Lecture 12:

The Reyes Rendering
Architecture

Visual Computing Systems
CMU 15-869, Fall 2013



A gallery of images rendered using Reyes
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Image credit: Lucasfilm (Adventures of Andre and Walle B, 1984)
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Image credit: Pixar (Luxo Jr., 1986)
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Image credit: Pixar (Toy Story 2, 1999)
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Image credit: Pixar (Wall-E, 2008)
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Image credit: Pixar (Ratatouille, 2007)




Image credit: Pixar (UP, 2009)
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Image credit: Pixar (UP, 2009)
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Image credit: Pixar (UP, 2009)
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Image credit: Pixar (UP, 2009) CMU 15-869, Fall 2013




Imag;-iredit: Pixar (UP, 2009)




Image credit: Pixar (Toy Story 3,2010)




The Reyes image rendering architecture

B Reyes: acronym for Renders Everything You Ever Saw

- Also a reference to Pt. Reyes, CA (just north of San Francisco)

- Disagreement in graphics community about whether it is written Reyes or REYES.
(Rob Cook says it's “Reyes”)

m Developed at Lucasfilm (graphics group later
became Pixar)

m Pixar’s implementation is called
Photorealistic Renderman (prman)

— Renderman name was a take off on the Sony Walkman

B Rendering system for every Pixar film

— And vast majority of other studio’s special effects
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Reyes goals

m Highimage quality: no visible faceting or aliasing

|
ll
_

B Handle massive scene complexity

—

m Support large diversity in models, materials (shading)

m High performance: achieve all of the above in “reasonable”
rendering time (minutes/hours frame)
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Canonical Reyes pipeline

Primitives
(e.g., parametric patch, sphere)

Primitive Bound

Primitive Split

Primitive Dice

Micropolygon Grid

Shaded Micropolygon Grid
N (vertices displaced)

Rasterization

“Hider” momemmmmnm Visible points

Frame-Buffer Ops

|

Frame Buffer
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Definitions

®  Micropolygon = canonical intermediate representation in the Reyes
pipeline. Expectation is that projected polygon area <=1 pixel

®  Grid = micropolygon mesh corresponding to contiguous surface region

m  Reyes pipeline state defines:
Target micropolygon area (typically 1/4 to 1 pixels)

Maximum number of micropolygons in a grid (typically ~256)
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Tessellation
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Tessellating primitives into micropolygon grids

B Goals

- Want micropolygons all about the same size
- Want projected micropolygon areas to closely match target size

- ldeally, grids should be reasonably large (close to max grid size)

B Reyes tessellation

- Lane-Carpenter algorithm (often referred to as “split-dice”)
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Uniform patch tessellation is insufficient

"
! Too many polygons: poor performance
Polygons too large: poor quality
> U
Uniform partitioning of patch Patch viewed from camera

(parametric domain)



Split-dice adaptive tessellation Lane 80

Patch parametric domain Patch viewed from camera



Split-dice adaptive tessellation Lane 80

> U
Patch parametric domain Patch viewed from camera
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Split-dice adaptive tessellation Lane 80
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Patch parametric domain
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Reyes primitive interface

class Primitive

{
BBox3D bbox () ;
bool canDice();
List<Primitive> split();
Grid dice();

}s

Split partitions primitive into one or more child primitives

Split may generate child primitives of a different type

Note: bbox is expanded by renderer to account for primitive motion over the frame (motion blur),
surface displacement, etc.
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Interesting implications of split

B Encapsulates adaptivity (keep dicing operation simple, reqular, and fast)

B Divide and conquer algorithm:

Micropolygon generation order exhibits high spatial locality (recall hierarchical rasterization)

Provides temporal stability

m  Splitting implicitly creates a hierarchy of grids

Very useful for frustum/depth culling at largest possible granularity

Use bbox to cull primitives prior to dicing (or prior to unnecessary splitt

m  Splitting also enables clipless rasterization (see Reyes paper)

oo
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Shading
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Reyes shades micropolygon grid vertices

B Reyes invokes the shading function once for each grid vertex
- Shading function defined using Renderman Shading Language (RSL) ***

- Shading function computes surface appearance at vertex

- Shading function may also reposition vertex (displacement)

*¥* See shading languages lecture
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Micropolygon mesh: before displacement
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Micropolygon mesh: after displacement

(Noise function used to compute displacement amount.)

(MU 15-869, Fall 2013




Why operate on grids?

m Execution coherence

- All vertices on grid shaded with same shader
= Permits SIMD implementation

B Locality

- Grid is contiguous region of surface: shading points together increases texture locality

m Compact representation

- Forreqular (tensor product) grid, topology is implicit (do not need to store polygon adjacency)
- Quad micropolygon grid: each interior vertex shared by four micropolygons

m Connectivity leveraged to compute derivatives in shaders

- (Can compute higher order derivatives

m Preserve hierarchy

- Allows per-grid operations, in addition to per micropolygon or per-vertex

- Useful for culling, etc.

