
Visual Computing Systems
CMU 15-869, Fall 2013

Lecture 10:

Real-time ray tracing
(and opportunities for hardware acceleration)

 CMU 15-869, Fall 2013

Recent push towards real-time ray tracing

Image credit: NVIDIA (this ray traced image can be rendered at interactive rates on modern GPUs)

 CMU 15-869, Fall 2013

Review: visibility
▪ Problem: determine what scene geometry contributes to the

appearance of which screen pixels
▪ Visibility can be thought of as a search problem

- So far in this course: given triangle, !nd samples it contributes to
- Today: given sample, !nd triangle(s) that contribute to it

Screen

Camera

 CMU 15-869, Fall 2013

▪ Rasterization formulation:
- Sample = 2D point on screen
- What scene geometry, after projection into 2D, covers each visibility sample?
- Coverage (what triangles cover) + occlusion (closest covering triangle)

▪ Ray casting formulation:
- Sample = ray in 3D (ray = (origin, direction))
- What scene geometry is intersected by each ray?
- Which intersection is closest to the ray’s origin?

Screen

Camera

Visibility as a search problem

 CMU 15-869, Fall 2013

Two naive visibility algorithms *
Naive “rasterizer”:
initialize	
 z_closest[]	
 to	
 INFINITY	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 store	
 closest	
 for	
 all	
 samples	

for	
 each	
 triangle	
 t	
 in	
 scene:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 stream	
 over	
 triangles	
 in	
 outer	
 loop
	
 	
 	
 	
 t_proj	
 =	
 project_triangle(t)
	
 	
 	
 	
 for	
 each	
 sample	
 s	
 in	
 frame	
 buffer:	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (t_proj	
 covers	
 s)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (depth	
 of	
 t	
 at	
 s	
 is	
 closer	
 than	
 z_closest[s])
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 update	
 z_closest[s];

Naive “ray caster”:
for	
 each	
 sample	
 s	
 in	
 frame	
 buffer:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 stream	
 over	
 samples	
 (rays)	
 in	
 outer	
 loop
	
 	
 	
 	
 ray	
 =	
 generate	
 ray	
 from	
 camera	
 through	
 s	
 out	
 into	
 scene
	
 	
 	
 	
 ray_closest	
 =	
 INFINITY	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 store	
 only	
 closest	
 point	
 for	
 current	
 ray
	
 	
 	
 	
 closest_tri	
 =	
 NULL;	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 for	
 each	
 triangle	
 t	
 in	
 scene:	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 if	
 (ray	
 intersects	
 t)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (intersection	
 point	
 is	
 closer	
 than	
 ray_closest)
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 update	
 ray_closest;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 closest_tri	
 =	
 t;

* As we will discuss, as optimizations get added the difference between these two approaches blurs

 CMU 15-869, Fall 2013

Recall: the rendering equation [Kajiya 86]

x

x’

i(x,x’)

i(x,x’) = Radiance (energy along a ray) from point x’ in direction of point x
v(x,x’) = Binary visibility function (1 if ray from x’ reaches x, 0 otherwise)
l(x,x’) = Radiance emitted from x’ in direction of x (if x’ is an emitter)
r(x,x’,x’’) = BRDF: fraction of energy arriving at x’ from x’’ that is re#ected in direction of x

x’’

 CMU 15-869, Fall 2013

Trace a ray to compute visibility between two scene points
(key component of evaluating rendering equation)

Camera

▪ Compute v(x, x’) (is there visibility along ray from x to x’)
▪ Compute hit = trace(x, x’) (what surface was the !rst hit by ray from x to x’)

 CMU 15-869, Fall 2013

Sampling light paths

Image credit: Wann Jensen, Hanrahan

 CMU 15-869, Fall 2013

▪ Camera rays (a.k.a., eye rays, primary rays)
- Common origin, similar direction

▪ Shadow rays
- Point light source: common destination, similar direction
- Area light source: similar destination, similar direction (ray “coherence” breaks down

as light source increases in size: e.g., consider entire sky as an area light source)

▪ Indirect illumination rays
- Mirror surface (coherent rays bounce in similar direction)
- Glossy surface
- Diffuse surface (rays bounce randomly)

