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Lecture 10:

Real-time ray tracing
(and opportunities for hardware acceleration)
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Recent push towards real-time ray tracing

Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)
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Review: visibility
▪ Problem: determine what scene geometry contributes to the 

appearance of which screen pixels
▪ Visibility can be thought of as a search problem

- So far in this course: given triangle, !nd samples it contributes to
- Today: given sample, !nd triangle(s) that contribute to it

Screen

Camera
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▪ Rasterization formulation:
- Sample = 2D point on screen
- What scene geometry, after projection into 2D, covers each visibility sample?
- Coverage (what triangles cover) + occlusion (closest covering triangle)

▪ Ray casting formulation:
- Sample = ray in 3D (ray = (origin, direction))
- What scene geometry is intersected by each ray?
- Which intersection is closest to the ray’s origin?

Screen

Camera

Visibility as a search problem
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Two naive visibility algorithms *
Naive “rasterizer”:
initialize	
  z_closest[]	
  to	
  INFINITY	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  store	
  closest	
  for	
  all	
  samples	
  
for	
  each	
  triangle	
  t	
  in	
  scene:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  stream	
  over	
  triangles	
  in	
  outer	
  loop
	
  	
  	
  	
  t_proj	
  =	
  project_triangle(t)
	
  	
  	
  	
  for	
  each	
  sample	
  s	
  in	
  frame	
  buffer:	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  (t_proj	
  covers	
  s)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (depth	
  of	
  t	
  at	
  s	
  is	
  closer	
  than	
  z_closest[s])
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  update	
  z_closest[s];

Naive “ray caster”:
for	
  each	
  sample	
  s	
  in	
  frame	
  buffer:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  stream	
  over	
  samples	
  (rays)	
  in	
  outer	
  loop
	
  	
  	
  	
  ray	
  =	
  generate	
  ray	
  from	
  camera	
  through	
  s	
  out	
  into	
  scene
	
  	
  	
  	
  ray_closest	
  =	
  INFINITY	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  store	
  only	
  closest	
  point	
  for	
  current	
  ray
	
  	
  	
  	
  closest_tri	
  =	
  NULL;	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  for	
  each	
  triangle	
  t	
  in	
  scene:	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  if	
  (ray	
  intersects	
  t)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (intersection	
  point	
  is	
  closer	
  than	
  ray_closest)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  update	
  ray_closest;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  closest_tri	
  =	
  t;

* As we will discuss, as optimizations get added the difference between these two approaches blurs
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Recall: the rendering equation [Kajiya 86]

x

x’

i(x,x’)

i(x,x’)  = Radiance (energy along a ray) from point x’ in direction of point x    
v(x,x’) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)
l(x,x’) =  Radiance emitted from x’ in direction of x   (if x’ is an emitter)
r(x,x’,x’’) = BRDF: fraction of energy arriving at x’ from x’’ that is re#ected in direction of x

x’’
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Trace a ray to compute visibility between two scene points 
(key component of evaluating rendering equation)

Camera

▪ Compute v(x, x’)                       (is there visibility along ray from x to x’)
▪ Compute hit = trace(x, x’)    (what surface was the !rst hit by ray from x to x’)
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Sampling light paths

Image credit: Wann Jensen, Hanrahan
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▪ Camera rays (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow rays
- Point light source: common destination, similar direction
- Area light source: similar destination, similar direction (ray “coherence” breaks down 

as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination rays
- Mirror surface (coherent rays bounce in similar direction)
- Glossy surface
- Diffuse surface (rays bounce randomly)

Mirror Surface

Tracing rays used in many contexts

Glossy Surface

Diffuse Surface

Point light
Area Light
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Another way to think about rasterization
▪ Rasterization is an optimized visibility algorithm for batches 

of rays with speci!c properties
- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed (within !eld of view)