CMU 15-869, Fall 2013



Hiding
(visibility and occlusion)



Hiding micropolygons (rasterization + occlusion)

Option 1: micropolygon is flat shaded (apply color from one vertex to sample)

Note: many visibility samples per pixel to eliminate aliasing
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Hiding micropolygons (rasterization + occlusion)

Option 2: interpolate per-vertex colors

Note: many visibility samples per pixel to eliminate aliasing
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Aside: interesting sampling question

m  Reyes samples surface appearance uniformly in surface parametric space (within in grid)

- Uniform in parametric space = uniform in object space, but not uniform in screen
space due to projection

- Textures filtered using object-space surface derivatives

m  Surfaceis projected, and then appearance is resampled uniformly in screen space at
visibility sample points

®  OpenGL/Direct3D pipeline samples surface appearance uniformly in screen space

- Textures filtered using screen-space surface derivatives

Is there a preferred solution? (not well understood)

Consider:
High frequency surface appearance: due to bumpy geometry, due to high frequency texture
Surfaces at grazing angles to camera (near silhouettes)

What is lost in resampling step?
CMU 15-869, Fall 2013



Motion blur
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Moving micropolygon

Common simplification: linear motion for
t duration of virtual camera exposure

y pr




X,T plane (visibility samples distributes in space and time)

t )




Motion blur + defocus: 5D point-in-polygon tests (XY, T, lens UV)

x.



Candidate visibility samples




t

Tighter bounds (4 time intervals)




t

Tighter bounds (4 time intervals)




Slow motion = tight bounds
t A




t )

Fast motion = loose bounds




Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class)
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Stochastic rasterization results

White ball moving rapidly across screen
(movies shown in class: see web site)
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Stochastic sampling for motion blur
(and defocus blur)

B Need high visibility sampling rates to remove noise in renderings with
large motion blur, or camera defocus

B 64 - 128 visibility samples per pixel common in film rendering
- Large frame buffer!

(MU 15-869, Fall 2013



Transparent surfaces

. 100% opaque, red

75% opaque, blue

25% opaque, green

composited result = 0.25 * green + .75 * (.75 * blue + .25 * red)

OpenGL/Direct3D solution relies on pipeline ordering semantics:
Application sorts surfaces, renders surfaces back-to-front ***

Set frame-buffer blend mode:
frag.alpha * frag.color + (1-frag.alpha) * fb_color

*** front-to-back rendering solution exists as well
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Transparency when using Z-buffer for occlusion

m Application sorting is a pain

m Depth sort order not well defined with triangles
(interpenetration), let alone complex Reyes primitives

m Further complicated by motion blur

CMU 15-869, Fall 2013



A' b Uffe I [Carpenter 84]

B Store list of “visible points” at each visibility sample
- visible point ={rgb, alpha, z}

B When frame rendering is complete:

For each sample:
Sort visible points in list by Z
Blend front-to-back (or back-to-front)

B Provides primitive order-independent solution for rendering transparency
m  (ost: variable storage per visibility sample

B Many optimizations to prune list as rendering proceeds

- e.g., don't need to add visible points behind an opaque point in the list

CMU 15-869, Fall 2013



Reyes A-buffer

m Many visibility samples per pixel (recall: 64-128)

m Many visible points per sample (under conditions of
significant transparency)

1920x1080 rendering (1080p)
64 visibility samples per pixel

4 visible points per sample (rgb,a,z)

~10 GB A-buffer !
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Reyes implementations use bucketing

m Recall “sort middle tiled chunked” (assignment 1)
m Motivation here is to keep the A-buffer for a bucket in memory

(previously we discussed how some implementations of OpenGL use a similar sorting scheme to:
gain parallelism, keep a tile of frame-buffer on chip)

for each primitive, place in screen bucket
for each bucket
allocate G-buffer for bucket
for each primitive
split-dice to create grids // each split, cull primitives falling outside of bucket
shade + hide grids
for each bucket g-buffer sample

composite visible points

CMU 15-869, Fall 2013



Reyes summary

m Keyalgorithms
- High quality, split-dice tessellation

- Shades per-vertex, prior to rasterization
- Visibility via stochastic point sampling to simulate motion blur, camera defocus

- Correct rendering of transparent surfaces via the A-buffer

m Key system concepts

- Micropolygons: common intermediate representation for all primitive types
- Micropolygon grids for locality and SIMD shading

- Bucketed rendering to fit tiles of A-buffer in memory (high depth complexity due to
transparency and high visibility sampling rates)

(not discussed today: lots of smarts in a performant Reyes implementation to keep working
set in memory)
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Readings

B The Reyes Image Rendering Architecture. R. Cook et al.
SIGGRAPH 1987
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