV A s T S A, Tl o= g
= g%;&‘ﬁ* O R=ET WG ,ﬁg;?i vAVY, TNz _ -
S ‘:ﬁ‘\‘ AVAS N ,.','_:-': - Oy ,l : 5 GG AYA WA i :.' = - i iy o<J N

¢

A

1 5 .
N Wy,
.

’V,'A

s
%

g

%
3
Y

%
%
>
-0

/
'al:\

a
5

N N
2T AR
' "ﬁi’o,.

SIS

\ . AY, . . : : - : _. k- “ .'-.:.‘." —— e ,—"- e | N S I S S —t—1—T—t—t—t—1—1T—t T
{ LY SIS -'l‘.t-.- "‘"‘5; = 2 : ' > N1] \ \ | | |] 1 | p I) 1 T | 1
A TR N S WA ap AV SN -»v,\ oS UNEEEEEEESE One |Xe AN

\\\\\
......

i
&0

D

\"
SV
R

-

I\ 7

S
\

7
p

X
%

AYA

-

,

> '. AA_..-

N
=

S

NS

VS
AVA "4
\ 7

A
b

A
2

\, /
WA

7\ e O S A B 2
RSN TR e
A YAWE [AT

S

VAVYAY.
5

N7/
G

AV
\/ Y

Va)
7

SUISAY, PN A NN SR e T AN R e T
v:A ‘k"‘ £\ :v-_ - ‘ :,-\'_“J-\;‘..‘ P— ‘o i \ 4 ‘.\:'-.. i 1
SIUSAREE iy TN ES RS i NEEEEEEEEEEEEEEEE R
) - < ‘_,\h_\‘:_' (2R .. o"--:;.\-' = . _-\\ ' - » \‘ ‘«.‘_;‘ “\' -+t —t —_—t b—3 - I I S S N
SISE S IIAN SN S AN % LN

DD

T S S e SR N/ S\
RS SIS R
O P G PTAR Ty)
NSO
XS DA AR
DS OAIIINRR
ANZAY AN o WATAVA '™
| - A!',' 1&&'&:‘-5"’ :

RN

DS

AV,
/
XA

g

i
s

7

- -
L2

‘0."_.;. ~ T — 4 4 4 - ! :
' \) E / \ '(”":'T""x !] e S N S —
Pl N\ ‘ﬂ\ \ : e] ‘-'& A 11T 1T 1T 1T
- e BRI 7TN - - A ML IS
S AN ORI 2D RIS AOSINAKASLY ?if'ﬁ\»’m_\%zs ,A
ATl S A A | ASERT\/\ KIV SN e A N
0 A= SIS YA 7 AN ‘\.\ \\
N NASSER OO RN /NN DR /A RS -
S A S R S e TR DA 4 DT
S AN IS SN IRV RSSO A/ IS
SEBPIAN Al ' > DA
v. viv !
A

\\\t\ . .\“\ PN |
_ SR N N R\
N ‘\"i\\\\ eSS NI A g avatilis / {2\ \.fl\ Y‘ \%‘\ TN
AN KNSR S NV A ONA AR ZATIA PSR SRR
Waw a VA \ \/ FA' M\ y, o kPN b e 1
R R S R R RS RSN R
VAT 1 }91»..»«;_‘3 Al B ‘ i 7 A ',.1}(A N7 . fu’k‘ﬁ&\xﬁ*ﬁ«»«_}.‘; A\ ‘t‘
-f. n“‘("& N ' "‘.‘. ; '!'V'., *‘\ 14 ~ o1 A&‘ N ‘!.:. ' '\\ ',Z.\ i.’
| | Q%"%?‘i" Y % 'g«%’
/\/ AVRTAL 78 XU
V(V?Au"éx PN PN

4
4)‘4
S
Yaoie

WAV
¢¢'¢5’
. /

v,
W A sval

Va)

-

7

-
S

\/

Q;f
.3
i

NBE
)

X

| A
Al
Va
S

v
:ff;z\
v* S
A
-y
KV
»
v
%

=57
A= '0
“%2;:
Q-
e
P
S0

o\

[/

[
SEED

hAPAN A

i
\X

y”
\Z
T

v
B

Ne
v,
e~
o
- N

4— g .,-. .
vA | f
\ -

H\/)

Y

v
\ &

>

o
Do

v 4
¢

(=
7
N

4
A%

N

& L IS

N7
v

N N

oo

2
<
>
e

7

2,

/-

N
-y
o S

B g
PN
N

N2

?".:

.
BT
%

..,4),
=
A\

\J

"
=

7N
1w

f’
' v

...fvi}

o

-
) .»