1. Same origin/known !eld-of-view: project triangles to 
reduce ray-triangle intersection to 2D point-in-polygon test
- Simpli!es math (2D coverage computations rather than 3D interaection)
- Fixed-point math (clipping used to ensures precision bounds)
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Rasterization: ray origin need not be camera position
Example: shadow mapping

- Place ray origin at position of light source

Shadow map: Render scene with camera at light position to compute depth along uniformly 
distributed “shadow rays”

- Store precomputed shadow rays in texture map

Image credits: Segal et al. 92, Cass Everitt 

Shadow rays Shadow map: texture stores closest 
intersection along each shadow ray
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Shadow map used to approximate v(x’,x’’) 
when shading fragment at x’

x

x’

x’’ Shadow rays shown in red:
Distance to closest scene object is precomputed 
and stored in texture map (“shadow map”) 
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Shadows computed using shadow map 

Correct hard shadows
(result from compute v(x’,x’’) directly using ray tracing  

Shadow aliasing due to shadow map undersampling
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Rasterization: ray origin need not be camera position
Environment mapping:
place ray origin at re"ective object

Yields approximation to true 
re"ection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray 
origin at center of re#ective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror re"ection rays

(Question: how can a glossy surface be rendered 
using the cube-map)
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Summary: rasterization as a visibility algorithm
▪ Rasterization is an optimized visibility algorithm for speci!c batches of rays

- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed within !eld of view

1. Same origin/known !eld of !eld: project triangles to reduce ray-triangle 
intersection to cheap/efficient 2D point in polygon test 

2. Uniform sample distribution: given polygon, easy (a.k.a. fast/efficient) to 
“!nd” samples covered by polygon
- Frame buffer: constant time sample lookup, update, edit 
- Sample search leverages 2D screen coherence

- Amortize operations over tile of samples (can think of tiled frame buffer as a 
two-level hierarchy on samples)

- No need for complex acceleration structures to accelerate a search over samples 
(hierarchy implicit in the samples)
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Rasterization: performance
▪ Stream over scene geometry (regular/predictable data access), 

but arbitrarily access frame-buffer sample data
- Unpredictable access to sample data is manageable

▪ Main idea: Z-buffered occlusion
- Fixed number of samples (determined by screen resolution, sampling rate)
- Known sample data structure
- Implication: efficient to !nd samples covered by polygon (highly optimized 

!xed-function implementations of both coverage computation and frame-buffer 
update)

▪ Scales to high scene complexity
- Stream over geometry: so required memory footprint in graphics pipeline is 

independent of scene size
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Review: ray tracing 101
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Problem
Given ray, !nd !rst intersection with scene geometry **

** A simpler, but common, query is to determine only if any intersection exists
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Accelerating ray-scene intersection
▪ Preprocess scene to accelerate ray-scene visibility queries

- 1D analogy: sort integers in a list to enable efficient binary search
- Database analogy: build an index (e.g., B-tree)

▪ Popular acceleration structure for ray tracing: bounding volume hierarchy (BVH)
- Group objects with spatial proximity into tree nodes
- Adapts to non-uniform density of scene objects
- Note: many other acceleration structures: K-D trees, octrees, uniform grids

Image credit: Wald et al. TOG 2004 

Three different bounding volume hierarchies for the same scene
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Simple ray tracer (using a BVH)
//	
  stores	
  information	
  about	
  closest	
  hit	
  found	
  so	
  far
struct	
  ClosestHitInfo	
  {
	
  	
  	
  Primitive	
  primitive;
	
  	
  	
  float	
  distance;
};

trace(Ray	
  ray,	
  BVHNode	
  node,	
  ClosestHitInfo	
  hitInfo)
{
	
  	
  	
  if	
  (!intersect(ray,	
  node.bbox)	
  ||	
  (closest	
  point	
  on	
  box	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo.distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {

trace(ray,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(ray,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}



 CMU 15-869, Fall 2013

How to build a BVH?
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How to build a BVH?
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Surface area heuristic
▪ Goal: minimize expected cost to trace rays

cost	
  =	
  CT	
  +	
  (PL	
  *	
  CL)	
  +	
  (PR	
  *	
  CR)

