
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 12:

The Reyes Rendering 
Architecture



 CMU 15-869, Fall 2013

A gallery of images rendered using Reyes
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Image credit: Lucas!lm (Adventures of Andre and Walle B, 1984)
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Image credit: Pixar (Luxo Jr., 1986)
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Image credit: Pixar (Toy Story 2, 1999)
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Image credit: Pixar (Wall-E, 2008)
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Image credit: Pixar (Ratatouille, 2007)



 CMU 15-869, Fall 2013Image credit: Pixar (UP, 2009)
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Image credit: Pixar (UP, 2009)
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Image credit: Pixar (UP, 2009)
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Image credit: Pixar (Toy Story 3, 2010)
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The Reyes image rendering architecture
▪ Reyes: acronym for Renders Everything You Ever Saw

- Also a reference to Pt. Reyes, CA (just north of San Francisco)
- Disagreement in graphics community about whether it is written Reyes or REYES. 

(Rob Cook says it’s “Reyes”)

▪ Developed at Lucas!lm (graphics group later 
became Pixar)

▪ Pixar’s implementation is called 
Photorealistic Renderman (prman)
- Renderman name was a take off on the Sony Walkman

▪ Rendering system for every Pixar !lm
- And vast majority of other studio’s special effects
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Reyes goals
▪ High image quality: no visible faceting or aliasing

▪ Handle massive scene complexity

▪ Support large diversity in models, materials (shading)

▪ High performance: achieve all of the above in “reasonable” 
rendering time (minutes/hours frame)
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Canonical Reyes pipeline

Vertex Shade

Primitive Bound

Primitive Split

Rasterization

Frame-Buffer Ops

Primitive Dice

“Hider”

Primitives
(e.g., parametric patch, sphere) 

Micropolygon Grid 

Shaded Micropolygon Grid
(vertices displaced) 

Visible points

Frame Buffer
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De!nitions
▪ Micropolygon = canonical intermediate representation in the Reyes 

pipeline. Expectation is that projected polygon area <= 1 pixel 
▪ Grid = micropolygon mesh corresponding to contiguous surface region
▪ Reyes pipeline state de!nes:

- Target micropolygon area (typically 1/4 to 1 pixels)
- Maximum number of micropolygons in a grid (typically ~256)



Micropolygons
(note: here I’m showing triangle micropolygons, but for this lecture I usually refer to micropolygons as quads)

(one pixel)
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Tessellation
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Tessellating primitives into micropolygon grids

▪ Goals
- Want micropolygons all about the same size
- Want projected micropolygon areas to closely match target size 
- Ideally, grids should be reasonably large (close to max grid size)

▪ Reyes tessellation
- Lane-Carpenter algorithm (often referred to as “split-dice”)



Patch viewed from camera

Uniform patch tessellation is insufficient

Polygons too large: poor quality

Too many polygons: poor performance

Uniform partitioning of patch
(parametric domain)

u

v



Patch parametric domain Patch viewed from camera

Split-dice adaptive tessellation

u

v

[Lane 80]



Patch parametric domain Patch viewed from camera
u

v

Split-dice adaptive tessellation [Lane 80]



Patch parametric domain Patch viewed from camera
u

v

Split-dice adaptive tessellation [Lane 80]
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Reyes primitive interface
class	
  Primitive

{

	
  	
  	
  BBox3D	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  bbox();

	
  	
  	
  bool	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  canDice();

	
  	
  	
  List<Primitive>	
  split();

	
  	
  	
  Grid	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  dice();

};

Split partitions primitive into one or more child primitives
Split may generate child primitives of a different type

Note: bbox is expanded by renderer to account for primitive motion over the frame (motion blur), 
surface displacement, etc.
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Interesting implications of split

▪ Splitting also enables clipless rasterization (see Reyes paper)

▪ Encapsulates adaptivity (keep dicing operation simple, regular, and fast)

▪ Divide and conquer algorithm:
- Micropolygon generation order exhibits high spatial locality (recall hierarchical rasterization)
- Provides temporal stability

▪ Splitting implicitly creates a hierarchy of grids
- Very useful for frustum/depth culling at largest possible granularity
- Use bbox to cull primitives prior to dicing (or prior to unnecessary splitt
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Shading
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Reyes shades micropolygon grid vertices
▪ Reyes invokes the shading function once for each grid vertex

- Shading function de!ned using Renderman Shading Language (RSL) ***
- Shading function computes surface appearance at vertex
- Shading function may also reposition vertex (displacement)

*** See shading languages lecture 
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Micropolygon mesh: before displacement
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Micropolygon mesh: after displacement 
(Noise function used to compute displacement amount.)
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Why operate on grids?
▪ Execution coherence

- All vertices on grid shaded with same shader
- Permits SIMD implementation

▪ Locality
- Grid is contiguous region of surface: shading points together increases texture locality

▪ Compact representation
- For regular (tensor product) grid, topology is implicit (do not need to store polygon adjacency)
- Quad micropolygon grid: each interior vertex shared by four micropolygons

▪ Connectivity leveraged to compute derivatives in shaders
- Can compute higher order derivatives

▪ Preserve hierarchy
- Allows per-grid operations, in addition to per micropolygon or per-vertex
- Useful for culling, etc.
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Hiding
(visibility and occlusion)
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Hiding micropolygons (rasterization + occlusion)