-

Ve
<

'\
X
%

\".~ —

w
RN R
‘ ?W&"}-Z; AR
ISR RN
5
Val A/ DA
‘ ‘.’:f?-’:"",‘ \‘\‘ \, ";-

A AN O
NSO IR
M “':Ag'\‘"‘%b‘k\‘ !Q ol b\ : N A : 1 AL ALK ARG .
SRR OSSN S SRR TSR A1 SRR LR/
5:‘?‘;’6&&*5\;\\\“ ! i'.' ‘ “»,;-! /I i P A e e S

S

el
-~ an
e

a)
ey,

a

5
Nz

{

52
=

N

A.A
-

Netle

S22

"'

=5
e

-t
Wb

\
>
xr .).?“"

< A
- -

Tessellation

CMU 15-869, Fall 2013

Tessellating primitives into micropolygon grids

B Goals

- Want micropolygons all about the same size
- Want projected micropolygon areas to closely match target size

- ldeally, grids should be reasonably large (close to max grid size)

B Reyes tessellation

- Lane-Carpenter algorithm (often referred to as “split-dice”)

CMU 15-869, Fall 2013

Uniform patch tessellation is insufficient

"
! Too many polygons: poor performance
Polygons too large: poor quality
> U
Uniform partitioning of patch Patch viewed from camera

(parametric domain)

Split-dice adaptive tessellation Lane 80

Patch parametric domain Patch viewed from camera

Split-dice adaptive tessellation Lane 80

> U
Patch parametric domain Patch viewed from camera

>

Split-dice adaptive tessellation Lane 80

: .U
Patch parametric domain

(7T T TV N\
YAV SN R
/[[[|
[T TT]
/]]]]

(/)])]
(/)]]]]

[/L[]

Patch viewed from camera

Reyes primitive interface

class Primitive

{
BBox3D bbox () ;
bool canDice();
List<Primitive> split();
Grid dice();

}s

Split partitions primitive into one or more child primitives

Split may generate child primitives of a different type

Note: bbox is expanded by renderer to account for primitive motion over the frame (motion blur),
surface displacement, etc.

CMU 15-869, Fall 2013

Interesting implications of split

B Encapsulates adaptivity (keep dicing operation simple, reqular, and fast)

B Divide and conquer algorithm:

Micropolygon generation order exhibits high spatial locality (recall hierarchical rasterization)

Provides temporal stability

m Splitting implicitly creates a hierarchy of grids

Very useful for frustum/depth culling at largest possible granularity

Use bbox to cull primitives prior to dicing (or prior to unnecessary splitt

m Splitting also enables clipless rasterization (see Reyes paper)

oo

CMU 15-869, Fall 2013

Shading

CMU 15-869, Fall 2013

Reyes shades micropolygon grid vertices

B Reyes invokes the shading function once for each grid vertex
- Shading function defined using Renderman Shading Language (RSL) ***

- Shading function computes surface appearance at vertex

- Shading function may also reposition vertex (displacement)

¥ See shading languages lecture

CMU 15-869, Fall 2013

Micropolygon mesh: before displacement

(MU 15-869, Fall 2013

Micropolygon mesh: after displacement

(Noise function used to compute displacement amount.)

(MU 15-869, Fall 2013

Why operate on grids?

m Execution coherence

- All vertices on grid shaded with same shader
= Permits SIMD implementation

B Locality

- Grid is contiguous region of surface: shading points together increases texture locality

m Compact representation

- Forreqular (tensor product) grid, topology is implicit (do not need to store polygon adjacency)
- Quad micropolygon grid: each interior vertex shared by four micropolygons

m Connectivity leveraged to compute derivatives in shaders

- (Can compute higher order derivatives

m Preserve hierarchy

- Allows per-grid operations, in addition to per micropolygon or per-vertex

- Useful for culling, etc.