Mirror Surface

Tracing rays used in many contexts

Glossy Surface

Diffuse Surface

Point light
Area Light

 CMU 15-869, Fall 2013

Another way to think about rasterization
▪ Rasterization is an optimized visibility algorithm for batches

of rays with speci!c properties
- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed (within !eld of view)

1. Same origin/known !eld-of-view: project triangles to
reduce ray-triangle intersection to 2D point-in-polygon test
- Simpli!es math (2D coverage computations rather than 3D interaection)
- Fixed-point math (clipping used to ensures precision bounds)

 CMU 15-869, Fall 2013

Rasterization: ray origin need not be camera position
Example: shadow mapping

- Place ray origin at position of light source

Shadow map: Render scene with camera at light position to compute depth along uniformly
distributed “shadow rays”

- Store precomputed shadow rays in texture map

Image credits: Segal et al. 92, Cass Everitt

Shadow rays Shadow map: texture stores closest
intersection along each shadow ray

 CMU 15-869, Fall 2013

Shadow map used to approximate v(x’,x’’)
when shading fragment at x’

x

x’

x’’ Shadow rays shown in red:
Distance to closest scene object is precomputed
and stored in texture map (“shadow map”)

 CMU 15-869, Fall 2013Image credit: Johnson et al. TOG 2005

Shadows computed using shadow map

Correct hard shadows
(result from compute v(x’,x’’) directly using ray tracing

Shadow aliasing due to shadow map undersampling

 CMU 15-869, Fall 2013

Rasterization: ray origin need not be camera position
Environment mapping:
place ray origin at re"ective object

Yields approximation to true
re"ection results. Why?

Image credit: http://en.wikipedia.org/wiki/Cube_mapping

Scene rendered 6 times, with ray
origin at center of re#ective box
(produces “cube-map”)

Center of projection

Cube map:
stores results of approximate mirror re"ection rays

(Question: how can a glossy surface be rendered
using the cube-map)

 CMU 15-869, Fall 2013

Summary: rasterization as a visibility algorithm
▪ Rasterization is an optimized visibility algorithm for speci!c batches of rays

- Assumption 1: Rays have the same origin
- Assumption 2: Rays are uniformly distributed within !eld of view

1. Same origin/known !eld of !eld: project triangles to reduce ray-triangle
intersection to cheap/efficient 2D point in polygon test

2. Uniform sample distribution: given polygon, easy (a.k.a. fast/efficient) to
“!nd” samples covered by polygon
- Frame buffer: constant time sample lookup, update, edit
- Sample search leverages 2D screen coherence

- Amortize operations over tile of samples (can think of tiled frame buffer as a
two-level hierarchy on samples)

- No need for complex acceleration structures to accelerate a search over samples
(hierarchy implicit in the samples)

 CMU 15-869, Fall 2013

Rasterization: performance
▪ Stream over scene geometry (regular/predictable data access),

but arbitrarily access frame-buffer sample data
- Unpredictable access to sample data is manageable

▪ Main idea: Z-buffered occlusion
- Fixed number of samples (determined by screen resolution, sampling rate)
- Known sample data structure
- Implication: efficient to !nd samples covered by polygon (highly optimized

!xed-function implementations of both coverage computation and frame-buffer
update)

▪ Scales to high scene complexity
- Stream over geometry: so required memory footprint in graphics pipeline is

independent of scene size

 CMU 15-869, Fall 2013

Review: ray tracing 101

 CMU 15-869, Fall 2013

Problem
Given ray, !nd !rst intersection with scene geometry **

** A simpler, but common, query is to determine only if any intersection exists

 CMU 15-869, Fall 2013

Accelerating ray-scene intersection
▪ Preprocess scene to accelerate ray-scene visibility queries

- 1D analogy: sort integers in a list to enable efficient binary search
- Database analogy: build an index (e.g., B-tree)

▪ Popular acceleration structure for ray tracing: bounding volume hierarchy (BVH)
- Group objects with spatial proximity into tree nodes
- Adapts to non-uniform density of scene objects
- Note: many other acceleration structures: K-D trees, octrees, uniform grids