Note: many visibility samples per pixel to eliminate aliasing 

Option 1: micropolygon is $at shaded (apply color from one vertex to sample) 
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Hiding micropolygons (rasterization + occlusion)

Note: many visibility samples per pixel to eliminate aliasing 

Option 2: interpolate per-vertex colors 
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Aside: interesting sampling question
▪ Reyes samples surface appearance uniformly in surface parametric space (within in grid)

- Uniform in parametric space ≃ uniform in object space, but not uniform in screen 
space due to projection

- Textures !ltered using object-space surface derivatives

▪ Surface is projected, and then appearance is resampled uniformly in screen space at 
visibility sample points

▪ OpenGL/Direct3D pipeline samples surface appearance uniformly in screen space

- Textures !ltered using screen-space surface derivatives

Is there a preferred solution? (not well understood)
Consider:
High frequency surface appearance: due to bumpy geometry, due to high frequency texture
Surfaces at grazing angles to camera (near silhouettes)
What is lost in resampling step?
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Motion blur



Moving micropolygon

x

y

t Common simpli!cation: linear motion for 
duration of virtual camera exposure



X,T plane (visibility samples distributes in space and time)
t

x

1 pixel



X,T plane

xMotion blur + defocus:  5D point-in-polygon tests (XY, T, lens UV) 

t



Candidate visibility samples
t

x



Tighter bounds  (4 time intervals)

x

t



Tighter bounds  (4 time intervals)

x

t

B0

B1

B2

B3



Slow motion = tight bounds

x
B0

t



Fast motion = loose bounds

x
B0

t
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Stochastic rasterization results
White ball moving rapidly across screen

(movies shown in class) 
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Stochastic rasterization results
White ball moving rapidly across screen

(movies shown in class: see web site) 
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Stochastic sampling for motion blur 
(and defocus blur)
▪ Need high visibility sampling rates to remove noise in renderings with 

large motion blur, or camera defocus
▪ 64 - 128 visibility samples per pixel common in !lm rendering

- Large frame buffer!
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Transparent surfaces

100% opaque, red

75% opaque, blue

25% opaque, green

composited result = 0.25 * green  + .75 * ( .75 * blue + .25 * red)

OpenGL/Direct3D solution relies on pipeline ordering semantics:
Application sorts surfaces, renders surfaces back-to-front ***
Set frame-buffer blend mode:
frag.alpha	
  *	
  frag.color	
  +	
  (1-­‐frag.alpha)	
  *	
  fb_color

*** front-to-back rendering solution exists as well
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Transparency when using Z-buffer for occlusion

▪ Application sorting is a pain

▪ Depth sort order not well de!ned with triangles 
(interpenetration), let alone complex Reyes primitives

▪ Further complicated by motion blur
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A-buffer
▪ Store list of “visible points” at each visibility sample

- visible point = {rgb, alpha, z}

▪ When frame rendering is complete:
For	
  each	
  sample:

Sort	
  visible	
  points	
  in	
  list	
  by	
  Z

Blend	
  front-­‐to-­‐back	
  (or	
  back-­‐to-­‐front)	
  

▪ Provides primitive order-independent solution for rendering transparency 
▪ Cost: variable storage per visibility sample
▪ Many optimizations to prune list as rendering proceeds

- e.g., don’t need to add visible points behind an opaque point in the list

[Carpenter 84]
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Reyes A-buffer
▪ Many visibility samples per pixel (recall: 64-128)
▪ Many visible points per sample (under conditions of 

signi!cant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel
4 visible points per sample (rgb,a,z)

~10 GB A-buffer !!!
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Reyes implementations use bucketing
▪ Recall “sort middle tiled chunked” (assignment 1)
▪ Motivation here is to keep the A-buffer for a bucket in memory 

(previously we discussed how some implementations of OpenGL use a similar sorting scheme to: 
gain parallelism, keep a tile of frame-buffer on chip)

for	
  each	
  primitive,	
  place	
  in	
  screen	
  bucket

for	
  each	
  bucket

	
  	
  	
  	
  allocate	
  G-­‐buffer	
  for	
  bucket

	
  	
  	
  	
  for	
  each	
  primitive

split-­‐dice	
  to	
  create	
  grids	
  //	
  each	
  split,	
  cull	
  primitives	
  falling	
  outside	
  of	
  bucket

shade	
  +	
  hide	
  grids

	
  for	
  each	
  bucket	
  g-­‐buffer	
  sample

composite	
  visible	
  points
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Reyes summary
▪ Key algorithms

- High quality, split-dice tessellation
- Shades per-vertex, prior to rasterization
- Visibility via stochastic point sampling to simulate motion blur, camera defocus
- Correct rendering of transparent surfaces via the A-buffer

▪ Key system concepts 
- Micropolygons: common intermediate representation for all primitive types
- Micropolygon grids for locality and SIMD shading
- Bucketed rendering to !t tiles of A-buffer in memory  (high depth complexity due to 

transparency and high visibility sampling rates)
(not discussed today: lots of smarts in a performant Reyes implementation to keep working 
set in memory)
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Readings
▪ The Reyes Image Rendering Architecture. R. Cook et al. 

SIGGRAPH 1987