CT = cost of performing a tree node traversal (ray-box test)
PL/PR = probability of ray intersecting left/right child
CL/CR = cost of intersecting ray with left/right child

▪ Assumptions:
- Rays are uniformly distributed (uniform distribution of origin and direction) 

but originate from outside node bounding box
- Then Pi is surface area of child node bbox / surface area of parent node bbox 

- Costs of children typically set to be CI * # primitives

[Goldsmith and Salmon 87 ]
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Accelerating ray-scene queries using a BVH
Simpli!cations in today’s discussion:

Will not discuss how to make BVH construction fast (we assume acceleration structure is given)
Scene acceleration structure is read-only: no on-demand build, no on-demand tessellation 
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High-throughput ray tracing
Find intersection of millions of rays with scene geometry



 CMU 15-869, Fall 2013

High-throughput ray tracing
▪ Want work efficient algorithms  (do less) 

- High-quality acceleration structures (minimize ray-box, ray-primitive tests)
- Smart traversal algorithms (early termination, etc.)

▪ Implementations for existing parallel hardware (CPUs/GPUs):
- High multi-core, SIMD execution efficiency
- Help from !xed-function processing?

▪ Bandwidth-efficient implementations: 
- How to minimize bandwidth requirements?

Same issues we’ve talked about all class!
Tension between employing most work-efficient algorithms, and using 

available execution and bandwidth resources well.
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Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for 
SIMD processing
- Can use 3 of 4 SSE vector lanes (e.g., xyz work, point-multiple-plane tests, etc.)

▪ Similar short-vector parallelism in ray-triangle test at BVH leaf

▪ If leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles 
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Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child 
node bboxes in parallel)
- BVH with branching factor 4 has similar work efficiency to branching factor 2
- BVH with branching factor 8 or 16 is signi!cantly less work efficient (diminished 

bene!t of leveraging SIMD execution) 

[Wald et al. 2008]
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Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

▪ Method 1: SPMD style 
- Each program instance intersects one ray against scene BVH

(programmer writes algorithm for tracing single ray, it is executed 
simultaneously on a vector-width group of rays)

- Recall homework assignment (1D ray tracing)
- High SIMD efficiency when program instances execute same instructions
- Bandwidth efficient when rays in a SIMD block (“warp”) visit same BVH nodes 

▪ Method 2: ray packets
- Code is explicitly written to trace N rays at a time, not 1 ray
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Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once 
RayPacket
{
	
  	
  	
  	
  Ray	
  rays[PACKET_SIZE];
	
  	
  	
  	
  bool	
  active[PACKET_SIZE];
};

trace(RayPacket	
  rays,	
  BVHNode	
  node,	
  ClosestHitInfo	
  packetHitInfo)
{
	
  	
  	
  if	
  (!ANY_ACTIVE_intersect(rays,	
  node.bbox)	
  ||
	
  	
  	
  	
  	
  	
  	
  (closest	
  point	
  on	
  box	
  (for	
  all	
  active	
  rays)	
  is	
  farther	
  than	
  hitInfo.distance))
	
  	
  	
  	
  	
  	
  return;

	
  	
  	
  update	
  packet	
  active	
  mask

	
  	
  	
  if	
  (node.leaf)	
  {
	
  	
  	
  	
  	
  	
  for	
  (each	
  primitive	
  in	
  node)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  for	
  (each	
  ACTIVE	
  ray	
  r	
  in	
  packet)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (hit,	
  distance)	
  =	
  intersect(ray,	
  primitive);
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  if	
  (hit	
  &&	
  distance	
  <	
  hitInfo.distance)	
  {
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].primitive	
  =	
  primitive;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  hitInfo[r].distance	
  =	
  distance;
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  	
  	
  	
  }
	
  	
  	
  	
  	
  	
  }
	
  	
  	
  }	
  else	
  {
	
  	
  	