Image credit: Wald et al. TOG 2004

Three different bounding volume hierarchies for the same scene

 CMU 15-869, Fall 2013

Simple ray tracer (using a BVH)
//	
 stores	
 information	
 about	
 closest	
 hit	
 found	
 so	
 far
struct	
 ClosestHitInfo	
 {
	
 	
 	
 Primitive	
 primitive;
	
 	
 	
 float	
 distance;
};

trace(Ray	
 ray,	
 BVHNode	
 node,	
 ClosestHitInfo	
 hitInfo)
{
	
 	
 	
 if	
 (!intersect(ray,	
 node.bbox)	
 ||	
 (closest	
 point	
 on	
 box	
 is	
 farther	
 than	
 hitInfo.distance))
	
 	
 	
 	
 	
 	
 return;

	
 	
 	
 if	
 (node.leaf)	
 {
	
 	
 	
 	
 	
 	
 for	
 (each	
 primitive	
 in	
 node)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 (hit,	
 distance)	
 =	
 intersect(ray,	
 primitive);
	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (hit	
 &&	
 distance	
 <	
 hitInfo.distance)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo.primitive	
 =	
 primitive;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo.distance	
 =	
 distance;
	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 }
	
 	
 	
 }	
 else	
 {

trace(ray,	
 node.leftChild,	
 hitInfo);
	
 	
 	
 	
 	
 trace(ray,	
 node.rightChild,	
 hitInfo);
	
 	
 	
 }
}

 CMU 15-869, Fall 2013

How to build a BVH?

 CMU 15-869, Fall 2013

How to build a BVH?

 CMU 15-869, Fall 2013

Surface area heuristic
▪ Goal: minimize expected cost to trace rays

cost	
 =	
 CT	
 +	
 (PL	
 *	
 CL)	
 +	
 (PR	
 *	
 CR)

CT = cost of performing a tree node traversal (ray-box test)
PL/PR = probability of ray intersecting left/right child
CL/CR = cost of intersecting ray with left/right child

▪ Assumptions:
- Rays are uniformly distributed (uniform distribution of origin and direction)

but originate from outside node bounding box
- Then Pi is surface area of child node bbox / surface area of parent node bbox

- Costs of children typically set to be CI * # primitives

[Goldsmith and Salmon 87]

 CMU 15-869, Fall 2013

Accelerating ray-scene queries using a BVH
Simpli!cations in today’s discussion:

Will not discuss how to make BVH construction fast (we assume acceleration structure is given)
Scene acceleration structure is read-only: no on-demand build, no on-demand tessellation

 CMU 15-869, Fall 2013

High-throughput ray tracing
Find intersection of millions of rays with scene geometry

 CMU 15-869, Fall 2013

High-throughput ray tracing
▪ Want work efficient algorithms (do less)

- High-quality acceleration structures (minimize ray-box, ray-primitive tests)
- Smart traversal algorithms (early termination, etc.)

▪ Implementations for existing parallel hardware (CPUs/GPUs):
- High multi-core, SIMD execution efficiency
- Help from !xed-function processing?

▪ Bandwidth-efficient implementations:
- How to minimize bandwidth requirements?

Same issues we’ve talked about all class!
Tension between employing most work-efficient algorithms, and using

available execution and bandwidth resources well.

 CMU 15-869, Fall 2013

Parallelize ray-box, ray-triangle intersection

▪ Given one ray and one bounding box, there are opportunities for
SIMD processing
- Can use 3 of 4 SSE vector lanes (e.g., xyz work, point-multiple-plane tests, etc.)