CMU 15-869, Fall 2013

Hiding
(visibility and occlusion)

Hiding micropolygons (rasterization + occlusion)

Option 1: micropolygon is flat shaded (apply color from one vertex to sample)

Note: many visibility samples per pixel to eliminate aliasing

CMU 15-869, Fall 2013

Hiding micropolygons (rasterization + occlusion)

Option 2: interpolate per-vertex colors

Note: many visibility samples per pixel to eliminate aliasing

CMU 15-869, Fall 2013

Aside: interesting sampling question

m Reyes samples surface appearance uniformly in surface parametric space (within in grid)

- Uniform in parametric space = uniform in object space, but not uniform in screen
space due to projection

- Textures filtered using object-space surface derivatives

m Surfaceis projected, and then appearance is resampled uniformly in screen space at
visibility sample points

® OpenGL/Direct3D pipeline samples surface appearance uniformly in screen space

- Textures filtered using screen-space surface derivatives

Is there a preferred solution? (not well understood)

Consider:
High frequency surface appearance: due to bumpy geometry, due to high frequency texture
Surfaces at grazing angles to camera (near silhouettes)

What is lost in resampling step?
CMU 15-869, Fall 2013

Motion blur

CMU 15-869, Fall 2013

Moving micropolygon

Common simplification: linear motion for
t duration of virtual camera exposure

y pr

X,T plane (visibility samples distributes in space and time)

t)

Motion blur + defocus: 5D point-in-polygon tests (XY, T, lens UV)

x.

Candidate visibility samples

t

Tighter bounds (4 time intervals)

t

Tighter bounds (4 time intervals)

Slow motion = tight bounds
t A

t)

Fast motion = loose bounds

Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class)

CMU 15-869, Fall 2013

Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class: see web site)

CMU 15-869, Fall 2013

Stochastic sampling for motion blur
(and defocus blur)

B Need high visibility sampling rates to remove noise in renderings with
large motion blur, or camera defocus

B 64 - 128 visibility samples per pixel common in film rendering
- Large frame buffer!

(MU 15-869, Fall 2013

Transparent surfaces

. 100% opaque, red

75% opaque, blue

25% opaque, green

composited result = 0.25 * green + .75 * (.75 * blue + .25 * red)

OpenGL/Direct3D solution relies on pipeline ordering semantics:
Application sorts surfaces, renders surfaces back-to-front ***

Set frame-buffer blend mode:
frag.alpha * frag.color + (1-frag.alpha) * fb_color

*** front-to-back rendering solution exists as well

CMU 15-869, Fall 2013

Transparency when using Z-buffer for occlusion

m Application sorting is a pain

m Depth sort order not well defined with triangles
(interpenetration), let alone complex Reyes primitives

m Further complicated by motion blur

CMU 15-869, Fall 2013

A' b Uffe I [Carpenter 84]

B Store list of “visible points” at each visibility sample
- visible point ={rgb, alpha, z}

B When frame rendering is complete:

For each sample:
Sort visible points in list by Z
Blend front-to-back (or back-to-front)

B Provides primitive order-independent solution for rendering transparency
m (ost: variable storage per visibility sample

B Many optimizations to prune list as rendering proceeds

- e.g., don't need to add visible points behind an opaque point in the list

CMU 15-869, Fall 2013

Reyes A-buffer

m Many visibility samples per pixel (recall: 64-128)

m Many visible points per sample (under conditions of
significant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel

4 visible points per sample (rgb,a,z)

~10 GB A-buffer !

CMU 15-869, Fall 2013

Reyes implementations use bucketing

m Recall “sort middle tiled chunked” (assignment 1)
m Motivation here is to keep the A-buffer for a bucket in memory

(previously we discussed how some implementations of OpenGL use a similar sorting scheme to:
gain parallelism, keep a tile of frame-buffer on chip)

for each primitive, place in screen bucket
for each bucket
allocate G-buffer for bucket
for each primitive
split-dice to create grids // each split, cull primitives falling outside of bucket
shade + hide grids
for each bucket g-buffer sample

composite visible points

CMU 15-869, Fall 2013

Reyes summary

m Keyalgorithms
- High quality, split-dice tessellation

- Shades per-vertex, prior to rasterization
- Visibility via stochastic point sampling to simulate motion blur, camera defocus

- Correct rendering of transparent surfaces via the A-buffer

m Key system concepts

- Micropolygons: common intermediate representation for all primitive types
- Micropolygon grids for locality and SIMD shading

- Bucketed rendering to fit tiles of A-buffer in memory (high depth complexity due to
transparency and high visibility sampling rates)

(not discussed today: lots of smarts in a performant Reyes implementation to keep working
set in memory)

CMU 15-869, Fall 2013

Readings

B The Reyes Image Rendering Architecture. R. Cook et al.
SIGGRAPH 1987

CMU 15-869, Fall 2013