  	
  	
  trace(rays,	
  node.leftChild,	
  hitInfo);
	
  	
  	
  	
  	
  trace(rays,	
  node.rightChild,	
  hitInfo);
	
  	
  	
  }
}

[Wald et al. 2001]
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Ray packet tracing

1 

2 
3 

4 

5 

C E 

F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

Blue = active rays after node box test

r0 
r1 r2 r3 r4 r5 r6 

r7 

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F
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Advantages of packets
▪ Enable wide SIMD execution

- One vector lane per ray

▪ Amortize BVH data fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width!
- Contrast with SPMD approach 

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox 

(e.g., think of a packet as a beam)
- Further math optimizations possible when all rays share origin 
- Note: there is value to making packets much bigger than SIMD width!
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Disadvantages of packets

B

C D

E F

1 2 

3 4 5 

G
6 

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all 
rays in the packet along with it)
(note contrast with SPMD version: each ray only 
visits BVH nodes it is required to)

▪ Loss of efficiency: node traversal, 
intersection, etc. amortized over less 
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

Both packet tracing and SPMD ray tracing suffer from 
decreased SIMD and cache efficiency when rays 
traverse the BVH differently... but take a moment to 
think about why (the reasons are different).   



 CMU 15-869, Fall 2013

Ray packet tracing: incoherent rays

1 

2 
3 

4 

5 

C E 

F

D

B

B

C D

E F

1 2 

3 4 5 

6 

G
6 

A

A

G 

Blue = active ray after node box test

r0 

r1 

r3 

r3 

r4 

r5 

r6 

r7 

When rays are incoherent, bene!t of packets can decrease 
signi!cantly.  This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling bene!t!) 
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Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!
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Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if 
a scene is overly detailed

(note importance of geometric level of detail)
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Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet: 
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and 
continue with smaller packet
- Increases SIMD utilization
- Amortization bene!ts of smaller packets, but not large packets 

[Boulos et al. 2008]
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Improving packet tracing with ray reordering

10-18% speedup over standard packet tracing for glossy re#ection rays 
25-50% speedup for 2-bounce diffuse interre#ection rays
(4-wide SSE implementation) 

Idea: when packet utilization drops below threshold, resort rays and continue with 
smaller packet
- Increases SIMD utilization
- Still loses amortization bene!ts of large packets

Bene!t of higher utilization/tighter packet bounds must overcome overhead of 
reordering operation

[Boulos et al. 2008]
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Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Diffuse bounces result in essentially random ray distribution
- High resolution geometry encourages incoherence near leaves of tree

▪ In these situations there is little bene!t to packets (can even decrease 
performance compared to single ray code)
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Packet tracing best practices

▪ Use large packets for eye/re"ection/point light shadow rays 
or higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet 
utilization drops below threshold
- For wide SIMD machine, a single branching-factor 4 BVH works well for both 

packet and single ray traversal
- Recall: intra-ray SIMD provides no work amortization or bandwidth 

reduction bene!ts

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree 
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]
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Data access challenges
▪ Recall data access in rasterization

- Stream through scene geometry
- Allow arbitrary, direct access to frame-buffer samples (accelerated by highly 

specialized implementations)

▪ Ray tracer data access
- Frame-buffer access is minimal (once per ray)
- But access to BVH nodes is frequent and unpredictable

- Not predictable by de!nition (or the BVH is low quality)
- Packets amortize cost of node fetches, but are less useful under divergent 

conditions.