▪ Similar short-vector parallelism in ray-triangle test at BVH leaf

▪ If leaf nodes contain multiple triangles, can parallelize ray-
triangle intersection across these triangles

 CMU 15-869, Fall 2013

Parallelize over BVH child nodes

▪ Idea: use wider-branching BVH (test single ray against multiple child
node bboxes in parallel)
- BVH with branching factor 4 has similar work efficiency to branching factor 2
- BVH with branching factor 8 or 16 is signi!cantly less work efficient (diminished

bene!t of leveraging SIMD execution)

[Wald et al. 2008]

 CMU 15-869, Fall 2013

Parallelize across rays
▪ Simultaneously intersect multiple rays with scene

▪ Method 1: SPMD style
- Each program instance intersects one ray against scene BVH

(programmer writes algorithm for tracing single ray, it is executed
simultaneously on a vector-width group of rays)

- Recall homework assignment (1D ray tracing)
- High SIMD efficiency when program instances execute same instructions
- Bandwidth efficient when rays in a SIMD block (“warp”) visit same BVH nodes

▪ Method 2: ray packets
- Code is explicitly written to trace N rays at a time, not 1 ray

 CMU 15-869, Fall 2013

Ray packet tracing
Program explicitly intersects a collection of rays against BVH at once
RayPacket
{
	
 	
 	
 	
 Ray	
 rays[PACKET_SIZE];
	
 	
 	
 	
 bool	
 active[PACKET_SIZE];
};

trace(RayPacket	
 rays,	
 BVHNode	
 node,	
 ClosestHitInfo	
 packetHitInfo)
{
	
 	
 	
 if	
 (!ANY_ACTIVE_intersect(rays,	
 node.bbox)	
 ||
	
 	
 	
 	
 	
 	
 	
 (closest	
 point	
 on	
 box	
 (for	
 all	
 active	
 rays)	
 is	
 farther	
 than	
 hitInfo.distance))
	
 	
 	
 	
 	
 	
 return;

	
 	
 	
 update	
 packet	
 active	
 mask

	
 	
 	
 if	
 (node.leaf)	
 {
	
 	
 	
 	
 	
 	
 for	
 (each	
 primitive	
 in	
 node)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 for	
 (each	
 ACTIVE	
 ray	
 r	
 in	
 packet)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (hit,	
 distance)	
 =	
 intersect(ray,	
 primitive);
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 if	
 (hit	
 &&	
 distance	
 <	
 hitInfo.distance)	
 {
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo[r].primitive	
 =	
 primitive;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 hitInfo[r].distance	
 =	
 distance;
	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 	
 	
 	
 }
	
 	
 	
 	
 	
 	
 }
	
 	
 	
 }	
 else	
 {
	
 	
 	
 	
 	
 trace(rays,	
 node.leftChild,	
 hitInfo);
	
 	
 	
 	
 	
 trace(rays,	
 node.rightChild,	
 hitInfo);
	
 	
 	
 }
}

[Wald et al. 2001]

 CMU 15-869, Fall 2013

Ray packet tracing

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active rays after node box test

r0
r1 r2 r3 r4 r5 r6

r7

Note: r6 does not pass node F box test due to closest-
so-far check, and thus does not visit F

 CMU 15-869, Fall 2013

Advantages of packets
▪ Enable wide SIMD execution

- One vector lane per ray

▪ Amortize BVH data fetch: all rays in packet visit node at same time
- Load BVH node once for all rays in packet (not once per ray)
- Note: there is value to making packets bigger than SIMD width!
- Contrast with SPMD approach

▪ Amortize work (packets are hierarchies over rays)
- Use interval arithmetic to conservatively test entire set of rays against node bbox

(e.g., think of a packet as a beam)
- Further math optimizations possible when all rays share origin
- Note: there is value to making packets much bigger than SIMD width!

 CMU 15-869, Fall 2013

Disadvantages of packets

B

C D

E F

1 2

3 4 5

G
6

A

Blue = active ray after node box test

▪ If any ray must visit a node, it drags all
rays in the packet along with it)
(note contrast with SPMD version: each ray only
visits BVH nodes it is required to)

▪ Loss of efficiency: node traversal,
intersection, etc. amortized over less
than a packet’s worth of rays

▪ Not all SIMD lanes doing useful work

Both packet tracing and SPMD ray tracing suffer from
decreased SIMD and cache efficiency when rays
traverse the BVH differently... but take a moment to
think about why (the reasons are different).

 CMU 15-869, Fall 2013

Ray packet tracing: incoherent rays

1

2
3

4

5

C E

F

D

B

B

C D

E F

1 2

3 4 5

6

G
6

A

A

G

Blue = active ray after node box test

r0

r1

r3

r3

r4

r5

r6

r7

When rays are incoherent, bene!t of packets can decrease
signi!cantly. This example: packet visits all tree nodes.
(So all eight rays visit all tree nodes! No culling bene!t!)

 CMU 15-869, Fall 2013

Incoherence is a property of both the rays and the scene

Random rays are “coherent” with respect to the BVH if the scene is one big triangle!

 CMU 15-869, Fall 2013

Incoherence is a property of both the rays and the scene

Camera rays become “incoherent” with respect to lower nodes in the BVH if
a scene is overly detailed

(note importance of geometric level of detail)

 CMU 15-869, Fall 2013

Improving packet tracing with ray reordering

16-ray packet: 7 of 16 rays active

Reorder rays
Recompute intervals/bounds for active rays

Continue tracing with 8-ray packet:
7 of 8 rays active

Example: consider 8-wide SIMD processor and 16-ray packets
(2 SIMD instructions required to perform each operation on all rays in packet)

Idea: when packet utilization drops below threshold, resort rays and
continue with smaller packet
- Increases SIMD utilization
- Amortization bene!ts of smaller packets, but not large packets

[Boulos et al. 2008]

 CMU 15-869, Fall 2013

Improving packet tracing with ray reordering

10-18% speedup over standard packet tracing for glossy re#ection rays
25-50% speedup for 2-bounce diffuse interre#ection rays
(4-wide SSE implementation)

Idea: when packet utilization drops below threshold, resort rays and continue with
smaller packet
- Increases SIMD utilization
- Still loses amortization bene!ts of large packets

Bene!t of higher utilization/tighter packet bounds must overcome overhead of
reordering operation

[Boulos et al. 2008]

 CMU 15-869, Fall 2013

Giving up on packets
▪ Even with reordering, ray coherence during BVH traversal will diminish

- Diffuse bounces result in essentially random ray distribution
- High resolution geometry encourages incoherence near leaves of tree

▪ In these situations there is little bene!t to packets (can even decrease
performance compared to single ray code)

 CMU 15-869, Fall 2013

Packet tracing best practices

▪ Use large packets for eye/re"ection/point light shadow rays
or higher levels of BVH
- Ray coherence always high at the top of the tree

▪ Switch to single ray (intra-ray SIMD) when packet
utilization drops below threshold
- For wide SIMD machine, a single branching-factor 4 BVH works well for both

packet and single ray traversal
- Recall: intra-ray SIMD provides no work amortization or bandwidth

reduction bene!ts

▪ Can use packet reordering to postpone time of switch
- Reordering allows packets to provide bene!t deeper into tree
- Not often used in practice due to high implementation complexity

[Benthin et al. 2011]

[Wald et al. 2007]

[Boulos et al. 2008]

 CMU 15-869, Fall 2013

Data access challenges
▪ Recall data access in rasterization

- Stream through scene geometry
- Allow arbitrary, direct access to frame-buffer samples (accelerated by highly

specialized implementations)

▪ Ray tracer data access
- Frame-buffer access is minimal (once per ray)
- But access to BVH nodes is frequent and unpredictable

- Not predictable by de!nition (or the BVH is low quality)
- Packets amortize cost of node fetches, but are less useful under divergent

conditions.

▪ Incoherent ray traversal suffers from poor cache behavior
- Rays require different BVH nodes during traversal
- Ray-scene intersection becomes bandwidth bound for incoherent rays

- E.g., soft shadows, sampling indirect illumination

 CMU 15-869, Fall 2013

Let’s stop and think
▪ One strong argument for high performance ray tracing is to

produce advanced effects that are difficult or inefficient to
compute given the single point of projection and uniform
sampling constraints of rasterization
- e.g., soft shadows, diffuse interre"ections

▪ But these phenomenon create situations of high ray divergence!
(where packet- and SIMD-optimizations are less effective)

 CMU 15-869, Fall 2013

Emerging hardware for ray tracing
▪ Modern implementations:

- Trace single rays, not ray packets (assume most rays are incoherent rays... if
they weren’t there problem is a reasonable rasterization-based solution)