▪ Incoherent ray traversal suffers from poor cache behavior
- Rays require different BVH nodes during traversal
- Ray-scene intersection becomes bandwidth bound for incoherent rays

- E.g., soft shadows, sampling indirect illumination
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Let’s stop and think
▪ One strong argument for high performance ray tracing is to 

produce advanced effects that are difficult or inefficient to 
compute given the single point of projection and uniform 
sampling constraints of rasterization
- e.g., soft shadows, diffuse interre"ections

▪ But these phenomenon create situations of high ray divergence! 
(where packet- and SIMD-optimizations are less effective)
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Emerging hardware for ray tracing
▪ Modern implementations:

- Trace single rays, not ray packets (assume most rays are incoherent rays... if 
they weren’t there problem is a reasonable rasterization-based solution) 

▪ Two areas of focus:
- Custom logic for accelerating ray-box and ray-triangle tests

- MIMD designs: wide SIMD execution not bene!cial
- Support for efficiently reordering ray-tracing computations to maximize 

memory locality (ray scheduling)

▪ See “further reading” on web site for a list of references
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Global ray reordering
Idea: batch up rays that must traverse the same part of the scene.  
Process these rays together to increase locality in BVH access

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays 
to treelet queue

2. When treelet queue is sufficiently large, 
intersect enqueued rays with treelet
(amortize treelet load over all enqueued rays)

Buffering overhead to global ray reordering: must 
store per-ray “stack” (need not be entire call stack, 
but must contain traversal history) for many rays.

Per-treelet ray queues constrained to !t in caches 
(or in dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]

[Pharr 1997, Navratil 07, Alia 10]
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Summary
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Not discussed today
A practical, efficient real-time ray tracing system will also need 
to solve these important challenges

1. Building the BVH efficiently
- Good recent work on parallel BVH builds, see course web site for references

2. On-demand geometry: tessellation
- Tesselate surface !rst time it is hit by a ray
- Intersection modi!es BVH (not so embarrassingly parallel anymore)
- How to determine level-of-detail?

3. Efficiently shading ray hits
- Shading remains at least 50% of execution time in modern ray tracers 

(making ray tracing in!nitely fast yields only a 2X speedup!)  
- What to do when rays in a packet hits surfaces with different shaders? 
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Visibility summary
▪ Visibility problem: determine which scene geometry contributes to 

the appearance of which screen pixels
- “Basic” rasterization: given polygon, !nd samples(s) it overlaps
- “Basic” ray tracing: given ray, !nd triangle(s) that it intersects

▪ In practice, not as different as you might think

▪ Just different ways to solve the problem of !nding interacting 
pairs between two hierarchies
- Hierarchy over point samples (tiles, ray packets)
- Hierarchy over geometry (BVHs)
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Consider performant, modern solutions for 
primary-ray visibility
▪ “Rasterizer”

- Hierarchical rasterization (uniform grid over samples)
- Hierarchical depth culling (quad-tree over samples)
- Application scene graph, hierarchy over geometry

- Modern games perform conservative coarse culling, only submit potentially 
visible geometry to the rendering pipeline
(in practice, rasterization not linear in amount of geometry in scene)

▪ “Ray tracer”
- BVH: hierarchy over geometry
- Packets form hierarchy over samples (akin to frame buffer tiles).  Breaking packets 

into small packets during traversal adds complexity to the hierarchy
- Wide packet traversal, high-branching BVH: decrease work efficiency for better 

machine utilization
(in practice, signi!cant constants in front of that lg(N))
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Trends: ray tracing used often in !lm

▪ Re#ections, indirect illumination, ambient 
occlusion, some shadows often computed via ray 
tracing

▪ Sony Pictures Imageworks now uses only ray 
tracing for all !lms
- Arnold renderer has replaced Renderman at Sony 

▪ Complex reasons motivate shift to ray tracing
- More than just performance (artist time, 

production cost, etc.)

Image Credit: Sony (Cloudy With a Chance of Meatballs)

Image Credit: Pixar (Cars)

Image Credit: Blue Sky
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Readings
▪ For next time:

- T. Aila and S. Laine, Understanding the Efficiency of Ray Traversal on GPUs. High 
Performance Graphics 2009

- T. Aila and S. Laine, Architecture Considerations for Tracing Incoherent Rays. High 
Performance Graphics 2010 

▪ Lots of supplemental ray tracing readings posted on the web site
- Best practice ray-tracing algorithms for CPUs/GPUs
- Specialized hardware research prototypes