▪ Two areas of focus:
- Custom logic for accelerating ray-box and ray-triangle tests

- MIMD designs: wide SIMD execution not bene!cial
- Support for efficiently reordering ray-tracing computations to maximize

memory locality (ray scheduling)

▪ See “further reading” on web site for a list of references

 CMU 15-869, Fall 2013

Global ray reordering
Idea: batch up rays that must traverse the same part of the scene.
Process these rays together to increase locality in BVH access

Partition BVH into treelets
(treelets sized for L1 or L2 cache)

1. When ray (or packet) enters treelet, add rays
to treelet queue

2. When treelet queue is sufficiently large,
intersect enqueued rays with treelet
(amortize treelet load over all enqueued rays)

Buffering overhead to global ray reordering: must
store per-ray “stack” (need not be entire call stack,
but must contain traversal history) for many rays.

Per-treelet ray queues constrained to !t in caches
(or in dedicated ray buffer SRAM)

[Pharr 1997, Navratil 07, Alia 10]

[Pharr 1997, Navratil 07, Alia 10]

 CMU 15-869, Fall 2013

Summary

 CMU 15-869, Fall 2013

Not discussed today
A practical, efficient real-time ray tracing system will also need
to solve these important challenges

1. Building the BVH efficiently
- Good recent work on parallel BVH builds, see course web site for references

2. On-demand geometry: tessellation
- Tesselate surface !rst time it is hit by a ray
- Intersection modi!es BVH (not so embarrassingly parallel anymore)
- How to determine level-of-detail?

3. Efficiently shading ray hits
- Shading remains at least 50% of execution time in modern ray tracers

(making ray tracing in!nitely fast yields only a 2X speedup!)
- What to do when rays in a packet hits surfaces with different shaders?

 CMU 15-869, Fall 2013

Visibility summary
▪ Visibility problem: determine which scene geometry contributes to

the appearance of which screen pixels
- “Basic” rasterization: given polygon, !nd samples(s) it overlaps
- “Basic” ray tracing: given ray, !nd triangle(s) that it intersects

▪ In practice, not as different as you might think

▪ Just different ways to solve the problem of !nding interacting
pairs between two hierarchies
- Hierarchy over point samples (tiles, ray packets)
- Hierarchy over geometry (BVHs)

 CMU 15-869, Fall 2013

Consider performant, modern solutions for
primary-ray visibility
▪ “Rasterizer”

- Hierarchical rasterization (uniform grid over samples)
- Hierarchical depth culling (quad-tree over samples)
- Application scene graph, hierarchy over geometry

- Modern games perform conservative coarse culling, only submit potentially
visible geometry to the rendering pipeline
(in practice, rasterization not linear in amount of geometry in scene)

▪ “Ray tracer”
- BVH: hierarchy over geometry
- Packets form hierarchy over samples (akin to frame buffer tiles). Breaking packets

into small packets during traversal adds complexity to the hierarchy
- Wide packet traversal, high-branching BVH: decrease work efficiency for better

machine utilization
(in practice, signi!cant constants in front of that lg(N))

 CMU 15-869, Fall 2013

Trends: ray tracing used often in !lm

▪ Re#ections, indirect illumination, ambient
occlusion, some shadows often computed via ray
tracing

▪ Sony Pictures Imageworks now uses only ray
tracing for all !lms
- Arnold renderer has replaced Renderman at Sony

▪ Complex reasons motivate shift to ray tracing
- More than just performance (artist time,

production cost, etc.)

Image Credit: Sony (Cloudy With a Chance of Meatballs)

Image Credit: Pixar (Cars)

Image Credit: Blue Sky

 CMU 15-869, Fall 2013

Readings
▪ For next time:

- T. Aila and S. Laine, Understanding the Efficiency of Ray Traversal on GPUs. High
Performance Graphics 2009

- T. Aila and S. Laine, Architecture Considerations for Tracing Incoherent Rays. High
Performance Graphics 2010

▪ Lots of supplemental ray tracing readings posted on the web site
- Best practice ray-tracing algorithms for CPUs/GPUs
- Specialized hardware research prototypes

